用户名: 密码: 验证码:
6-羟基多巴胺诱导的SH-SY5Y细胞帕金森病模型差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为进一步探讨帕金森病(PD)的病因和病理机制,本研究在建立符合国际标准的6-OHDA诱导的SH-SY5Y细胞PD模型的基础上,采用MTT及荧光染色法检测6-OHDA对SH-SY5Y细胞的毒性作用;分别提取对照组SH-SY5Y细胞及100μM 6-OHDA处理24小时的实验组SH-SY5Y细胞的细胞总蛋白,应用荧光差异凝胶电泳(DIGE)技术获得蛋白点的差异表达信息,运用质谱(MS)技术鉴定出差异蛋白质。结果显示MTT法检测到实验组细胞存活率降低,荧光染色观察到实验组细胞凋亡的形态学改变及自噬体的数量增加,表明6-OHDA能够诱导SH-SY5Y细胞凋亡、自噬活化、促进自噬体形成最终导致细胞死亡。质谱鉴定出差异蛋白点9个,表达显著上调的有:①CCT2;②annexinA5;③Eno1 protein;④vimentin;⑤glyoxalaseⅠ;⑥Prx6;⑦14-3-3 protein。表达下调的差异蛋白质有:①Hsp90beta;②Ndufs8。在已鉴定的蛋白质中2个为蛋白质分子伴侣:CCT2和Hsp90beta;2个是与氧化应激相关的酶:glyoxalaseⅠ和Prx6;2个是与能量代谢有关的酶:Eno1 protein与Ndufs8;1个是与细胞骨架相关的蛋白质即vimentin;还有2个其它类的蛋白:14-3-3 protein和annexinA5。
     本研究首次应用DIGE和MALDI-TOF MS技术分析并鉴定了6-OHDA诱导的SH-SY5Y细胞PD模型中蛋白质表达水平的变化,并分别探讨了各差异表达蛋白在6-OHDA诱导的SH-SY5Y细胞PD模型中可能的作用机制。本研究发现了文献中未曾报告的CCT2、Eno1 protein、14-3-3 protein、Hsp90beta、Ndufs8、vimentin在6-OHDA诱导的SH-SY5Y细胞PD模型中的显著变化,这些发现为进一步阐明PD的发病机制提供了新的有价值线索和研究方向,可能有助于发现和发展PD临床药物治疗的新靶点并为其提供理论依据。
Parkinson’s disease (PD) is a common neurodegenerative disorder whose primary pathology features are the selective degeneration and deficiency of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of eosinophilic inclusions called Lewy body in the cytoplasm of the spared neurons. The etiology and etiopathogenesis of PD are still obscure. The death mechanism of DA neurons is not fully known so far. For a long time, researchers have been attaching importance to the hypothesis that internal and external neurotoxins induce the degeneration and death of DA neurons, and finally result in PD. As the neurotoxin similar to DA, the effect of 6-hydroxydopamine (6-OHDA) on selective central DA neurons has been extensively recognized.
     Finding PD key proteins and mark proteins is one of the essential problems to define the cause and precise mechanism of the disease. The technologies and methods of proteomic studies have brought new hope to this research area. On the base of traditional 2D electrophoresis technology, introduceing the inter-gel standards for the first time, combining the multiple fluorescence analysis methods, differential gel electrophoresis (DIGE) separates several different fluorescence-lablled samples on the same gel. It has become one of the most reliable and accurate technologies in quantitative and differential proteomic studies. Thus, the accuracy, reliability and repeatability have been greatly improved.
     To deeply explore the mechanism of PD, this study established the international-standard PD model in which 6-OHDA induces the death of SH-SY5Y cells. On the base of this PD model, this research maked use of DIGE and MALDI-TOF mass spectrometry (MS) to find the related proteins, so as to disclose the mechanism of PD at the protein level and provide new valuable clues for the early diagnosis of PD and its remedial medicines.
     The SH-SY5Y cells from the same batch were divided into the experimental groups and the control groups in this study. The experimental groups were treated with 6-OHDA (stock solution in ascorbic acid). The 6-OHDA final concentrations were: 25μM, 50μM, 100μM. The control groups were treated with the same amount of ascorbic acid. Cells were cultured 6h, 12h, 24h and 48h, then MTT , fluorescence staining of Hoechst 33342 and MDC were applied respectively to check the toxic effects of 6-OHDA on SH-SY5Y cells. The total proteins of the SH-SY5Y cells in the control groups and the SH-SY5Y cells treated by 100μM 6-OHDA for 24h were extracted, then the differential information from the protein points were obtained by using DIGE. In the end, the differential proteins were identified with MS technology.
