用户名: 密码: 验证码:
哈氏弧菌dam基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA甲基化在生物界是一种普遍机制,几乎存在于所有生命体中。目前已发现的甲基化皆由DNA甲基转移酶(DNA methyltransferase)所介导,该酶能够利用S-腺苷甲硫氨酸为底物,将其甲基转移至腺嘌呤(A)的N6或胞嘧啶(C)的C5或N4位置上。DNA甲基化最早是作为限制-修饰系统的一个组成部分而被发现的,该系统是生物在长期进化过程中形成的一种自我保护机制,其中甲基转移酶所起的作用是甲基修饰某些特定序列中的腺嘌呤或胞嘧啶,以此特征将自身DNA与异源DNA区别开来。随后的研究发现一些独立存在的甲基转移酶,其功能与限制-修饰无关。DNA腺嘌呤甲基化酶(DNA adenine methylase,Dam)即是这种类型的酶之一。Dam广泛存在于细菌中,如大肠杆菌,沙门氏杆菌,耶尔森氏菌,奈瑟菌,以及霍乱弧菌等。与限制-修饰系统中的甲基化酶不同,Dam参与细胞生理代谢过程中的许多重要方面,如DNA复制,基因表达,甲基化介导的错配修复,换位等。近年来研究表明在某些人类病原菌中Dam与细菌致病力密切相关,其基因敲除导致细菌毒力大幅下降。基于其在细胞生命过程中所起的多种作用,dam基因的研究将有助于加深我们对细菌生命机制的理解。
     弧菌是海洋环境中最常见的细菌类群之一,且大量存在于各种水生环境中。弧菌科多种属是人类或养殖动物病原性细菌,其中哈氏弧菌(Vibrio harveyi)能够感染多种养殖水生生物(虾、鱼、贝等),是危害我国水产养殖业发展的重要病原菌之一。本实验所用哈氏弧菌T4为我们从患病大菱鲆肠道内分离出的一株病原菌。(1)T4基因组DNA经提取纯化后分别用DpnI、DpnII和Sau3AI酶切,酶切结果经0.8%琼胶糖凝胶电泳后发现T4 DNA对DpnI和Sau3AI敏感,而对DpnII则具有抗性,说明该菌中存在具功能活性的DNA腺嘌呤甲基化酶,在其作用下T4染色体DNA处于被甲基化状态。(2)利用兼并PCR,染色体步移法的方法克隆得到哈氏弧菌T4的DNA腺嘌呤甲基化酶基因,序列分析表明该基因编码279个氨基酸,与其它已知弧菌的Dam具有较高的同源性,其中与副溶血弧菌Dam的相同性达95%。功能检验表明所克隆的dam基因在大肠杆菌中具有DNA腺嘌呤甲基化酶活性,能够甲基化大肠杆菌染色体DNA GATC序列中的腺嘌呤。(3)运用染色体步移法获得dam基因上游的3251 bp DNA,发现该区域含有3个基因,其与dam在染色体上的相对排列顺序为:莽草酸激酶-脱氢奎尼酸合成酶-damX-dam。(4)对dam上游DNA序列研究发现位于翻译起点ATG上游的78bp、112bp和477bp DNA片段皆具有启动子活性,但前者的活性为后二者的3.3倍。(5)通过多种手段构建T4 dam缺失菌株,来研究dam与T4致病性的关系,但没有成功,表明dam对T4的生存可能是必需的。
     本文报道了哈氏弧菌dam基因的克隆、dam基因启动子活性的定位及分析,为深入了解Dam在哈氏弧菌中的作用奠定基础。
DNA methylation occurs throughout the living world, including bacteria, plants, and mammals. DNA methylation occurs at the C-5 or N-4 position of cytosine and at the N-6 position of adenine using S-adenosyl methionine as a methyl donor catalyzed by enzymes known as DNA methyltransferases (Mtases).DNA methylation has historically been associated with DNA restriction-modification systems thought to be an important mechanism of self- protection in the long process of evolution. Restriction-modification systems contain a DNA methylase that distinguishes host DNA from foreign DNA by methylating adenine or cytosine of specific sequences. Subsequent research found some MTases that are not associated with restriction-modification systems, such as DNA adenine methylase (Dam), which methylates N-6 of adenine in GATC sequences. DNA adenine methylase (Dam) is widespread in bacterias, including Escherichia coli, Salmonella spp., Yersinia spp., Neisseria spp. , and Vibrio cholerae。Dam participates in many important physiological processes such as DNA replication, gene expression, methyl-directed mismatch repair and transposition。More recently it has become evident that Dam plays an important role in the pathogenesis of several bacterial species, and deletion of the dam gene significantly attenuates the virulence of these pathogens. Because Dam plays muLtiple important roles in cellular physiology, the research on the dam gene will help us to understand the mechanism of bacterial life.
