用户名: 密码: 验证码:
SIRT1通过调节氧化应激参与老年COPD大鼠心脏损伤的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:以老年COPD大鼠为模型观察COPD诱导心脏损伤的改变,研究SIRT1调控COPD诱导心脏氧化应激损伤的机制,探讨SIRT1激动剂白藜芦醇在老年COPD:大鼠心脏氧化应激损伤中的保护作用。
     方法:动物实验1.3月龄及22月龄雄性SD大鼠,分为青年对照组(12只)、青年COPD组(12只)、老年对照组(12只)、老年COPD(11只)、老年COPD+白藜芦醇(Rrsveratrol, Res)组(12只)。两年龄组中的COPD组及COPD+Res组大鼠于实验第1、25天气管内注入脂多糖(Lipopolysaccharide, LPS) 200μg/200μl,第2-24天、26-56天被动吸烟。老年COPD+Res组大鼠提前2天给与白藜芦醇25/mg/d灌药至实验结束。共8周。2.测量各组大鼠体重、左心室重量、心脏超声;漂浮导管测量右心室压(Right Ventricular Pressure, RVP)、肺动脉压(Pulmonary Arterial Pressure, PAP)及左心室舒张末压(Left Ventricular End Diastolic Pressure, LVEDP); HE染色观察心脏病理、Masson染色明确心肌间质胶原纤维增生情况,透射电镜检测心肌超微结构改变;试剂盒检测各组大鼠心肌丙二醛(malondialdehyde, MDA)、超氧化物歧化酶(superoxide dismutase, SOD)水平;免疫组化检测心肌8-羟基脱氧鸟苷(8-hydroxy-2'-deoxyguanine,8-OHdG)的表达;末端脱氧核酸转移酶介导的d-UDP缺口末端标记(Terminal deoxynucleotidyl transferase-mediated d-UDP nickendlabelling, TUNEL)法检测心肌细胞凋亡情况。Taqman探针荧光定量PCR检测各组大鼠心肌SIRT1的mRNA表达,Weston Blot检测大鼠心肌SIRT1和p-FOXO3a的蛋白表达。细胞实验1.H9C2细胞分为对照组(C组)、溶剂对照组(DMSO组)、香烟提取液(Cigarette Smoke Extract, CSE)刺激组(CSE组)、CSE+Res组、Res组。CSE干预组给予CSE25μg/ml干预3-72小时,Res用药组提前30分钟给予Res 20μmol/L, DMSO组给予与Res等量的DMSO。2.噻唑蓝(MTT)法检测细胞增殖情况;特异性荧光探针CM-H2DCFDA和荧光微量平板法检测ROS的表达;荧光分光光度计检测细胞线粒体膜电位,试剂盒检测各组细胞半胱氨酸蛋白酶-3(caspase-3)活性;Taqman探针荧光定量PCR检测各组细胞SIRT1的mRNA表达,Weston Blot检测各组细胞SIRT1和p-FOXO3a的表达。
     结果:第一部分1.青年、老年COPD模型的肺部病理改变符合COPD的特点。2.与老年对照组相比,老年COPD组心肌间质胶原纤维含量升高(P<0.01)。左室舒张末径(Left Ventricular End-Diastolic Dimension, LVEDD)、LVEDP显著升高(P<0.05),8-OHdG表达显著升高(P<0.01),MDA增加(P<0.01),SOD活性下降(P<0.01)。
     第二部分体内实验1.与老年对照组大鼠相比,老年COPD组大鼠SIRT1 mRNA、蛋白表达均降低(P<0.05),p-FOXO3a蛋白表达降低(P<0.05);心肌细胞凋亡数量增加(P<0.05);2.与与老年COPD组大鼠相比,老年COPD+Res组大鼠SIRT1 mRNA.蛋白表达均升高(P<0.05),p-FOXO3a蛋白表达升高(P<0.05)。心肌间质胶原纤维含量下降(P<0.01),LVEDD下降(P<0.05)。8-OHdG的表达显著降低(P<0.05),MDA水平降低(P<0.05),SOD活性升高(P<0.05);心肌细胞凋亡数量显著减少(P<0.05)。体外实验1.与C组相比,CSE刺激组SIRT1mRNA及蛋白相对表达量、p-FOXO3a蛋白相对表达量均显著降低(P<0.01);与CSE组相比,CSE+Res组SIRT1mRNA、蛋白相对表达量及p-FOXO3a蛋白相对表达量升高(P<0.05)。2.随CSE刺激浓度增加,H9C2产生ROS增加;提前给予Res后ROS产生减少(P<0.05)。3.与C组相比,CSE组ROS表达显著增强(P<0.01),caspase-3活性显著增加(P<0.01);CSE+Res组与CSE组相比,ROS表达减弱(P<0.01);caspase-3活性显著降低(P<0.01)。
     第三部分体内实验老年COPD组线粒体结构严重破坏,嵴消失。老年COPD+Res组线粒体结构损伤减轻。体外实验随CSE刺激浓度增加,H9C2细胞的线粒体膜电位降低,提前给予Res可以使线粒体膜电位升高(P<0.01)。
     结论:1.老年COPD大鼠发生心室重塑加重、心功能受损,与氧化应激损伤有关;2.SIRT1通过影响心肌线粒体膜电位调节线粒体ROS的产生,可能是SIRT1参与COPD大鼠心脏氧化应激损伤的调控机制之一;3. SIRT1参与COPD大鼠心脏氧化应激损伤的调控机制可能还与p-FOXO3a表达改变有关,有待于进一步研究;4.白藜芦醇通过刺激SIRT1的表达减轻心脏氧化应激和凋亡,可在COPD大鼠心脏损伤中发挥保护作用。