     The viability of the cells was assayed by MTT after incubation in different-concentration of 6-OHDA for different period. The viability of SH-SY5Y cells decreased with the prolonged treatment time and the increased dose of 6-OHDA, there was obvious time and dosage dependant. This research found that 6-OHDA leads to the lower survival rates of SH-SY5Y cells. By Hoechst 33342 and MDC fluorescence staining, present study found the typical apoptosis morphological changes of the cell nucleis and the formation of autophagic vacuoles(Avs), indicating that 6-OHDA can induce apoptosis and autophagy in SH-SY5Y cells. In proteomic studies, through MS analysis and database searching, eighty-four protein spots were found differentially expressed in response to 6-OHDA administration compared with control. Nine of these were confidently identified,including: (1) molecular chaperones related proteins: heat shock 90KD protein beta subunit (Hsp90beta) , chaperonin containing TCP1, subunit2 (CCT2); (2) oxidative stress related proteins: peroxiredoxin6(Prx6), glyoxalase1; (3) cytoskeletal related protein: vimentin; (4) mitochondria related proteins :Eno1 protein (Eno1), NADH dehydrogenase (ubiquinone) Fe-S protein 8.23KD (Ndufs8); (5) other proteins: 14-3-3protein, annexin A5. The down-expressed proteins were Hsp90beta and Ndufs8, other seven proteins were up-expressed. Molecular chaperones were increased, which have protective effects on endoplasmic reticulum stress (ERS). They can promote the functional restoration of endoplasmic reticulum (ER), stabilize the calium ion level, help accurately fold, decorate and operate the accumulated proteins in ER. Moreover, they can be contributive to degrading the wrongly folded proteins so as to hold back the apoptosis of the cells. CCT2 increase indicates it is playing an important role in stabilizing cell structure and accurate protein fold. The up-regualtion of Prx6 and glyoxalase1 can increase cell’s ability to against oxidative stress and oxidative damage. Eno1 protein is one of the key enzymes in glycolytic cycle that regulates energy metabolism. The increase of Eno1 protein advances glycolytic cycle and produces ATP which provides sufficient energy to finish organismic metabolism as well as to against oxidative stress, degrade paraproteins, regulate cell transcription and cell life cycle. The down regualtion of Ndufs8 protein may prove that there is disfunction of mitochondrial respiratory chain in the model of PD induced by 6-hydroxydopamine in SH-SY5Y cells. Bisides, this research identified one protein related to apoptosis, annexin A5, which can form the high differential combination with phosphatidylserine (PS). When the apoptosis begins, PS will distribute over the surface of a cell membrane from the inner layer of the plasmolemma. The combining points between annexin A5 and cells increase, so annexin A5 is the sensitive index in the early period of apoptosis. At present, the annexin A5 fluorescence analysis has been the significant method of identifying apoptosis. Annexin A5 can inhibit the activity of phospholipase A2 and protein kinase C, take part in the activities of cystoskeleton, adjust the functions of membrane receptor, transmit mitotic signals, and promote cell secretion. The excessive expression of the annexin A5 further proves that 6-OHDA has induced apoptosis in SH-SY5Y cells.
     For the first time, this research has analyzed and identified the changes at the protein level in the PD model induced by 6-OHDA in SH-SY5Y cells. It has also explored differential expressing proteins’possible mechanism in the PD model induced by 6-OHDA in SH-SY5Y cells. Among the identified differential proteins, CCT2、Eno1 protein、14-3-3 protein、Hsp90beta、Ndufs8 protein、vimentin have not be found in the previous research on the PD model induced by 6-OHDA in SH-SY5Y cells. The findings of this research have supplied new valuable clues to PD mechanism and the target selection for the PD remedial medicines. These proteins might become the new diagnosis marker and the candidate target of neuroprotecive medicine treatment of PD.
引文
[1]张磊,许忠,候澍,等.泛素-蛋白酶体系统与帕金森病[J].哈尔滨医科大学学报, 2006, 40(6):520-522.
    [2] Uchiyama Y. Autophagy cell death and its execution by lysosomal cathepsins[J]. Arch Histol Cytol, 2001, 64(3):233-246.
    [3] Majeski AE, Dice JF. Mechanismsofchaperone- mediated autophagy[J]. Int J Biochem Cell Biol, 2004, 36(12):2435-2444.
    [4] Rubinsztein DC, Gestwicki JE, Murphy LO, et al. Potential therapeutic applications of autophagy[J]. Nat Rev Drug Discov, 2007, 6: 304-312.
    [5] Takaes-Vellai K, Bayci A, Vellai T. Autophagy in neuronal cell loss: a roal to death[J]. Bioessays, 2006, 28(11):1126-1131.
    [6] Haussinger G, Brunet CL, Grand RJ, et al. Homology between a human apoptosis specific protein and product of APG5, a gene invoived in autophagy in yeast[J]. FEBS Lett, 1998, 425(3):391-395.
    [7] Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism[J]. Annu Rev Nutr, 2007, 27:19-40.
    [8]颜次慧,梁中琴,顾振纶,等.自噬在细胞生存和肿瘤发生中的作用[J].中国药理学通报, 2005, 21(3):269-272.
    [9] Qin ZH, Wang Y, Difiglia M, et al. Huntingtin bodies sequester vesicle- associated proteins by a polyproline-dependent interaction[J]. J Neurosci, 2004, 24(1): 269-281.
    [10] Bredesen DE. Programmed cell death mechanisms in neurological disease[J]. Curr Mol Med, 2008, 8:173-186.
    [11] Isidoro C, Biagioni F, Giorgi FS, et al. The role of autophagy on the survival of dopamine neurons[J]. Curr Top Med Chem, 2009, 9(10):869-879.
    [12] Chang RC, Wong AK, Ng HK, et al. Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) is associated with neuronal degeneration in Alzheimer’s disease[J]. Neuroreport, 2002, 13(18):2429-2432.
    [13] Florez-Mc Clure ML, Linseman DA, Heidenreich KA, et al. The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons[J]. J Neurosci, 2004, 24(19): 4498-4509.
    [14] Petersen A, Larsen KE, Behr GG, et al. Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration[J]. Hum Mol Genet, 2001, 10(12):1243-1254.
    [15] Gomez-Santos C, Ferrer I, Santidrian AF, et al. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells[J]. J Neurosci Res, 2003, 73(3): 341-350.
    [16] Stefanis L, Larsen KE, Rideout HJ, et al. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alter- ations of the ubiquitin- dependent degradation system, loss of dopamine release and autophagic cell death[J]. J Neurosci, 2001, 21(24):9549-9560.
    [17] Petersen A, Larsen KE, Behr GG, et al. Expanded CAG repeats in exon1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degenemtion in Alzheimer’s disease[J]. J Neurosci, 1996, 16(1): 186-199.
    [18] Jerry M Adams. Ways of dying:multiple pathways to apoptosis[J]. Genes & Development, 2003, 17:2481-2495.