     The vibrios are among the most common bacteria in marine environments and highly abundant in aquatic environments, including estuaries, marine coastal waters and sediments, and aquacuLture setting worldwide. Some species are serious pathogens for human or animals reared in aquacuLture. Of these, V.harveyi is an important bacterial pathogen of multiple maricultured animals ,such as shellfish, shrimp, fish,and seriously inhibits the development of maricuLture in our country.The Vibrio harveyi T4 we used in this report is a bacterial pathogen isolated from the intestine of the sicken turbot.
     After extraction, T4 genomic DNA was digest with DpnI, DpnII, Sau3AI. The 0.8% electrophoreses result indicated that T4 genomic DNA is sensitive to DpnI and Sau3AI,but can not be cleaved by DpnII,and this demonstrates that there is a functional DNA adenine methylase (Dam) which methylates the chromosome DNA at GATC site in T4.
     The dam gene was cloned by degenerate PCR from Vibrio harveyi strain T4. The gene was 840bp in length and encoded a putative protein of 279 amino acids that shared relatively high homology with the Dam of other Vibrios, especially with that of V.parahaemolyticus (95% in identity). The V.harveyi dam gene was subcloned into plasmid pBR322 and introduced into the E.coli strain ER2925 in which the dam gene had been knocked out. DpnI, DpnII, and Sau3AI restriction enzyme analysis of the genomic DNA of ER2925 transformed with V.harveyi dam indicated that the cloned V.harveyi dam gene couLd functionally complement the E. coli dam and methylate E.coli chromosome at the GATC sites.
     The 3251 bp upstream flanking region of V.harveyi dam was obtained by genome walking and analyzed at the DNA and amino acid sequence levels. It was found that this 3251 bp region contained two complete open reading frames (ORF): one was of 1101 bp in length (ORF1101) and the other was of 1503 bp in length (ORF1503). The predicted amino acid sequence of ORF1101 shared 91% identity with the 3-dehydroquinate synthase of V.parahaemolyticus. The amino acid sequence of ORF1503 shared 80% identity with V.parahaemolyticus DamX. A truncated ORF was found at the upstream of ORF1101, encoding 169 amino acids that shared 94% identity with V.parahaemolyticus shikimate kinase. These three genes, together with dam, were arranged in the order of shikimate kinase - 3-dehydroquinate synthase– damX–dam..
     The immediate upstream region of the V.harveyi dam structural gene was cloned in three fragments of different length: 78bp, 112 bp and 477bp (named as P78, P112,and P477, respectively) and tested for promoter activity which showed that , while all the three fragments had detectable promoter activities, there was a marked difference among them: the activity of P78 was more than 3 times higher than that of P112 and P477.
     Different genetic strategies to obtain the dam knockout mutant of T4 were futile, indicating that the dam gene may be essential for the viability of the bacterium.
引文
宫时玉,蒋曹德,邓昌彦.DNA甲基化及其生物学功能.华中农业大学学报.2005, 24(6):651~657
    李竹红,刘德培,梁植权.改进的反向PCR技术克隆转移基因的旁侧序列.生物化学与生物物理进展.1999,26(6):600~602
    彭玮欣,刘国庆,马峙英.用于染色体步行的PCR技术.河北农业大学学报.2001 ,24 (3):86~89
    洪登峰,万丽丽,杨光圣.侧翼序列克隆方法评价.分子植物育种.2006, 4(2),280~288
    刘博,苏乔,汤敏谦,袁晓东,安利佳。应用于染色体步移的PCR扩增技术的研究进展.遗传(Beijing) 2006,28(5) :587~595
    沈珝琲等,2006.《染色质与表观遗传调控》,高等教育出版社。
    宋贵生,张虎生,赵立平.Escherichia coli dam-dcm菌株的研究进展,山西大学学报(自然科学版).24(2):185~188,2001
    王闵霞,马欣荣,王天山,谭红.染色体步行PCR技术.应用与环境生物学报2006,12(3):427~430
    赵迎社,付步银.DNA甲基化在肿瘤形成中的作用(综述).暨南大学学报(医学版).2001,22(4):54~57
    周翠兰,殷宇芳,张佳,陈琳玲,肖莉,廖端芳,李凯,高汉林.