Objective. To study the injuries of heart induced by Chronic Obstructive Pulmonary Disease (COPD) in old rats; 2. To Observe the oxidative stress modulation mechanisms of SIRT1 during this process; 3. To explore how resveratrol and SIRT1 exert antioxidant, antiapoptotic effects, which protect the heart against the adverse effects of COPD induced by cigarette smoking exposure and LPS.
     Methods. In vivo experiments, SD rats at 3-month-old and 22-month-old were divided into five groups:the young control group (12), the young COPD group (12), the old control group (12), the old COPD group (11), the old COPD group treated with resveratrol (COPD+Res) group (12). ALL of the COPD groups (n= 35) were exposed to the smoke of 8 commercial cigarettes (11 mg tar and 0.8 mg nicotine/cigarette) each day for 8 weeks and instillation given of LPS 200μg/200μl twice, whereas the control group was not exposed to cigarette smoking. To assess the heart protective effects of resveratrol, the COPD+Res group of rats was pretreated with resveratrol 25 mg-kg-1·day-1for 8 weeks and then exposed to the above-described cigarette smoking protocol. The changes of weight, heart weight, LVEF,LVEDD, RVP, PAP, LVEDP, SOD, MDA,8-OHdG, collagen, cadiocyte apoptosis were detected. The expression of SIRT1 were evalulated by Taqman real-time RT-PCR and Western Blot. The expression of p-FOXO3a were evalulated by Western blot. In vitro Experiments 1. H9C2 cells were divided into control group (C group), solvent control group (DMSO group), cigarette smoking extraction stimulus group (CSE group), CSE group with Res treatment group (CSE+Res group) and Res group.25μg/ml CSE intervened to CSE group from 3-72h and Res group was pre treated with 20μmol/L Res 30min before. Res group was treated with the equal amount of Res.2. Cell proliferation was investigated by MTT method and the CSE concentration was determined. Specific fluorescent probe CM-H2DCFDA and fluorescent micro-plate method was employed for the determination of ROS expression. Mitochondrial membrane potential was measured by fluorescence spectrophotometer and the level of apoptosis was measured by activity of caspase 3. RT-PCR was employed for the determination of the expression of SIRT1 mRNA.The protein of SIRT1 and p-FOXO3a expressions were observed by Weston Blot.