    [19] Daisuke Furuya, Naoki Tsuji, Atsuhito Yagihashi, et al. Beclin 1 augmented cis- diamminedichloroplatinum induced apoptosis via enhancing caspase-9 activity[J]. Exp Cell Res, 2005, 307: 26-40.
    [20] Rosa-Ana Gonzalez-Polo, Patricia Boya, Anne-Laure Pauleau, et al. The apoptosis/ autophagy paradox: autophagic vacuolization before apoptotic death[J]. J Cell Sci, 2005, 118(14): 3091-3102.
    [21] Luzheng Xue, Graham C Fletcher, Aviva M Tolkovsky, et al. Autophagy is activated by apoptotic signaling in sympathetic neurons: an alternative mechanism of death execution[J]. Mol Cell Neurosci, 1999, 14:180-198.
    [22] Saeki K, Yuo A, Okuma E, et al. Bcl-2 down regulation causes autophagy in a caspase-independent mannar in human leukemic HL60 cells[J]. Cell Death Differ,2000, 7:1263-1269.
    [23] Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagic genes[J]. Nat Cell Biol, 2004, 6(12): 1221-1228.
    [24] Bauvy C, Gane P, Arico S, et al. Autophagy deplays sulindac sulfide- induced apoptosis in the human intestinal colon cancer cell line TH-29[J]. Exp Cell Res, 2001, 268(2):139-149.
    [25]刘康永,刘春风,钱进军,等.突变型α-Synuclein的自噬性降解途径及可能机制[J].中华神经科杂志, 2008, 48:51-56.
    [26] Webb JL, Ravikumar B, Atkins J, et al. Alpha-synuclein is degraded by both antophagy and the proteasome[J]. J Biol Chem, 2003, 278(27):9-13.
    [27] Rott R, Siargel R, Haskin J, et al. Monoubiquitination ofα-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopami-nergic cells [J]. J Biol Chem 2007, 283(6):3316-3328.
    [28] Bandhyopadhyay U, Cuervo AM. Chaperone-mediated autophagy in aging and neurodegeneration: Lessons fromα-synuclei[J]. Exp Gerontol, 2007, 42:120-128.
    [29] Martinez-Vicente M, Talloczy Z, Kaushik S, et al. Dopamine- modified alpha- synuclein blocks chaperone-mediated autophagy[J]. J Clinic Invest, 2008, 118:777-788.
    [30] Michalik A, Van Broeckhoven C. Pathogenesis of polyglutamine disorders: aggregation revisited[J]. Hum Mol Genet, 2003, 12:173-186.
    [31] Ravikumar B, Duden R and Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophayg[J]. Hum Mol Genet, 2002, 11(9): 1107-1117.
    [32] Shacka JJ, Roth KA, Zhang J. The autophghy-lysosomal degradation pathway: role in neurodegenerative disease and therapy[J]. Front Biosci, 2008, 13:718-736.
    [33] Pandey UB, Nie Z, Batlevi Y, et al. HDAL-6 rescues neurodegeneration and provides an essential lind between antophagy and the UPS[J]. Nature, 2007, 447(7146):859- 863.
    [34]褚福亮,王福生.蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用[J].世界华人消化杂志, 2002, 10: 1431-1435.
    [35] asinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene- product mapping of the molicutes: mycoplasma genitalium[J]. Electrophoresis, 1995, 16: 1090-1094.
    [36] Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words[J]. Electrophoresis, 1998, 19: 1853-1861.
    [37] Zhang J, Gooklett DR. Proteomic approach to studying Parkinson’s disease[J]. Mol Neurobiol, 2004, 29:271-288.
    [38] Kim S.I., Voshol H., Oostrum J., et al. Neuroproteomics: expression profiling of the brain’s proteomes in health and disease[J]. Neurochem Res, 2004, 29:1317- 1331.
    [39] Klein C, Lohmann-Hedrich K. Impact of recent genetic findings in Parkinson’s disease. Curr Opin Neurol[J], 2007, 20(4): 453-464.
    [40] Iuliis A.D., Grigoletto J., Recchia A., et al. A proteomic approach in the study of an animal model of Parkinson’s diseas[J]. Clinica Chimica Acta, 2005, 357:202-209.
    [41] Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease[J]. Science, 1997, 276:2045-2047.
    [42] Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease[J]. Nat Genet, 1998, 18:106-108.
    [43] Feany MB, Bender WW. A Drosophila model of Parkinson’s disease [J]. Nature, 2000, 23:394-398.
    [44] Conway KA, Lee SJ, Rochet JC, et al. Acceleration of oligomerization, notfibrilli- zation, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implication for pathogenesis and therapy [J]. ProcNatl Acad Sci USA, 2000, 97:571-576.
    [45] Kessler JC, Rochet JC, Lansbury PT Jr. The N-terminal repeat domain ofalpha- synuclein inhibits beta-sheet and amyloid fibril formation [J]. Biochem, 2003, 42: 672-678.
    [46] Bodles AM, Guthrie DJ, Harriott P, et al. Toxicity of non-abeta component of Alzheimer’s disease amyloid, and N-terminal fragments thereof, correlates to Formation of beta-sheet structure and fibrils[J]. Eur J Biochem, 2000, 267:2186-2194.
    [47] Murray IV, Giasson BI, Quinn SM, et al. Role of alpha-synuclein carboxy-terminus on fibril formation in vitro[J]. Biochem, 2003, 42:8530-8540.
    [48] Uversky VN, Gilespie JR, Fink AL. Why are“natively unfolded”proteins unstructured under physiologic conditions?[J]. Proteins, 2000, 41(3):415-427.
    [49] Dev KK, Hofele K, Barbieri S, et al. Part II: alpha-synuclein and its molecular pathophysiological role in neurodegenerative disease[J]. Neuropharmacology, 2003, 45(1):14-44.
    [50] Thomas DK, Eunjin C, Hyangshuk R, et al.α-synuclein has structural and functional similrities to small heat shock proteins[J]. Biochem Biophys Res Commun, 2004, 324(4):1352-1359.