    DNA甲基化的生物学意义及其检测方法.南华大学学报(医学版),2005,33 (2):149~153
    Adams RLP, Burdon RH. Molecular Biology of DNA Methylation.New York, Berlin, Heidelberg, Tokyo: Springer-Verlag. 1985.1,6-7, 9-10, 13-14, 182-183
    Anders Lobner-Olesen, Ole Skovgaard and M.G. Marinus. Dam methylation: coordinating cellular processes. Current Opinion In Microbiology. 2005, 8(2): 154-160
    Bestor T, Laudano A, Mattaliano R, et al. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol, 1988,203: 971-983
    BIO-RAD.Ecoli PulserTM Transformation Apparatus Operating Instructions and Applications Guide.Catalog Numbers 165-2101,165-2102,165-2103.165-2104.
    Bird A.DNAmethylation de novo.Science 1999;286:2287-2288
    Bird AP and Wolffe AP. Methylation-induced repression–belts, braces, and chromatin. Cell, 1999, 99:451–454.
    Boye, E., Lobner-Olesen, A. & Skarstad, K. Limiting DNA replication to once and only once. EMBO Rep.1, 479–483 (2000).
    Calmann MA and Marinus MG. Regulated expression of the Escherichia coli dam gene. J Bacteriol 2003,185:5012-5014.
    Campbell, J. L. & Kleckner, N. The E. coli oriC and the dnaA gene promoter are sequestered from Dam methyltransferase following the passage of the chromosomal replication fork. Cell 62, 967-979(1990)
    Cavrois M, Wain-Hobson S , Wattel E. Stochastic events in the amplification of HTLV-I integration sites by linker-mediated PCR. Res Virol , 1995 ,146(3) :179-184.
    Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science. 284, 2174–2177 (1999).
    Courtier, B., Heard, E. and Avner, P (1995). Xce haplotypes show modified methylation in a region of the active X chromosome lying 3to Xist. Proc. Natl. Acad. Sci. USA 92, 3531-3535
    Correnti J, Munster V, Chan T, van der Woude M: Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant. Mol.Microbiol. 2002, 44:521-532
    Del Portillo G, Pucciarelli MG, and Casadesus J. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and cell cytotoxicity. Proc. Natl. Acad. Sci. USA, 1999, 96:11578–11583.
    Don R.H., Cox P.T., Wainwright B.J., Baker K., and Mattick J.S., 1991, Touchdown PCR to circumvent spurious priming during gene amplification, Nucl. Acid. Res., 19: 4008
    Falker, S., M. A. Schmidt, and G. Heusipp. 2005. DNA methylation in Yersinia enterocolitica: role of the DNA adenine methyltransferase in mismatch repair and regulation of virulence factors. Microbiology 151:2291–2299.
    Frommer M, Mcdonald LE, Millar DS, et al. Agenomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands[J]. Genetics, 1992,89:1827-1831.
    Graham MW , Larkin PJ . Adenine methylation at dam sites increases transcient gene expression in plants cells[J] , Transgenic Res , 1995,4(5):324-31.
    Guarne A, Zhao Q, Ghirlando R, Yang W: Insights into negative modulation of E. coli replication initiation from the structure of SeqA-hemimethylated DNA complex. Nat.Struct.Biol. 2002, 9:839-843.
    Hecker K.H., and Roux K.H., High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR, Biotechniques, 1996,20: 478-485
    Heithoff DM, Sinsheimer RL, Low DA et al. An essential role for DNA adenine methylation in bacterial virulence. Science, 1999, 284:967-970.
    Heithoff DM, Enioutina EY, Daynes RA et al. Salmonella DNA adenine methylase mutants confercross-protective immunity. Infect. Immun. 2001, 69:6725–6730.
    Hendrich B and Bird A. Mammalian methyltransferases and methyl- CpG-binding domains: proteins involved in DNA methylation. Curr.Top.Microbiol.Immunol. 2000, 249:55–74.
    Hernday AD, Braaten BA, Low DA: The mechanism by which DNA adenine methylase and PapI activate the pap epigenetic switch. Mol.Cell 2003, 12:947-957.
    J. A. Nickoloff. Electroporation Protocols for Microorganisms. Methods in Molecular Biology.Totowa,NJ.:Humana Press, Inc.1995.47:p155-160,
    Jelinek W R , Schmid C W. Repetitive sequences in eukaryotic DNA and their expression. Ann Rev Biochem,1982,51(7):813-844.
