用户名: 密码: 验证码:
导电微滤炭膜的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电微滤炭膜是一种新颖的无机膜材料,它是由廉价的前驱体材料一煤经高温热解制备而成,具有较好的热稳定性和化学稳定性及良好的导电性能等优点,在许多领域得到了广泛应用。近几年,本课题组与天津工业大学密切合作,利用炭膜的导电特性,共同研发出一种新型的具有自清洁功能的膜材料一电催化炭膜,它提高了膜材料抗污染性,特别是对一些难降解工业废水具有良好的处理效果。在该项技术中导电微滤炭膜作为膜/电极材料,其孔结构性能和导电性能会影响膜对污水的处理效率,因此研究导电微滤炭膜的孔结构性能和导电性能以及两者之间的关系,对该项技术的推广有着至关重要的意义。
     本文通过添加造孔剂和添加剂以及配煤的方法优化了炭膜的孔隙结构以及机械强度。考察了炭膜孔结构与其导电性能的关系,通过在制膜原料中添加炭黑、石墨、炭纤维对炭膜的导电性能进行优化,并考察了在低压电场作用下,导电微滤炭膜水通量的变化规律及电化学氧化对废水处理效果的影响。并借助于TG、SEM、XRD、泡压法等分析手段对导电炭膜的结构性能进行表征。结果表明,造孔剂和添加剂的加入,有效丰富了炭膜孔结构;焦煤和瘦煤的添加量为2:8时,有效提高了炭膜的机械强度,保持了炭膜较高的通量;炭膜的导电性能随其孔隙率的增加而减弱,导电添加剂的加入能够有效提高炭膜的导电性能。在电场的作用下,由于电渗效应和电化学反应的存在,使导电炭膜的渗透通量明显地提高,并且随着电场强度的增加及膜电阻的减小,渗透通量的增加程度更加显著。将导电炭膜用于亚甲基蓝污水体系,由于炭膜亲水性的改变和电渗效应以及电化学反应的影响,不仅增大了炭膜的通量,而且对亚甲基蓝产生了氧化降解作用,在通量为236L·h-1·m-2·Bar-1时具有98.3%的降解率,使得导电炭膜表现出良好的抗膜污染能力和降解效率。
Conductive microfiltration carbon membrane is a novel inorganic membrane, which is prepared by inexpensive precursors-coal. It can be applied in many fields due to their thermal and chemical stability, good conductivity and mechanical strength. Cooperating with Tianjin Polytechnic University, our group has developed a new type of membrane materials named of electro-catalytic carbon membrane, which possesses self-cleaning function according to the conductive properties of the carbon membranes. The membrane has better anti-fouling property and good effect on treating industrial waste water, especially for the non-biodegradable water. The pore structure properties and electrical conductivity has good effect on efficiency of the conductive microfiltration carbon membrane in waste water treatment. Thus it is important to study the pore structure and electrical conductivity of carbon membrane as well as their relationship.
     In this paper, the pore structure, electrical conductivity and mechanical strength of the carbon membrane were optimized by adding the additives and employing the blending methods. The relationship between electrical conductivity and pore structure was studied. We also studied the effects of electrochemical oxidation on waste water treatment and water flux in Low voltage electric field condition. The TG, SEM and Bubble-pressure methods were employed to characterize structure properties of carbon membranes. The results showed that the pore structure of carbon membranes was further developed by adding pore formers and additives. When the addition ratio of coking and lean coal is2:8, the mechanical strength of carbon membrane is the highest, while comparatively high flux maintained. The electrical conductivity of the carbon membrane was enhanced along with the decrease of porosity as well as the addition of carbon black or graphite. The flux of carbon membrane was significantly improved owing to the effect of electro osmosis and electrochemical reaction. Simultaneously, with the increase of electric-field strength and electrical conductivity, the flux increased more dramatically. The carbon membrane was tested in water/methylene blue waste system. Because of the synergistic effects of electro osmosis, electrochemical reaction and the change of hydrophilic, the carbon membrane had both high flux and ability to oxidized-degrade methylene blue. Under the flux of236L·h-1·m-2·Bar-1, the degradation efficiency is98.3%, which shows that conductive carbon membrane has both excellent anti-pollution ability and degradation efficiency.