    [51] Costa CA. Recent advances on alpha-synuclein cell biology: functions and dysfunctions Parkinson’s disease[J]. Curr Mol Med, 2003,3:17-24.
    [52] Cabin DE, Shimazu K, Murphy D, et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein[J]. J Neurosci, 2002, 22:8797-8807.
    [53] Kirik D, Annett L E, Burger C, et al. Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease[J]. Proc Natl Acad Sci USA, 2003, 100:2884-2889.
    [54] Lotharius J, Barg S, Wiekop P, et al. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line[J]. J Biol Chem, 2002, 277(41): 38884-38894.
    [55] Chandra S, Gallardo G, Fernandez-Chacon R, et al. Alpha-synuclein cooperates with CSPalpha in preventiong neurodegeneration[J]. Cell, 2005, 123: 383-396.
    [56] Bodner RA, Outeiro TF, Altmann S, et al. Pharmacological promotion of inclusion formation: a therapeutic approach for Huntington’s and Parkinson’s diseases[J]. Proc Natl Acad Sci USA, 2006, 103:4246-4251.
    [57] Tsigelny IF, Bar-On P, Sharikov Y, et al. Dynamics of alpha-synuclein aggregation and inhibition of pore-like oligomer development by beta-synuclein[J]. FEBS J. 2007, 274(7): 1862-1877.
    [58] Li WW, Yang R, Guo JC, et al. Localization of alpha-synuclein to mitochondria within midbrain of mice[J]. Neuroreport, 2007, 18(15): 1543-1546.
    [59] Devi L, Raghavendran V, Prabhu BM, et al. Mitochondrial import and accumulation of alpha-synuclein Impairs Complex I in human dopaminergic neuronal cultures and Parkinson’s disease brain[J]. J Biol Chem, 2008, 283(14): 9089-10000.
    [60] Anita S, Christophe W, Philippe V. alpha-synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson’s disease[J]. FEBS Letters, 2004, 565:1-5.
    [61] Betarbet R, Sherer TB, Greenamyre JT. Ubiquitin-proteasome system and Parkinson’s disease[J]. Exp Neurol, 2005, 191:17-27.
    [62] Choi J, Levey AI, Weintraub ST, et al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associcated with idiopathic Parkinson’s and Alzheimer’s disease[J]. J Biol Chem, 2004, 279:13256-13264.
    [63] Halbach OB, Schober A, Krieglstein K. Genes, protein, and neurotoxins involved in Parkinson’s disease[J]. Prog Neurobiol, 2004, 73:151-177.
    [64] Kanthasamy AG, Kitazawa M, Kanthasamya A, et al. Dieldrin- induced neurotoxicity: relevance to Parkinson’s disease pathogenesis[J]. Aunu Rev Neurosci, 2005, 28:57-87.
    [65] Mandel S, Grunblatt E, Riederer P, et al. Neuroprotective strategies in Parkinson’s disease: an update on progerss[J]. CNS Drugs, 2003, 17:729-762.
    [66] Zhang Y, Gao J, Chung KK, et al. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle- associated protein, CDCrel-1[J]. Proc Natl Acad USA, 2000, 97:13354-13359.
    [67] Hague S M, Klaffke S, Bandmann O, et al. Neuroproteomics disorders: Parkinson’s disease and Huntington’s disease[J]. J Neurol Neurosurg Psychiatry, 2005, 76: 1058-1063.
    [68] Tanaka K, Suzuki T, Hattori N, et al. Ubiquitin, proteasome and parkin[J]. Biochim Biophys Acta, 2004, 1695(1-3):235-247.
    [69] Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin protein ligase[J]. Nat Genet, 2000, 25(3):302-305.
    [70] Shen J, Coodson MR. Mitochondria and dopamine; new insights into recessive parkinsonism[J]. Neuron, 2004, 43:301-304.
    [71] Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease[J]. Science, 2003, 302:819-822
    [72] Corti O, Hampe C, Darios F,et al. Parkinson’s disease: from causes to mechanisms[J]. C R Biol, 2005, 328(2):131-142.
    [73] Darios F, Corti O, Lücking CB, et al. Parkin prevents mitochondrial swelling and cytochrome C release in mitochondria dependent cell death[J]. Hum Mol Genet, 2003, 12(5): 517-526.
    [74] Vercammen L, Vander Perren A, Vaudano E, et al. Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson’s disease[J]. Mol Ther, 2006, 14(5):716-723.
    [75] Olga C, Cornelia H, Frederic D, et al. Parinsons disease: from cause to mechanisms[J]. C R Biologies, 2005, 328(2):131-142.
    [76] Darios F, Cort IO, Lucking CB, et al. Parkin prevents mitochodria and release in swelling cytochrome mitochondria-dependent cell death[J]. Hum Mol Genet, 2003, 12(5):517-526.
    [77] Gildberg MS, Fleming SM, Pa71acino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons[J]. J Biol Chem, 2003, 278 (44):43628-43635.
    [78] Sukhanov VA, Ionov ID, Piruzyan LA. Neurodegenerative disorders: The role of genetic factors in their origin and the efficiency of treatment[J]. Hum Physiol, 2005, 31:472-482.
    [79] Gandhi S, Muqit MM, Stanyer L, et al. PINK1 protein in mormal human brain and Parkinson’s disease[J]. Brain, 2006, 129(7):1720-1731.
    [80] Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism[J]. Hum Mol Genet, 2005, 14:3477-3492.
    [81] Valent EM, Salvi S, Iaiongo T, et al. PINK1 mrtations are associated with sporadicearly-onset parkinsonism[J]. Ann Neurol, 2004, 56(3):336-341.
    [82] Pandratz N, Foroud T. Genetics of Parkinson’s disease[J]. Genet Med, 2007, 9(12): 801-811.