     Results Part 1 1.The changes in histopathology of lung in rats of the two COPD groups were similary to those in COPD pantients.2.Compared with old rats in control group, the obvious increase were found in HW/BW, thickness of left ventricle, diameter of cadiocyte, collagen, LVEDD, PAP, LVEDP,8-OHdG and MDA in rats of old COPD group (P<0.01), and significantly decrease were found in SOD (P<0.01). It was found more hypertrophy changes in the HE-stained myocardial cells of old COPD group than that of old control group, while we also found the myocardial fibrosis significantly increased by masson staining. Part 2 In vivo experiments 1. Compared with rats in old control group, the expression of SIRT1mRNA and protein decreased in rats of old COPD group (P<0.05), the expression of SIRT1 staining by immunofluorescence decreased, and the expression of p-FOXO3a protein decreased (P<0.05).2. Compared with rats in old COPD group, the expression of SIRT1mRNA and protein increased in old COPD+Res group (P<0.05), the expression of SIRT1 staining by immunefluorescence increased, and the expression of p-FOXO3a protein increased (P<0.05).3.Compared with rats in old COPD group, the obvious decrease were found in thickness of left ventricle, diameter of cadiocyte, collagen, LVEDD, PAP, LVEDP, 8-OHdG and MDA of old COPD+Res group (P<0.05),and significantly increase were found in SOD (P<0.01).4.Compared with old control group, the apoptosis index of cardiac muscle increased in old COPD group (P<0.05).The apoptosis index decreased in old COPD+Res group as opposed to old COPD group (P<0.05). In vitro experiments 1. The expression of ROS increased in H9C2 cells of CSE group against the cells of C group (P<0.05), whereas and the expression of SIRT1 and p-FOXO3a decreased (P<0.05), the activity of caspase-3 increased(P<0.05)in CSE group; 2.The expression of ROS decreased in CSE+Res group as compared with the H9C2 cells of CSE group (P<0.05), the activity of caspase-3 also was found decreased (P< 0.05), and the expression of SIRT1 and p-FOXO3a increased (P<0.05). Part 3 In vivo experiments 1.The more severe damage of chondriosome was found in old COPD group than that of old control group, while the damage of chondriosome significantly lessen in Res treated group. In vitro experiments 1.The mitochondria membrane potential drop (P<0.05) in CSE group, whereas can be increased by Res (P<0.05)
     Conclusion 1. The left ventricular remodeling and heart dysfunction can be induced by oxidative stress in old COPD rat.2. SIRT1 may be regulate the oxidative stress in old COPD rat by the effect on ROS production of mitochondria in the cardiac.3. p-FOXO3a may also involved in the oxidative stress regulation in the heart injury induced by COPD with SIRT1.4. The myocardial protection of resveratrol against COPD related stress may be by inducing expression of SIRT1. Rresveratrol may be considered as anti-oxidative stress therapy for the heart injury in old COPD rat.
引文
[1]Tuder RM. Aging and cigarette smoke:fueling the fire. Am J Respir Crit Care Med.2006.174(5):490-1.
    [2]Le JTH, Padeletti M, Jelic S. Diagnostic and therapeutic challenges in patients with coexistent chronic obstructive pulmonary disease and chronic heart failure. J Am Coll Cardiol.2007.49(2):171-80.
    [3]Cazzola M, Bettoncelli G, Sessa E, Cricelli C, Biscione G. Prevalence of Comorbidities in Patients with Chronic Obstructive Pulmonary Disease. Respiration.2010.4(2):273-80.
    [4]Curkendall SM, DeLuise C, Jones JK, et al. Cardiovascular disease in patients with chronic obstructive pulmonary disease, Saskatchewan Canada cardiovascular disease in COPD patients. Ann Epidemiol.2006.16(1):63-70.
    [5]STASZEWSKY L, WONG M, MASSON S, et al. Clinical, Neurohormonal, and Inflammatory Markers and Overall Prognostic Role of Chronic Obstructive Pulmonary Disease in Patients With Heart Failure:Data From the Val-HeFT Heart Failure Trial. Journal of Cardiac Failure.2007.13(10):797-804.