引文
[1]王湛.膜分离技术基础[M].北京:化学工业出版社,2000.
    [2]时钧,袁权,高从堦.膜技术手册[M].北京:化学工业出版社,2001.
    [3]郑领英,王学松.膜技术[M].北京:化学工业出版社,2000.
    [4]汪锰,王湛,李政雄.膜材料及其制备[M].北京:化学工业出版社,2003.
    [5]SAUFI S M, ISMAIL A E. Fabrication of carbon membranes for gas separation-a review [J]. Carbon,2004,42:241-159.
    [6]ISMAIL A E, DAVID L I B. A review on the latest development of carbon membranes for gas separation [J].Membr Sci,2001,193:1-18.
    [7]宋成文,王同华,邱介山等.炭膜制备技术的研究进展[J].化工进展,2003,22:961-964.
    [8]ASH R, BAKER R W, BARRER R W. Sorption and surface flow in graphitized carbon membranes Ⅰ. The steady state [J].Proc Roy Soc,1967,299:434-454.
    [9]ASH R, BAKER R W, BARRER R W. Sorption and surface flow in graphitized carbon membranes Ⅱ. Time-lag and blind pore character [J].Proc Roy Soc,1968,304:407-425.
    [10]KORESH J E, SOFFER A. Molecular sieve carbons permselective membrane. Part1. Presentation of New Device for Gas Mixtures Separation [J].Sep Sci Technol, 1983,18:723-734.
    [11]KORESH J E, SOFFER A. Study of molecular sieve carbons. Part1. Pore structure, gradual pore opening and mechanism of molecular sieving [J].Chem Soc Faraday Trans I, 1980,76:2457-2461.
    [12]KORESH J E, SOFFER A. Study of molecular sieve carbons. Part2. Estimation of cross-sectional diameters of non-spherical molecules [J].Chem. Soc. Faraday Trans I, 1980,76:2472-2478.
    [13]KORESH J E, SOFFER A. Molecular sieving range of pore diameters of adsorbents [J]. Chem Soc Faraday Trans I,1980,76:2507-2512.
    [14]KORESH J E, SOFFER A. Molecular sieve carbons. Part3. Adsorption kinetics according to a surface-barrier model [J].Chem Soc Faraday Trans 1,1981,77:3005-3012.
    [15]HATORI H, TAKAGI H, YAMADA Y. Gas separation properties of molecular sieving carbon membranes with nanopore channels [J].Carbon,2004,42:1169-1173.
    [16]TANIHARA N, SHIMAZAKI H, HIRAYAMA Y, et al. Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber [J].Membr Sci,1999,160:179-186.
    [17]KUSAKABE K, YAMAMOTO M, MOROOKA S. Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation [J].Membr Sci,1998,149:59-67.
    [18]CENTENO T A, FUERTES A B. Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride) [J].Carbon,2000,38:1067-1072.
    [19]SCHUMACHER H, JUMTGEN H. Membranes wi th preselected pore types for separation processes United Stated,4261832[P].1981.
    [20]于振余,煤基沥青分子筛炭膜的研究制备[D]:博十学位论文.大连:大连理工大学,1996.
    [21]王同华,宋成文.一种煤基炭膜的制备方法:中国,CN1490076[P].2004,04,21.
    [22]王同华,宋成文.一种煤基炭膜的调孔方法:中国,CN1490075[P].2004,04,21.
    [23]CHENGWEN SONG, TONGHUA WANG, YANGQIU PAN, et al. Preparation of coal-based microfiltration carbon membrane and application in oily wastewater treatment [J]. Separation and Purification Technology,2006,51:80-84.