    [83] Choi J, Sullards CM, Olzmann JA, et al. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases[J]. J Biol Chem, 2006, 281:10816-10824 
    [84] Meulener MC, Xu K, Thompson L, et al. Mutational analyses of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging[J]. PNAS, 2006, 103(33): 12517-12522.
    [85] Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine(MPTP) andoxidative stress [J]. PNAS, 2005, 102(14):5215-5220.
    [86] Taira T, Saito Y, Niki T, et al. DJ-1 has a role in antioxidative stress to prevent cell death[J]. EMBO Reports, 2004, 5(2):213-218.
    [87] Junn E, Taniguchi H, Jeong BS, et al. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death[J]. PNAS, 2005, 102(27): 9691- 9696.
    [88] Clements CM, McNally RS, Conti BJ, et al. DJ-1, a cancer-and Parkinson’s disease- associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2[J]. PNAS, 2006, 103(41):15091-15096.
    [89] Xu J, Zhong N, Wang H, et al. The Parkinson’s disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis[J]. Hum Mol Genet, 2005, 14(9):1231-1241.
    [90] Hatano T, Kubo S, Ima S, et al. Leucine-rich repeat kinase 2 associates with lipid rafts. Hum Mol Genet, 2007, 16(6):678-690.
    [91] Guo LX, Wang W, Chen SG. Leucine-rich repeat kinase 2: Relevance to Parkinson’s disease[J]. Int J Biochem Cell Biol, 2006, 38: 1469-1475.
    [92] Napolitano A, Pezzella A, Prota G. New reaction pathways of dopamine under oxidative stress conditions: nonenzymatic iron-assisted conversion to norepine-phrine and the neurotoxins 6-hydroxydopamine and 6, 7-dihydroxytetra- hy droisoquinoline[J]. Chem Res Toxicol, 1999, 12:1090-1097.
    [93] Storch A, Kaftan A, Burkhardt K, et al. 6-Hydroxydopamine toxicity towardshuman SH-SY5Y dopaminergic neuroblastoma cells: independent of mitochondrialenergy metabolism[J]. J Neural Transm, 2000, 107(3): 281-293.
    [94] Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles[J]. Eur J Cell Biol, 1995, 66(1): 3-14.
    [95] Kostrzewa R. Jacobowitz D. The effect of 6-hydroxydopa on peripheral adrener- gicneurons. J Pharmacol Exp Ther[J]. 1972, 183(2): 284-297.
    [96] Das PC, McElroy WK, Cooper RL. Potential mechanisms responsible for chlorotriazine-induced alterations in catecholamines in pheochromocytoma (PC12) cells [J]. Life Sci, 2003, 73: 3123-3138.
    [97]徐卉,常明,张磊,等. 6-OHDA诱导PC12细胞帕金森病模型中GRP78表达的研究[J].中风与神经疾病杂志, 2007, 24(2):154-156.
    [98]肖勤,陈生弟,费俭.左旋多巴和多巴胺对PC12细胞的毒性及其他抗帕金森病药物的神经保护作用[J].中华老年医学杂志, 2004, 23: 496-499.
    [99]周国庆,周孝达,李宁丽,等. 6-羟基多巴胺诱导PC12细胞凋亡的研究[J].脑与神经疾病杂志, 1997, 5: 269-271.
    [100] Kumar R, Agarwal AK, Seth PK. Free radical-generated neurotoxicity of 6- hydroxydopamine [J]. J Neurochem, 1995, 64: 1703-1707.
    [101] apolitano A, Crescenzi O, Pezzella A, et al. Generation of the neurotoxin 6- hydroxydopamine by peroxidase/H2O2 oxidation of dopamine [J]. J Med Chem, 1995, 38: 917-922.
    [102] Jung Y, Surh Y. Oxidative DNA damage and cytotoxicity induced by copper- stimulated redox cycling of salsotinol, a neurotoxic tetrahydroisoquinoline alkaloid [J]. Free Radic Biol Med, 2001, 30: 1407-1417.
    [103] Glinka YY, Youdim MB. Inhibition of mitochondrial complexesⅠandⅣby 6- hydroxydopamine [J]. Eur J Pharmacol, 1995, 292: 329-332.
    [104] Bursch W.The autophagosomal-lysosomal compartment in programmed cell death[J]. Cell Death Differ, 2001, 8(6):545-548.
    [105] Uchiyama Y. Autophagic cell death and its execution by lysosomal cathepsins[J]. Arch Histol Cytol, 2001, 64(3):233-246.
    [106] Gorski SM, Chittaranjan S, Pleasance ED, et al. A SAGE approach to discovery of genes of genes involved in autophagic cell death[J]. Curr B1ol, 2003, 13(4): 358-363.
    [107] Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease[J]. Prog Neurobiol, 2001, 65: 135-172.
    [108] Das PC, McElroy WK, Cooper RL. Potential mechanisms responsible for chlorotriazine-induced alterations in catecholamines in pheochromocytoma (PC12) cells[J]. Life Sci, 2003, 73: 3123-3138.
    [109] Tompkins MM, Basgall EJ, Zanrini E, et al. Apoptotic-like changes in Lewy-body associated disorders and normal aging in substantia nigral neurons[J]. J Am Pathol. 1997(150): 119-131.
    [110] Kumar R, Agarwal AK, Seth PK. Free radical-generated neurotoxicity of 6- hydroxydopamine [J]. J Neurochem, 1995, 64: 1703-1707.
    [111] Beal MF. Energetics in the pathogenesis of neurodegenerative disease[J]. Trends Neurosci, 2000(23): 298-304.
    [112] Dunn JR. Studies on themechanisms of autophage: formation of autophagy vacuole [J]. J Biol, 1990, 110(6): 1923-1933.