    [6]Watz H, Waschki B, Kirsten AM, Claussen M, Magnussen H. Heart failure in chronic obstructive pulmonary disease (COPD]. Dtsch Med Wochenschr.2008. 133(14):717-9.
    [7]Funk GC, Lang I, Schenk P, Valipour A, Hartl S, Burghuber OC. Left ventricular diastolic dysfunction in patients with COPD in the presence and absence of elevated pulmonary arterial pressure. Chest.2008.133(6):1354-9.
    [8]Csiszar A, Podlutsky A, Wolin MS, Oxidative stress and accelerated vascular aging:implications for cigarette smoking. Front Biosci.2009.14:3128-44.
    [9]Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease:an update. J Am Coll Cardiol.2004.43(10):1731-7.
    [10]Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart.2007.93(8):903-7.
    [11]Wahbi K, Larue S, Jardel C, et al. Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology. 2010.74(8):674-7.
    [12]Limongelli G, Tome-Esteban M, Dejthevaporn C, et al. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease.Eur J Heart Fail.2010.12(2):114-21.
    [13]Levick SP, Brower GL. Regulation of matrix metalloproteinases is at the heart of myocardial remodeling.Am J Physiol Heart Circ Physiol.2008.295(4):H1375-6.
    [14]Duarte DR, Minicucci MF, Azevedo PS, et al. The role of oxidative stress and lipid peroxidation in ventricular remodeling induced by tobacco smoke exposure after myocardial infarction. Clinics (Sao Paulo).2009.64(7):691-7.
    [15]Castardeli E, Duarte DR, Minicucci MF, et al. Exposure time and ventricular remodeling induced by tobacco smoke exposure in rats. Med Sci Monit.2008. 14(3):BR62-66.
    [16]Alcendor RR, Gao S, Zhai P, et al. Sirtl regulates aging and resistance to oxidative stress in the heart. Circ Res.2007.100(10):1512-21.
    [17]Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science.2004.303(5666): 2011-5.
    [18]Tran H, Brunet A, Grenier JM, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science. 2002.296(5567):530-4.
    [19]Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, Ikeda K, Motoyama N. FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J Biol Chem.2002.277(30):26729-32.
    [20]Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res.2009.81(3):449-56.
    [21]宋一平,崔德健,茅培英.慢性阻塞性肺疾病大鼠模型的建立及药物干预的影响.中华内科杂志.2000.39(8):556.
    [22]夏书月,康健,Shu-yue X, Jian K.慢性阻塞性肺疾病的鼠模型与临床研究的 关系.国际呼吸杂志.2007.27(3):230-235.
    [23]Profita M, Sala A, Bonanno A, et al. Chronic obstructive pulmonary disease and neutrophil infiltration:role of cigarette smoke and cyclooxygenase products. Am J Physiol Lung Cell Mol Physiol.2010.298(2):L261-9.
    [24]Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol.2008.295(1):L1-15.
    [25]Vernooy JH, Dentener MA, van SRJ, Buurman WA, Wouters EF. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am J Respir Cell Mol Biol.2002.26(1): 152-9.
    [26]Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease.Am J Physiol Lung Cell Mol Physiol.2008.295(1):L1-15.
    [27]Brusselle GG, Bracke KR, Maes T, et al. Murine models of COPD. Pulm Pharmacol Ther. 2006.19(3):155-65.
    [28]Mahadeva R, Shapiro SD. Animal models of pulmonary emphysema.
    Curr Drug Targets Inflamm Allergy.2005.4(6):665-73.
    [29]Zheng H, Liu Y, Huang T, Development and characterization of a rat model of chronic obstructive pulmonary disease (COPD) induced by sidestream cigarette smoke.Toxicol Lett.2009.189(3):225-34.
    [31]武红莉,冯淬灵.慢性阻塞性肺疾病大鼠模型病理形态学比较研究.心肺血管病杂志.2006.25(4):233-235.
    [32]张健,杜烨玮,孙仁宇,王士雯.脂多糖致衰老大鼠急性肺损伤及心肌组织ATP酶等的变化.中国医学科学院学报.2003.25(3):320-323.