    Jone PA, Laerd PW. Cancer epigenetics comes of age[J].Nature Genetics, 1999 , 21:(2):163-167
    Julio, S. M., D. M. Heithoff, D. Provenzano, K. E. Klose, R. L. Sinsheimer,D. A. Low, and M. J. Mahan. 2001. DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect. Immun. 69:7610–7615.
    Kang S, Lee H, Han JS et al. Interaction of SeqA and Dam methylase on the hemimethylated origin of Escherichia coli chromosomal DNA replication. J. Biol. Chem. 1999, 274:11463–11468.
    Kang S, Lee H, Han JS et al. Interaction of SeqA and Dam methylase on the hemimethylated origin of Escherichia coli chromosomal DNA replication. J. Biol. Chem. 1999, 274:11463–11468.
    Kariya Y, Kato K, Hayashizaki Y, Himeno S , Tarui S and Matsubara K. Revision of consensus sequence of human Alu repeats—a review. Gene , 1987 , 53 (1) :1-10.
    Kobayashi I, Nobusato A, Kobayashi-Takahashi N et al. Shaping the genome–restriction-modification systems as mobile genetic elements. Curr. Opin. Genet. Dev. 1999, 9:649–656.
    Lagerstrom M.,Parik J.,Malmgren H.,Stewart J.,Petersson U., and Landegren U.,1991,Capture PCR:eficient amplificationof DNA fragments adjacent to a known sequence in human and YAC DNA, PCR Methods App1.,1:111-119
    Ledbetter S A , Nelson D L , Warren S T , Ledbetter D H. Rapid isolation of DNA probes within specific chromosome regions by interspersed repetitive sequence polymerase chain reaction.Genomics ,1990 ,6 (3):475-481.
    Lei, H., Oh, S., Okano, M., Jutterman, R., Goss, K. A., Jaenisch, R. & Li, E. (1996) Development 122, 3195-3205
    Low DA, Weyand NJ, Mahan MJ: Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect.Immun. 2001, 69:7197-7204.
    Lyngstadaas A, Lobner-Olesen A, and Boye E. Characterization of three genes in the dam-containing operon of Escherichia coli. Mol Gen Genet. 1995, 247(5):546-54.
    Marinus MG: Methylation of DNA. In Escherichia coli and Salmonella: Cellular and Molecular Biology. Edited by Neidhardt FC, Curtiss R, Ingraham JL et al. Washington DC: ASM Press; 1996,782-791.
    MillerJH. Experiments in Molecular Genetics (Cold Spring Harbor Lab. Press, Plainview, NY).1972.
    Miller, V. L., and J. J. Mekalanos. A novel suicide vector and its use in construction of mutagenesis: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae ToxR. 1988.J. Bacteriol. 170:2575-2583.
    Minami M .,Poussin K.,Brechot C.,and Paterlini P.,1995,A novel PCR technique using Alu-specific primers to identify unknown flanking sequences from the human genome,Genomics,29:403-408
    Mizobuchi M, Frehman L A. Rapid amplification of genomic DNA ends. Biotechniques , 1993 , 15 (2) :214-216.
    Nelson D L , Ledbetter S A , Corbo L , Victoria M F , Ramirez-Solis R , Webster T D , Ledbetter D H, Caskey C T. Alu polymerase chain reaction : a method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci USA , 1989 , 86 (17) :6686-6690.
    Nelson M ,MC CLELLAND M.Effect of site specific methylation on DNA modification methyltranferases and restriction end。nuclease5[J].Nucleic Acids Res,1992,20:2145-2147
    Ohshima K, Suzumiya J , Kato A , Tashiro K, Kikuchi M. Clonal HTLV-I-infected CD4 + T-lymphocytes and non-clonal non-HTLV-I- infected giant cells in incipient ATLL with Hodgkin-like histologic features. Intl J Cancer , 1997,72(4):592-598.
    Ohshima K, Mukai Y, Shiraki H, Suzumiya J , Tashiro K, Kikuchi M. Clonal integration and expression of human T-cell lymphotropic virus type I in carriers detected by polymerase chain reaction and inverse PCR. Am J Hematol , 1997,54(4) :306-312.
    Okano M et al. Nature Genet,1998,19:219-220.
    Pang K M, Knecht D A. Partial inverse PCR:A technique for cloning flanking sequences. Biotechniques , 1997,23(6):1046-1048.
    Palmer BR and Marinus MG. The dam and dcm strains of Escherichia coli a review. Gene, 1994, 143:1-12.