    [113] Stefanis L, Larsen KE, Rideout HJ, et al. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death[J]. J Neurosci, 2001, 21(24): 9549-9560.
    [114] Yu WH, Kumar A, Peterhoff C, et al. Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide overproduction and localization in Alzheimer's disease[J]. Int J Biochem Cell Biol. 2004,36(12):2531-2540.
    [115] Qin ZH, GU ZL. Huntingtin processing in pathogenesis of Huntingtin disease [J]. Acta Pharmacol Sin, 2004, 25(10):1243-1249.
    [116] Dadadhujaev S, Noh HS, Jung EJ, et al. Autophagy protects the rotenone-induced cell death in alpha-synuclein overexpressing SH-SY5Y cells[J]. Jneurosci Lett, 2010, 472 (1): 47-52.
    [117] Cataldo AM, Hamilton DJ, Barnett JL, et al. Propertiesof the endosomal- lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer′s disease[J]. J Neurosci, 1996,16(1): 186-199.
    [118] Ling D, Salvaterra PM,A central role for autophagy in Alzheimer-type neurodegene- ration[J].Antophagy, 2009, 5(5): 735-750.
    [119] Junying Y, Marta L, Alexei D. Diversity in the mechanisms of neuronal cell death [J]. Neuron, 2003, 40: 401-413.
    [120] Petersen A, Larsen KE, Behr GG, et al. Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration[J]. Hum Mol Genet, 2001, 10(12): 1243-1254.
    [121] Gomez-Santos C, Ferrer I, Santidrian AF, et al. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells[J]. J Neurosci Res, 2003, 3(3): 341-350.
    [122] Rubinsztein DC, DiFiglia M, Tolkovsky A, et al. Autophagy and its possible roles in nervous system diseases, damages and repair[J]. Autophagy, 2005, 1(1): 11-22.
    [123] Larsen KE, Sulzer D. Autophagy in neurons: a review[J]. Histol Histo- pathol, 2002, 17(3): 897-908.
    [124] Jellinger KA, Stadelmann C. Mechanisms of cell death in neurodegene- rative disorders. J Neural Transm Suppl, 2000, 59: 95-114.
    [125] Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words[J]. Electrophoresis, 1998, 19:1853-1861.
    [126] Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts[J]. Electrophoresis, 1997, 18: 2071-2077.
    [127] Swatton JE, Prabakaran S, Karp NA, Lilley KS, Bahn S. Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis(2-D DIGE)[J]. Mol Psychiatry, 2004, 9: 128-143.
    [128] Dobson CM. Principles of protein folding, misfolding and aggregation[J]. Semin Cell Dev Biol, 2004, 15(1):3-16.
    [129]郝美荣.蛋白质分子伴侣和以其为靶的药物作用机制[J].国外医学分册, 2001, 28: 129-132.
    [130] Soti C, Csermely P. Chaperones and aging: role in neurodegeneration and in other civilizational diseases [J]. Neurochem Int, 2002, 41: 383-389.
    [131] Papp E, Nardai G, Soti C,et al. Molecular chaperones, stress proteins and redox homeostasis[J].Biofactors, 2003, 17: 249-257
    [132] Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond[J]. FASEB J, 2001, 15(7): 1118-1131.
    [133] McClellan AJ, Frydman J. Molecular chaperones and the art of recognizing a lost cause[J]. Nat Cell Biol, 2001, 3(2):E51-53.
    [134] Macaya A. Apoptosis in the nervous system [J]. Rev Neurol, 1996, 24: 1356-1360.
    [135] Savitz SI, Rosenbaum DM. Apoptosis in neurological diseases[J]. Neuro, 1998, 42: 555-572.
    [136] Golstein P. Controlling cell death [J]. Science, 1997, 275: 1081-1082.
    [137] Neckers L. Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification[J]. Curr Med Chem, 2003, 10(9):733-739.
    [138] Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90 /hsp70-based chaperone machinery[J]. Exp Biol Med (Maywood), 2003, 228(2): 111-133.
    [139] Burrows F, Zhang H, Kamal A. HSP90 activation and cell cycle regulation[J]. Cell Cycle, 2004, 3(12):1530-1536.
    [140] Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90[J]. EMBO J, 2000, 19(16):4310-4322.
    [141] Concannon CG, Orrenius S, Samali A. Hsp27 inhibits cytochrome c-mediated caspaseactivation by sequestering both procaspase-3 and cytochromec [J]. Gene Expr, 2001, 9(4-5):195-201.
    [142] Yokata S, Yanagi H, Yura T, et al. Cytosilic chaperonin-containing T-complex polypeptide 1 changes the content of a particular subunit species concomitant with substrate binding and folding activities during the cell cycle[J]. Eur J Biochem. 2001, 268(17):4664-4673.
    [143] Llorca O, Martín-Benito J, Grantham J, et al. The sequential allosteric ring mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin[J]. EMBO J,2001, 20(15): 4065-4075.
    [144] Brackley, Grantham J. Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation[J]. Cell Stress Chaperones, 2009, 14(1):23-31.
    [145] Lin YF, Tsai WP, Liu HG. Intracellular beta-tubulin/chaperonin containing TCP1-beta complex serves as a novel chemotherapeutic target against drug-resistant tumorsl[J]. Cancer Res, 2009, 69(17):6879-6888.
    [146] Coglhin C, Carpenter B, Dundas SR. Characterization and over- expression of chaperonin t-complex proteins in colorectal cancer[J]. J Pathol, 2006, 210(3):351-357.
    [147]张颖,韩威.氧化应激在帕金森病发病机制中的作用[J].广东医学杂志, 2006, 27(4):598-600.
    [148] De Iuliis A, Grigoletto J, Recchia A, et al. A proteomic approach in the study of an animal model of Parkinson's disease [J]. Clin Chim Acta, 2005, 357: 202-209.