    [33]Schou M, Gustafsson F, Nielsen PH, Madsen LH, Kjaer A, Hildebrandt PR. Unexplained week-to-week variation in BNP and NT-proBNP is low in chronic heart failure patients during steady state. Eur J Heart Fail.2007.9(1):68-74.
    [34]Bergamini C, Cicoira M, Rossi A, Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure.Eur J Heart Fail.2009.11(5):444-52.
    [35]Fraccarollo D, Widder JD, Galuppo P,et al. Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enhancer AVE9488 after experimental myocardial infarction.Circulation.2008.118(8):818-27.
    [36]Eapen Z, Rogers JG. Strategies to attenuate pathological remodeling in heart failure.Curr Opin Cardiol.2009.24(3):223-9.
    [37]Sato Y, Miyamoto T, Taniguchi R, et al. Current understanding of biochemical markers in heart failure. Med Sci Monit.2006.12(11):RA252-64.
    [38]Widome R, Jacobs DR Jr, Hozawa A, et al. Passive smoke exposure and circulating carotenoids in the CARDIA study.Ann Nutr Metab.2010. 56(2):113-8.
    [39]de Paiva SA, Zornoff LA, Okoshi MP, Okoshi K, Cicogna AC, Campana AO. Behavior of cardiac variables in animals exposed to cigarette smoke. Arq Bras Cardiol.2003.81(3):221-8.
    [40]Castardeli E, Paiva SA, Matsubara BB, et al. [Chronic cigarette smoke exposure results in cardiac remodeling and impaired ventricular function in rats]. Arq Bras Cardiol.2005.84(4):320-4.
    [41]Zornoff LA, Matsubara LS, Matsubara BB, et al. Beta-carotene supplementation attenuates cardiac remodeling induced by one-month tobacco-smoke exposure in rats. Toxicol Sci.2006.90(1):259-66.
    [42]Zornoff LA, Matsubara BB, Matsubara LS, et al. [Cigarette smoke exposure intensifies ventricular remodeling process following myocardial infarction]. Arq Bras Cardiol.2006.86(4):276-82.
    [43]Castardeli E, Duarte DR, Minicucci MF, et al. Tobacco smoke-induced left ventricular remodelling is not associated with metalloproteinase-2 or-9 activation. Eur J Heart Fail.2007.9(11):1081-5.
    [44]Valavanidis A, Vlachogianni T, Fiotakis C.8-hydroxy-2'-deoxyguanosine (8-OHdG):A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev.2009.27(2):120-39.
    [45]Preston CC, Oberlin AS, Holmuhamedov EL, et al. Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart.Mech Ageing Dev.2008.129(6):304-12.
    [46]Hsu CP, Odewale I, Alcendor RR, Sadoshima J. Sirtl protects the heart from aging and stress. Biol Chem.2008.389(3):221-31.
    [47]Samuel SM, Thirunavukkarasu M, Penumathsa SV, Paul D, Maulik N. Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction:switching gears toward survival and longevity. J Agric Food Chem.2008.56(20):9692-8.
    [48]Danz ED, Skramsted J, Henry N, Bennett JA, Keller RS. Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirtl pathway. Free Radic Biol Med.2009.46(12):1589-97.
    [49]Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2008. 177(8):861-70.
    [50]Csiszar A, Labinskyy N, Podlutsky A, et al. Vasoprotective effects of resveratrol and SIRT1:attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. Am J Physiol Heart Circ Physiol.2008. 294(6):H2721-35.
    [51]MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc.2005.2(1):50-60.
    [52]Mills NL, Tornqvist H, Robinson SD, et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation.2005. 112(25):3930-6.
    [53]Salminen A, Ojala J, Huuskonen J,et al. Interaction of aging-associated signaling cascades:inhibition of NF-kappaB signaling by longevity factors FoxOs and SIRT1.Cell Mol Life Sci.2008.65(7-8):1049-58.
    [54]Thirunavukkarasu M, Penumathsa SV, Koneru S, et al. Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes:Role of nitric oxide, thioredoxin,
    and heme oxygenase.Free Radic Biol Med.2007.3(5):720-9.