    [24]CHENGWEN SONG, TONGHUA WANG, JIESHAN QIU. Effect of carbonization conditions on the properties of coal-based microfiltration carbon membrane[J]. Journal of Porous Materials,2006.
    [25]CHENGWEN SONG, TONGHUA WANG, JIESHAN QIU. The design of coal-based microfiltration carbon membranes with controlled pore structure [J]. Journal of Porous Materi al s,2006.
    [26]王同华等.煤基管状支撑体炭膜孔结构性能的研究[C].第五届全国新型炭材料学术研讨会论文集.绵阳.2001,455-458.
    [27]张永刚,刘利杰,一种石油焦基管式炭膜孔结构的调节方法:中国,CN101733001A[P].2010,06,16.
    [28]YAMAGISHI H, SAITO K, FURUSAKI S, et al. Molecular weight distribution of methyl methacrylate grafted onto a microfiltration membrane by radiation-induced graft polymerization [J].Journal of Membrane Science,1993,85, (1):71-80.
    [29]SCHINEDLER E, MAIER F. Manufacture of porous carbon membranes:United Stated, 4919860[P].1990.
    [30]FOLEYHC, ACHARYA M, RAICH B A. Supported carbogenic molecular sieve membrane and method of producing the same:USA,5972079[P].1996.
    [31]宋成文,工同华,邱介山.聚糠醇基气体分离炭分子筛膜的制备[C].全国化工博士生学术论坛.天津.2005.
    [32]SUDA J,HARAYA K. Molecular sieving effect of carbonized Katon polyimide membrane [J]. Chem. Sco. Chem. Commun,1995,47:1179-1186.
    [33]IIATORI H, YAMADA Y, SHIRAISHI M. Preparation of macroporous carbon films polyimide by phase inversion method [J]. Carbon,1992,30:303-306.
    [34]FUERTES A B. Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes [J]. Carbon,2001,39:697-706.
    [35]刘颖,王同华.聚醚砜酮基炭膜的制备及其气体分离性能[J].现代化工,2009,S1:275-277.
    [36]ANTONIO B F. Adsorption-selective carbon membrane for gas separation [J]. Journal of Mermbrane Science,2000,177:9-10.
    [37]工树森,曾美云,王志忠.分子筛炭膜的形态结构研究[J].北京工业大学报,1995,21:90-96.
    [38]梁长海,李德付,郭树才.炭膜气体分离性能研究[J].炭素,1996,4:23-27.
    [39]魏微,胡浩权,尤隆渤.酚醛树脂基气体分离炭膜制备[J].大连理工大学学报,2000,40:692-695.
    [40]郑青春,张万栋,王同华等.炭分子筛复合膜的制备及气体分离性能[C].第三届膜分离技术在石油和化工行业中应用研讨会.广州.2008,103-107.
    [41]KUSUKI Y, SHIMAZAKI H, TANIHARA N, et al. Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane [J].Membr Sci,1997,134:245-249.
    [42]PETERSEN J, MATSUDA M, HARAYA K. Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation [J]. Membr Sci,1997,131:85-92.
    [43]ACHARYA M, RAICH B A, FOLEY H C, et al. Metal-supported carbogenic molecular sieve membranes:synthesis and applications [J].Ind Eng Chem Res,1997,36:2924-2930.
    [44]ACHARYA M, FOLEY H C. Spray-coating of nanoporous carbon membrane for air separation [J].Membr Sci,1999,161:1-7.
    [45]SEDIGH M G, ONSTOT W J, XU L, et al. Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieves membranes [J].Phys Chem A, 1998,102:8580-8589.
    [46]WANG H, ZHANG L, GAVALAS G R. Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization [J].Membr Sci.,2000,177:25-31.
    [47]SEATON N A, WALTON J P R, QUIRKE N. A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements [J]. Carbon,1989,27(6):853-861.
    [48]KIM Y K, PARK H B, LEE Y M. Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties [J]. Membr Sci,2004,243:9-17.