    Rosenthal A.,and Jones D.S.C., Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction . Nucleic Acids Res.1990,18:3095-3096
    Puskas L G, Fartmann B , Bottka S. Restricted PCR: amplification of an individual sequence flanked by a highly repetitive element from total human DNA. Nucleic Acids Res , 1994 , 22 (20) :3251-3252.
    Ringqulst S , Smith CL The Escherichia coli chromosome contains specific unmethylated dam and dcm sites [ J] Pro Nacl Acad Sci USA,1992,89:4539-4543.
    Roberts RJ and Macelis D. REBASE-restriction enzymes and methylases. Nucleic Acids Res. 2000, 28:306-307.
    Schmid C W. Alu:structure,origin,evolution ,significance and function of one-tenth of human DNA. Prog Nucleic Acid Res Mol Biol ,1996 ,53(6) :283-319.
    Shyamala V , Ames G F. Genome walking by single-specific-primer polymerase chain reaction : SSP-PCR. Gene ,1989,84(1):1-8.
    Siebert P.D., Chenchik A., Kellogg D.E., Lukyanov K.A., and Lukyanov S.A., 1995, An improved PCR method for walking in uncloned genomic DNA, Nucl. Acid. Res., 23: 1087-1088
    Sternberg N.Evidence that adenine methylation influences DNA—protein interactions in Escherichia coli[J],Bacterio!,l985,164:490-493.
    Sun L, vanderSpek J, and Murphy JR. Isolation and characterization of iron-independent positive dominant mutants of Diphtheria toxin repressor, DtxR. Proc. Natl. Acad. Sci. USA,1998, 95: 14985-14990.
    Syn CK.and Swarup S. A Scalable Protocol for the Isolation of Large-Sized Genomic DNA within an Hour from Several Bacteria. Analytical Biochemistry, 2000, 278:86-90.
    TaKaRa LA PCRTM in vitro Cloning Kit.Code No. DRR015.TaKaRa Bio Catolog , 2004-2005 ,E34-36.
    Takemoto S , Matsuoka M, Yamaguchi K, Takatsuki K. A novel diagnostic method of adult T-cell leukemia : monoclonal integration of human T-cell lymphotropic virus type I provirus DNA detected by inverse polymerase chain reaction. Blood ,1994,84(9) :3080-3085.
    Tatiana E. Erova, Lakshmi Pillai, Amin A. Fadl, Jian Sha, Shaofei Wang, Cristi L. Galindo, and Ashok K. Chopra. DNA Adenine Methyltransferase Influences the Virulenceof Aeromonas hydrophila. INFECTION AND IMMUNITY, 2006,74(1):410–424
    Taylor, V. L., R. W. Titball, and P. C. Oyston. 2005. Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology 151:1919–1926.
    Triglia T , Peterson M G, Kemp D J . A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res , 1998 ,16(16) :8186.
    Tsuei D J , Chen P J , Lai M Y, Chen D S , Yang C S , Chen J Y,Hsu T Y. Inverse polymerase chain reaction for cloning cellular sequences adjacent to integrated hepatitis B virus DNA in hepatocellular carcinomas. J Virol Methods ,1994 ,49 (3): 269 -284.
    Universal GenomeWalkerTM Kit User Manual. Clontech Catalog # : K180721
    Vachtenheim J,Horakova I,Novotna H.Hypomethylation of CCGc sites in the 3' region of H-ras protooncogene is frequent and isassociated with H-ras allele loss in non-small cell lung cancer[J].CancerRes,1994,54(5):1145-1148.
    Riley J,Butler R,Ogilvie D,Finniear R,Jenner D,Powell S,Anand R,Smith J C,Markham A F,A novel,rapid method for the isolation of terminal sequences from yeast artificial chromosome(YAC)clones.Nucleic Acids Res,1990,18(10):2887-2890
    van der Woude M, Hale WB, and Low DA. Formation of DNA methylation patterns: nonmethylated GATC sequences in gut and pap operons. J. Bacteriol. 1998, 180:5913–5920.
    Waldron DE, Owen P, Dorman CJ: Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol.Microbiol. 2002, 44:509-520.
    Wallecha A, Correnti J, Munster V, van der Woude M.: Phase variation of Ag43 is independent of the oxidation state of OxyR. J Bacteriol. 2003, 185:2203-2209.
    Yuanxin Y,Chengcai A,Li L,Jiayu G,Guihong T,Zhangliang C,T-linker-specific ligation PCR(T-linker PCR):an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends.Nucleic Acids Res,2003,31(12):68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700