    [55]Yoshida Y, Shioi T, Izumi T. Resveratrol ameliorates experimental autoimmune myocarditis. Circ J.2007.71(3):397-404.
    [56]Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature.2006.444(7117):337-42.
    [57]Baur JA, Sinclair DA. Therapeutic potential of resveratrol:the in vivo evidence. Nat Rev Drug Discov.2006.5(6):493-506.
    [58]Wu JM. Resveratrol alleviates some cardiac dysfunction indexes in an SHR model of essential hypertension.Am J Hypertens.2010.23(2):115.
    [59]Csiszar A, Smith K, Labinskyy N, Orosz Z, Rivera A, Ungvari Z. Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells: role of NF-kappaB inhibition. Am J Physiol Heart Circ Physiol.2006.291(4): H1694-9.
    [60]Ungvari Z, Orosz Z, Rivera A, et al. Resveratrol increases vascular oxidative stress resistance. Am J Physiol Heart Circ Physiol.2007.292(5):H2417-24.
    [61]Tashkin DP, Murray RP. Smoking cessation in chronic obstructive pulmonary disease. Respir Med.2009.103(7):963-74.
    [62]Orosz Z,Csiszar A, Labinskyy N, et al. Cigarette smoke-induced proinflammatory alterations in the endothelial phenotype:role of NAD(P)H oxidase activation. Am J Physiol Heart Circ Physiol.2007.292(1):H130-9.
    [63]Mendelson JH, Goletiani N, Sholar MB et al. Effects of smoking successive low-and high-nicotine cigarettes on hypothalamic-pituitary-adrenal axis hormones and mood in men.Neuropsychopharmacology.2008.33(4):749-60.
    [64]Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science.2004.305(5686):1010-3.
    [65]Alcendor RR, Gao S, Zhai P, et al. Sirtl Regulates Aging and Resistance to Oxidative Stress in the Heart. Circulation Research.2007.100(10):1512-1521.
    [66]Yang SR, Wright J, Bauter M, Seweryniak K, Kode A, Rahman I. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol.2007.292(2):L567-76.
    [67]Fulda S, Gorman AM, Hori O, et al. Cellular stress responses:cell survival and cell death.Int J Cell Biol.2010:214074.
    [68]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007.39(1):44-84.
    [69]Mollnau H, Oelze M, August M, et al. Arterioscler Thromb Vasc Biol. Mechanisms of increased vascular superoxide production in an experimental model of idiopathic dilated cardiomyopathy.2005.25(12):2554-9.
    [70]Lam EW, Francis RE, Petkovic M. FOXO transcription factors:key regulators of cell fate. Biochem Soc Trans.2006.34(Pt 5):722-6.
    [71]Sunters A, de Mattos S F, Stahl M, et al. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem. 2003.278(50):49795-805.
    [72]Sunters A, Madureira PA, Pomeranz KM, et al. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res.2006.66(1):212-20.
    [73]Giannakou ME, Partridge L. The interaction between FOXO and SIRT1:tipping the balance towards survival. Trends Cell Biol.2004.14(8):408-12.
    [74]Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science.2004.306(5704):2105-8.
    [75]Skurk C, Izumiya Y, Maatz H, et al. The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem.2005.280(21): 20814-23.
    [76]Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol.2006.16(3):296-300.
    [77]Csiszar A, Smith K, Labinskyy N, et al. Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells:role of NF-kappaB inhibition.Am J Physiol Heart Circ Physiol.2006.291 (4):H 1694-9.
    [78]Moon SO, Kim W, Sung MJ, et al. Resveratrol suppresses tumor necrosis factor-alpha-induced fractalkine expression in endothelial cells. Mol Pharmacol. 2006.70(1):112-9.
    [79]MacNee W. Accelerated lung aging:a novel pathogenic mechanism of chronic obstructive pulmonary disease (COPD). Biochem Soc Trans.2009.37(Pt 4): 819-23.
    [80]Stephens JW, Khanolkar MP, Bain SC. The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease. Atherosclerosis.2009.202(2):321-9.