    [49]PARK H B, JUNG C 11, KIM Y K, et al. Pyrolytic carbon membranes containing silica derived from poly(imide siloxane):the effect of siloxane chain length on gas transport behavior and a study on the separation of mixed gases [J]. Membr Sci,2004,235:87-98.
    [50]HUANTING WANG, LIXIONG ZHANG1, GEORGE R. GAVALAS. Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization [J]. Membr Sci, 2000,177:25-31.
    [51]AIK CHONG LUA, JINCAI SU. Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes [J].Carbon,2006,44(14):2964-2972.
    [52]GEISZLER V C, KOROS W J. Effects of Polyimide Pyrolysis Conditions on Carbon Molecular Sieve Membrane Properties. Ind. Eng [J].Chem Res,1996,35:2999-3003.
    [53]BAUER J M, EYASSINI J, MONCORGE G, et al. New developments and applications of carbon membranes [J].Key Engineering Materials,1991,61:207-212.
    [54]王同华,魏微,刘素琴等.管状多孔炭膜的研究[J].新型炭材料,2000,15:6-11.
    [55]王细凤,潘艳秋,王同华等.炭膜处理含油污水的研究[J].膜科学与技术,2001,21:59-62.
    [56]宋成文,刘璃,王同华等.炭膜处理含油废水的研究[C].第五届全国环境化学大会.2009
    [57]王芳,杨凤林,宫正等.炭管膜曝气生物膜反应器SNAD脱氮研究[J].环境工程学报,2009,3(3):405-408.
    [58]YAN L, HONG S, LI M L, et al. Application of the Al2O3-PVDF nanocomposite tubularultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research [J]. Separ Purif Technol,2009,66:347-352.
    [59]YEN H M, CHEN K T. Improvement of ultrafiltration performance in tubular membranes using a twisted wire-rod assembly [J].Membr Sci,2000,178:43-53.
    [60]CABASSUD C, LABORIE S. Air sparging in ultrafiltration hollow fibers:relationship between flux enhancement, cake characteristics and hydrodynamic parameters [J].Membr Sci,2001,181:57-69.
    [61]AKTHAKUL A, SALINARO R F, MAYES A M. Antifouling polymer membranes with subnanometer size selectivity [J]. Macromolecules,2004,37,7663-7668.
    [62]MA X L, SU Y L, SUN Q, et al. Enhancing the antifouling property of polyetherfulfone ultrafiltration membranes through surface adsorption- crosslinking of poly (vinyl alcohol) [J].Membr Sci,2007,300,71-78.
    [63]YANG Y F, WAN L S, XU Z K. Surface hydrophilization for polypropylene microporous membranes:A facile interfacial crosslinking approach [J].Membr Sci,2009,326: 372-381.
    [64]LI J X, SANDERSON R D, JACOBS F. P. Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent [J].Membr Sci,2002,205,247-257.
    [65]TARAZAGA C C, CAMPDERROS M E, PADILLA A P. Characterization of exponential permeate flux by technical parameters during fouling and membrane cleaning by electric field [J].Membr Sci,2006,283,339-345.
    [66]NAMERI N, OUSSEDIK S, YEDDOU R, et al, Enhancement of ultrafiltration flux by coupling static turbulence promoter and electric field [J]. Separ Purif Technol,1999,17: 203-211.
    [67]CHAI X J, KOBAYASHI T, FUJI N. Ultrasound-associated cleaning of polymeric membrane for water treatment [J].Separ Purif Technol,1999,15:139-146.
    [68]LI J X, LIU J X, YANG T, et al. Quantitative study of the effect, of electromagnetic field on scale deposition on nanofiltration membranes via UTDR [J]. Water Research, 2007,41:4579-4748.
    [69]H M HUOTARI, G TRAGARDH, I H HUISMAN. Crossflow Membrane Filtration Enhanced by an External DC Electric Field:A Review [J]. Trans IChemE,1999,77:461-468.