    [149] Nakamura M, Yamada M, Ohsawa T, et al. Phosphoproteomic profiling of human SH-SY5Y neuroblastoma cells during response to 6-hydroxy- dopamine-induced oxidative stress [J]. Biochim Biophys Acta, 2006, 1763: 977-989.
    [150] Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction[J]. Apoptosis, 2000, 5(5):415-418.
    [151] Chen JW, Dodia C, Finstein SI, et al. 1-Cys peroxiredoxin , a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities [J]. J Biol Chem, 2000, 275(37):28421-28427.
    [152]叶伶,金美玲. Peroxiredoxin6-具有双重酶活性的蛋白[J].国际呼吸杂志, 2007, 27(20):1593-1595.
    [153] Girotti AW, Kriska T. Role of lipid hydroperoxides in photo-oxidative stress signaling [J]. Antioxid Redox Signal 2004, 6(2): 301-310.
    [154] Wood ZA, Schrder E, Robin Harris J. Structure, mechanism and regulation of peroxiredoxins [J]. Trends Biochem Sci, 2003, 28(1): 32-40.
    [155] Nicholl ID, Bucala R. Advanced glycation endproducts and cigarette smoking[J]. Cell Mol Biol (Noisy-legrand), 1998, 44(7):1025-1033.
    [156] Munch G, Gasic Milenkovic J, Arendt T, et al. Effect of advanced glycation end products on cell cycle and their relevance foe Alzheimer′s disease[J]. J Neutral Transm Suppl, 2003(65):63-71.
    [157] Gasic Milenkovic J, Loske C, Munch G, et al. Advanced glycation end products cause lipid peroxidation in the human neural cell line SH-SY5Y[J]. J Alzheimers Dis, 2003, 5(1):25-30.
    [158] Zhang X, Harrison DH, Cui Q. Functional specificities of methylglyoxal synthase and triosephosphate isomerase: a combined QM/MM analysis[J]. J Am Chem Soc, 2002, 124(50):14871-14878.
    [159] Murata Kamiya N, Kamiya H, Kaji H, et al. Methylglyoxal induces G:C to C:G and G: C to T:A transversions in the supF gene on a shuttle vector plasmid replicated in mammalian cells[J]. Mutat Res, 2000, 468(2):173-182.
    [160] Morcos M, Du X, Pfisterer F. Glyoxalase-I prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans[J]. Aging Cell, 2008, 7(2):260-269.
    [161] Lohman K, Meyerhof O. Enzymatic transformation of phospho-glyceric acid into pyruvic and phosphoric acid[J]. Biochem Z, 1994, 273:60-72.
    [162] Keller A, Berod A, Dussaillant M, et al. Coexpression of alpha and gamma enolase genes in neurons of adult rat brain[J]. J Neurosci Res, 1994, 38(5):493-504.
    [163] Castegna A, Aksenov M, Thongboonkerd V, et al. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidin-ase-related protein 2, alpha-enolase and heat shock cognate71[J]. J Neurochem, 2002, 82(6):1524-1532.
    [164] Pancholi V. Multifunctional alpha-enolase: its role in diseases[J]. Cell Mol Life Sci, 2001, 58(7):902-920.
    [165] Gomez A, Ferrer l. Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in Lewy body diseases[J]. J Neurosci Res, 2009,87(4): 1002-1013.
    [166] Pancholi V, and Fischetti V A. alpha-Enolase, a novel strong plasmin (ogen) binding protein of the surface of pathogenic streptococci[J]. J Biol Chem, 1998, 273(23): 14503-14515.
    [167] Neel BG, Jhanwar SC, Chaganti RS, et al. Two human c-onc genes are located on the long arm of chromosome 8[J]. Proc Natl Acad Sci USA, 1982, 79(24): 7842-7846.
    [168] Kang, HJ Jung, SK Kim, et al. Structure of human alpha- enolase (Heno1), a multifunctional glycolytic enzyme[J]. Acta Crystallogr. Sect D: Biol. Crystallogr, 2008, 64(6):651-657.
    [169] Schonberger SJ, Edgar PF, Kydd R, et al. Proteomic analysis of the brain in Alzheimers disease: molecular phenotype of a complex disease process[J]. Proteomics, 2001, 1(12):1519-1528.
    [170] Loeffen J, Smeitink J, Triepels R, et al. The frist nuclear- encoded complex I mutation in a patient with Leigh Syndrome[J]. Am J HumGenet, 1998, 63:1598-1608.
    [171] Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson's disease: a mechanism of pathogenic and therapeutic significance[J]. Ann N Y Acad Sci. 2008, 1147:93-104.
    [172] Enchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis[J]. Nat Clin Pract Neurol. 2008, 4:600-609.
    [173] Charles R Arthur, Stephanie L Morton, Lisa D Dunham, et al. Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance[J]. Mol Neurodgener. 2009, 4:37.
    [174] Bannwarth S, Procaccio V, Paquis-Flucklinger V. Surveyor Nuclease: a new strategy for a rapid identification of heteroplasmic mitochondrial DNA mutations in patients with respiratory chain defects[J]. Hum Mutat, 2005, 25:575-582.
    [175] Bannwarth S, Procaccio V, Paquis-Flucklinger V. Rapid identification of unknown heteroplasmic mutations across the entire human mitochondrial genome with mismatch-specific Surveyor Nuclease[J]. Nat Protoc, 2006, 1:2037-2047.
    [176] Ebadi M, Govitrapong P, Sharma S, et al. Ubiquinone (coenzyme q10) and mitochon- dria in oxidative stress of Parkinson's disease[J]. Biol Signals Recept, 2001, 10:224- 253.
    [177] De Iuliis A, Grigoletto J, Recchia A, et al. A proteomic approach in the study of an animal model of Parkinson's disease[J]. Clin Chim Acta, 2005, 357(2):202-209.