    [81]Brook RD. Cardiovascular effects of air pollution. Clin Sci (Lond).2008.115(6): 175-87.
    [1]Nassim DY, Marie L, Sebastien F, et al. Sirtuins:The'magnificent seven', function, metabolism and longevity. Annals of Medicine,2007,39:335-345.
    [2]Chen R, Liang F,et al. Silent information regulator, Sirtuin 1, and age-related diseases,2009,9(1):7-15.
    [3]Judge, S. Leeuwenburgh C. Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol,2007,292:C 1983-1992.
    [4]Canto C, Gerhart-Hines Z, Feige J,et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.Nature,2009,23,458 (7241):1056-1060.
    [5]Chaudhary N, Pfluger PT. Metabolic benefits from Sirtl and Sirtl activators. Curr Opin Clin Nutr Metab Care,2009,12(4):431-437.
    [6]Sivaram Pillarisetti.A Review of Sirtl and Sirtl Modulators in Cardiovascular and MetabolicDiseases. Recent Patents on Cardiovascular Drug Discovery,2008, 3,156-164.
    [7]Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci,2007,104(31): 12861-12866.
    [8]Nakae J, Cao Y, Daitoku H, et al. The LXXLL motif of murine forkhead transcription factor FOXO1 mediates Sirtl-dependent transcriptional activity. J Clin Invest 2006,116(9):2473-2483.
    [9]Chen CJ, Yu W, Fu YC, et al. Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway. Biochem Biophys Res Commun.2009,378(3):389-393.
    [10]Wang, F., Nguyen, M., Qin, F. X. and Tong, Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell,2007,6: 505-514.
    [11]Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res,2005,65:10457-10463.
    [12]Yang Y, Hou H, Haller EM, Nicosia SV, Bai W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation.EMBO J,2005,24(5): 1021-1032.
    [13]Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling.Cell,2008, 132(3):344-362.
    [14]Csiszar A, Wang M, Lakatta EG, et al. Inflammation and endothelial dysfunction during aging:role of NF-kappaB. J Appl Physiol.2008,105(4):1333-1341.
    [15]Ghosh H S, Spencer J V, McBurney M W, et al. Sirtl interacts with transducin-like enhancer of split-1 to inhibit NF-kappaB mediated transcription. Biochem J,2007,408(1):105-111.
    [16]Salminen A, Ojalaa J, Huuskonena J, et al. Interaction of aging-associated signaling cascades:Inhibition of NF-B signaling by longevity factors FoxOs and SIRT1.Cell. Mol. Life Sci,2008,65:1049-1058.
    [17]CSABA S, PAL P, ZSUZUANNA Z, et al. Angiotensin Ⅱ Mediated endothelial Dysfunction:Role of Poly (ADP2ribose) Polymerase Activation. Mol Med, 2004,10:28-35.
    [18]Rajamohan SB, Pillai VB, Gupta M, et al. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol.2009,29(15):4116-29.
    [19]Canto C, Auwerx J. PGC-lalpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol,2009,20(2):98-105.
    [20]Gurd BJ, Yoshida Y, Lally J, et al. The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J Physiol,2009,587(Pt 8): 1817-1828.
    [21]Alcendor RR, Gao S, Zhai P, et al. Sirtl regulates aging and resistance to oxidative stress in the heart. Circ Res,2007,100(10):1512-1521.
    [22]Chen WY, Wang DH, Yen RC, et al. Tumor suppressor H1C1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell,2005, 123:437-448.
    [23]Mercer J, Bennett M. The role of p53 in atherosclerosis. Cell Cycle,2006,5(17): 1907-1909.
    [24]Picard F, Kurtev M, Chung N, et al. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature,2004,429(6993):771-776.
    [25]Mattagajasingh I, Kim CS, Naqvi A, et al. Sirtl promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA,2007,104(37):14855-14860.
    [26]Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science,2005,310(5746): 314-317.
    [27]Labinskyy N, Anna Csiszarl A, Veress G, et al. Vascular Dysfunction in Aging: Potential Effects of Resveratrol, an Anti-Inflammatory Phytoestrogen. Current Medicinal Chemistry,2006,13,989-996.