    [70]YU-HSIANG WENG, KUNG-CHEH LI, LIN HAN CHAUNG-HSIEH, et al. Removal of humic substances (HS) from water by electro-microfiltration (EMF) [J]. Water Research,2006,40:1783-1794.
    [71]R J WAKEMAN, C J WILLIAMS. Additional techniques to improve microfiltration [J]. Separation and Purification Technology,2002,26:3-18.
    [72]S NADH JAGANNADH, H S MURALIDHARA. Electrokinetics Methods To Control Membrane Fouling [J].Ind. Eng. Chem. Res.1996,35:1133-1140.
    [73]B SARKAR, S PAL, T B GHOSH, et al. A study of electric field enhanced ultrafiltration of synthetic fruit juice and optical quantification of gel deposition [J]. Membrane Science,2008,311(1-2):112-120.
    [74]赵宗艾,柴哈里·拉赫,刘姝红等.利用电泳迁移运动抑制膜面微粒沉积的研究[J].过滤与分离,1998,(1):3-8.
    [75]LARUE O, VOROBIEV E. Sedimentation and water electrolysis effects in electrofiltration of kaolin suspension [J].AIChE Journal,2004,50(12):3120-3133.
    [76]WAKEMAN R J, SABRI M N. Utilizing pulsed electric fields in crossflow microfiltration by the use of electric fields [J]. Chemical Engineering Research and Design,1995, 73(A4):455-463.
    [77]赵宗艾,钟富优,王淑娥.电膜滤中电渗效应的研究[J],流体机械,1996,24(5):10-14.
    [78]CHAUNG C J, C Y WU, C C WU. Combination of crossflow and electric field for microfiltration of protein/microbial cell suspensions [J]. Desalination,2008,233(1-3):295-302.
    [79]RADOVICH J M, BEHNAM B, M C. Steady-State modeling of electroultrafiltration at constant concentration [J]. Separation Science and Technology,1985,20(4):315-329.
    [80]CORNELISSEN, HUANG C P, WENG Y H, et al. Enhancing the separation of nano-sized particles in low-salt suspensions by electrically assisted cross -flow filtration [J]. Separation and Purification Technology,2007,54(2):170-177.
    [81]WENG Y H, LI K C, CHAUNG-HSIEH L H, et al. Removal of humic substances (HS) from water by electro-microfiltration (EMF) [J].Wat Res,2006,40(9):1783-1794.
    [82]胡婧逸,邓慧萍,商冉.电场强化错流膜过滤的研究[J].工业用水与废水,2009,40(4):13-18.
    [83]赵宗艾,钟富优.电场作用下的十字流膜滤[J].天津大学学报,1997,30(3):353-357.
    [84]肖凯军,石浩,罗远宏等.电场强化陶瓷膜超滤牛血清蛋白[II].精细化工,2008,25(9):862-865.
    [85]商冉,邓慧萍,赵纯等.附加电场对中空纤维膜污染的减缓作用[J].中国环境科学,2009,29(1):15.
    [86]NAMERI N, OUSSEDIK S, YEDDOU R, et al. Enhancement of ultrafiltration flux by coupling static turbulence promoter and electric field [J].Seperation and Purification Technology,1999,17:203-211.
    [87]VENKATARAMAN K, CHOATE W T, TORRE E R, et al. Characterization studies of ceramic membranes:a novel technique using a coulter porometer [J]. Membr Sci,1988,39:259-265.
    [88]张广洋,谭学术,杜贵云等.煤的导电机理研究[I]].湘潭矿业学院学报,1995,10(1):15-18.
    [89]张海磊,常明,江菊元等.采用金刚石膜电极电解污水制氢[J].自然科学,2009(下):69-70.
    [90]任百祥,何小琴,温亚梅等.家用净水设备中活性炭的电解法再生实验研究[J].古林师范大学学报,2009,(2):29-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700