    [178] Cappelletti G, Surrey T, Maci R. The parkinsonism producing neurotoxin MPP+ affects microtubule dynamics by acting as a destabilising factor[J]. FEBS Lett, 2005, 579(21): 4781-4786.
    [179] Feng J. Microtubule: a common target for parkin and Parkinson's disease toxins[J]. Neuroscientist, 2006, 12(6):469-476.
    [180]乔海晅,王清明,陈惠鹏.波形蛋白在细胞凋亡中的变化[J].军事医学科学院院刊, 2005, 29(3)11-15.
    [181]曹文枫,张莲郁. Vimentin及CyclinD1蛋白在肾母细胞瘤中的表达及临床意义[J].中国肿瘤临床, 2008, 28(11):819-823.
    [182] Katsumoto T., Mitsushima A., Kurimura T. The role of the vimentin intermediate filaments in rat 3Y1 cells elucidated by immunoelectron microscopy and computer- graphic reconstruction[J]. Biol Cell, 1990, 68(2): 139-146.
    [183] Sopkova J, Renouard M, Bentley AL. The crystal structure of a new high-calcium form of Annexin V[J]. J Mol Biol, 1993, 234: 816-825.
    [184] Ursula R, Volker G. Annexins-unique membrance binding proteins with diverse functions [J]. J Cell Sci. 2004, 117(13): 2631-2639.
    [185] Hawkins TE, Christien J, Merrifield, et al. Calcium signaling and annexins[J]. Cell Biochem Biophys, 2000, 33: 275-296. 86
    [186] Dubois T, Mira JP, Feliere D, et al. AnnexinV inhibits protein kinase C activity via a mechanism of phospholipids sequestration[J]. Biochem J, 1998, 330: 1277-1282.
    [187] Gerke V, Moss S F. Annexins: From structure to function[J]. Physiol Rev, 2002, 82: 331-371.
    [188]刘懿,凌诒萍,钟慈声. Annexin钙依赖的磷脂结合蛋白在细胞分泌中的作用[J].生理科学进展, 1997, 4:367-369.
    [189] Sopkova J, Renouard M, Bentley AL. The crystal structure of a new high- calcium form of Annexin V[J]. J Mol Biol, 1993, 234: 816-825.
    [190] Vermes I, Haanen C, Richel DJ, et al.Apoptosis and secondary necrosis of lymphocytes in culture[J]. Acta Haematol, 1997, 98(1):8-13.
    [191] Tait JF, Smith C, Wood BL. Measurement of phosphatidylserine exposure in leukocytes and platelets by whole-blood flow cytometry with annexin V[J]. Blood Cells Mol Dis, 1999, 25: 271-278.
    [192] Tait JF, Gibson D, Phospholipid binding of annexinV: Effecrs of calcium and membrane phosphatidylserine content[J]. Arch Biochem Biophys, 1992, 298(1): 187- 191.
    [193] Rand JH. Antiphospholiqid antibody syndrome:neo insight on thrombogenic mechanisms[J]. Am J Med Sci, 1998, 316(2):142-151.
    [194]关鸿志,蒲小平,赵燕环,等.周围神经病血清膜联蛋白V抗体的检测和意义[J].脑和神经疾病杂志, 2005, 13(6):440-442.
    [195] Thierry D, Jean-Paul M, Deins F, et al. Annexin V inhibits protein kinase C activity via a mechanism of phospholipid sequestration[J]. Biochem J. 1998, 330(2): 1277- 1282.
    [196]李欣,高福禄,窦志杰,等.膜联蛋白A5过表达对宫颈癌细胞系SiHa细胞凋亡的影响[J].解剖学杂志, 2008, 31(5):668-670.
    [197] Ross RA, Spengler BA, Biedler JL. Coordinate morphological and biochemical interconversion of human neuroblastoma cells[J]. Natl Cancer Inst, 1983, 71(4): 741-747.
    [198] Chaudhri M, Scarabel M, Aitken A. Mammalian and yeast 14-3-3 isoforms formdistinct patterns of dimers in vivo[J]. Biochem Biophys Res Commun, 2003, 300(3): 679-685.
    [199] Zhu P, Sun Y, Xu R, et al. The interaction between ADAM22 and 14-3-3zeta: regulation of cell adhesion and spreading[J]. Biochem Biophys Res Commun, 2003, 301(4):991-999.
    [200] Barney TD, van den Wijngaard PW, de Boer AH. 14-3-3 protein regulation of proton pumps and ion channels [J]. Plant Mol Biol, 2002, 50(6): 1041-1051.
    [201] Fu H, Subramanian RR, Masters SC. 14-3-3 protein: structure, function, and regulati[J]. Annu Rev Pharmacol Toxicol, 2000, 40:617-647.
    [202] Tizivion G, Avruch J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation[J]. J Biol Chem, 2002, 277(5): 3061-3064.
    [203] Chen XW, Sun SG, Cheng DB, et al. Overexpression of 14-3-3 protein protects pheochromocytoma cells against 1-methyl-4- phenylpyridinium toxicity[J]. Neurosci Bull, 2006, 22(5): 281-287.
    [204] Masters SC, Yang HZ, Datta SR, et al. 14-3-3 inhibitors Bad-induced cell death through interaction with Serine-136[J]. Mol Pharmacol, 2001, 60(6): 1325-1331.
    [205] Kleppe R, Toska K, Haavik J. Interaction of phosphorylated tyrosine hydroxylase with 14-3-3 proteins: evidence for a phosphoserine 40-dependent association[J]. Neurochem, 2002, 22(8): 3090-3099.
    [206] Toska K, Kleppe R, Armstrong CG, et al. Regulation of tyrosine hydroxylase by stress-activated protein kinases[J]. Neurochem, 2002, 83(4):775-783.
    [207] Kawabe T. G2 checkpoint abrogators as anticancer drugs[J]. Mol Cancer Ther, 2004,3: 513-519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700