    [28]Chen IY, Lypowy J, Pain J, et al. Histone H2A.z is essential for cardiac myocyte hypertrophy but opposed by silent information regulator 2a. J Biol Chem,2006, 281:19369-19377.
    [29]Kuno A, Tanno M, Miura T, et al. Resveratrol activates protein deacetylase SIRT1 and prolongs the survival of heart failure animals by up-regulating MnSOD through transactivation of FOXO3a. J of Molecular and Cellular Cardiology,2008,45:S1-S35.
    [30]Shinmura K, Tamaki K, Bolli R, et al. Impact of 6-mo caloric restriction on myo-cardial ischemic tolerance:possible involvement of nitric oxide-dependent increase in nuclear Sirtl.Am J Physiol Heart Circ Physiol,2008,295: H2348-H2355.
    [31]Samuel SM, Thirunavukkarasu M, Penumathsa SV, et al. Akt/FOXO3a /SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction:switching gears toward survival and longevity. J Agric Food Chem.2008,56(20):9692-9698
    [32]Yoshida Y, Shioi T, Izumi T, et al. Resveratrol Ameliorates Experimental Auto-immune Myocarditis. Circ J,2007,71:397-404.
    [33]Danz ED, Skramsted J, Henry N, et al. Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirtl pathway. Free Radic Biol Med,2009,46 (12):1589-1597.
    [34]Li L, Zhao L, Yi-Ming W, et al, Sirtl hyperexpression in SHR heart related to left ventricular hypertrophy, Can J Physiol Pharmacol.2009,87(l):56-62.
    [35]Ferrara N, Rinaldi B, Corbi G, et al. Exercise Training Promotes SIRT1 Activity in Aged Rats. Rejuvenation Research,2008,11(1):139-150.
    [36]Vahtola E, Louhelainen M, Merasto S, et al. Forkhead class O transcription factor 3a activation and Sirtuinl overexpression in the hypertrophied myocardium of the diabetic Goto-Kakizaki rat. J Hypertens,2008, 26(2):334-344
    [37]Dong F, Ren J. Fidarestat improves cardiomyocyte contractile function in db/db diabetic obese mice through a histone deacetylase Sir2-dependent mechanism.J Hypertens,2007,25(10):2138-2147.
    [38]Do GM, Kwon EY, Kim HJ, et al. Long-term effects of resveratrol supplementation on suppression of atherogenic lesion formation and cholesterol synthesis in apo E-deficient mice. Biochem Biophys Res Commun,2008,374(1): 55-59.
    [39]Labinskyy N, Anna C, Veress G, et al. Vascular Dysfunction in Aging:Potential Effects of Resveratrol, an Anti-Inflammatory Phytoestrogen. Current Medicinal Chemistry,2006,13,989-996.
    [40]Zhang QJ, Wang Z, Chen HZ, et al. Endothelium-specific Over expression of Class III Deacetylase SIRT1 DecreasesAtherosclerosis in Apolipoprotein E-Deficient Mice. Cardiovasc Res,2008,80(2):191-199.
    [41]Csiszar A, Labinskyy N, Podlutsky A, et a. Vasoprotective effects of resveratrol and SIRT1:attenuation of cigarette smoke-induced oxidative stress and pro-inflammatory phenotypic alterations.Am J Physiol Heart Circ Physiol,2008, 294:H2721-H2735.
    [42]Csiszar A, Labinskyy N, Jimenez R, et al. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging:role of circulating factors and SIRT1.Mech Ageing Dev,2009,130(8):518-527.
    [43]Miyazaki R, Ichiki T, Hashimoto T, et al. SIRT1, a Longevity Gene, Downregulates Angiotensin Ⅱ Type 1 Receptor Expression in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol,2008,28:1263-1269.
    [44]MacNee W. Accelerated lung aging:a novel pathogenic mechanism of chronic obstructive pulmonary disease (COPD). Biochem Soc Trans,2009,37(Pt 4): 819-823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700