用户名: 密码: 验证码:
对PRMT5几个缺失突变体的功能及其与GM130之间相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白精氨酸甲基化是一种普遍存在于细胞核和细胞质中的翻译后修饰现象,由精氨酸甲基转移酶家族(PRMTs)催化产生。越来越多的实验证明蛋白甲基化参与了生命活动的各个过程,包括RNA的加工和转运、蛋白翻译、基因转录、信号转导和DNA修复等。大多数PRMTs作用于底物中的赖氨酸和精氨酸的富集区(GAR motifs)。根据将S-腺苷甲硫氨酸(S-adenosylmethionine,AdoMet)上的甲基转移到精氨酸的胍基氮上产生甲基化的不同方式,最终可以分为三类:单甲基化(MMA)、对称性双甲基化(sDMA)和非对称性双甲基化(aDMA)。
     PRMTs可以分为类型Ⅰ、Ⅱ、Ⅲ和Ⅳ四种类型。Ⅰ类和Ⅱ类都可以催化产生单甲基化(MMA),不同点在于:Ⅰ类(PRMT1,3,4,6和8)催化产生非对称性双甲基化(aDMA),而Ⅱ类(PRMT5,PRMT7和FBXO11)催化产生对称性双甲基化(sDMA),PRMT7也呈现Ⅲ类酶的特点,在一些底物倾向于催化产生单甲基化(MMA),但是并不产生对称性双甲基化(sDMA),Ⅳ型酶在酵母中催化瓜基上的单原子氮。
     蛋白质精氨酸甲基转移酶5(PRMT5)在细胞生长和信号转导方面是一个重要的调节因子,主要参与染色质重塑、RNA剪切、基因转录、细胞分化等过程。因此,对其结构和功能的研究就显得十分重要。通过大肠杆菌表达系统把全长基因PRMT5构建到pGEX-4T-1表达载体上,所得到GST标签的重组蛋白可溶性很低。为此,通过在其N端缺失不同氨基酸序列来增加其表达量,而且其中有一个缺失突变体的活性并没有发生改变。同时,我们还发现PRMT5的N端的前15个氨基酸对其甲基转移酶的催化活性很重要。
     高尔基体在蛋白翻译后修饰,蛋白分类和运输发挥着重要作用,而在维持高尔基体的结构和控制高尔基体组装方面,依赖于两类重要的蛋白,即golgin蛋白和GRASPs(Golgi Re-Assembly Stacking Proteins)蛋白。其中GRASPs也称为Golgi matrix蛋白,包括Giantin,GM130,GRASP6,它们都是维持高尔基的组装所必须的蛋白。蛋白的翻译后修饰,例如GM130的磷酸化对高尔基体的结构十分重要。本实验室已经发现在Hela细胞质中分离提取了PRMT5复合体,并对其中的几个重要组分进行了质谱分析,其中一个在高尔基体结构和功能中发挥重要作用的组分GM130。为了证明PRMT5和GM130之间的相互作用,我们进行了Farwestern实验。实验结果显示,GM130通过其N端的前73个氨基酸结合于PRMT5的保守区域(C端)。
Arginine methylation is a prevalent post-translational modification found on both nuclear and cytoplasmic proteins.The methylation of arginine residues is catalyzed by the protein arginine Nmethyltransferase(PRMT) family of enzymes. Previously studies showed Arginine methylation participated in pre-mRNA processing, protein translation ,DNA transcription, signal transduction and DNA repair. Most PRMTs methylate glycine- and arginine-rich patches (GAR motifs) within their substrates. The complexity of the methylarginine mark is enhanced by the ability of this residue to be methylated in three different ways on the guanidino group: monomethylated (MMA), symmetrically dimethylated (sDMA) and asymmetrically dimethylated (aDMA), each of which has potentially different functional consequences.
     PRMTs are classified as type I, type II, type III or type IV enzymes. Type I and type II enzymes all catalyze the formation of an MMA intermediate, then type I PRMTs (PRMT1, 3, 4, 6 and 8)further catalyze the production of aDMA, whereas type II PRMTs (PRMT5, PRMT7 and FBXO11)catalyze the formation of sDMA. PRMT7 also exhibits type III enzymatic activity - the propensity to catalyze the formation of MMA on certain substrates and not proceed with sDMA catalysis. A type IV enzyme that catalyzes the monomethylation of the internal guanidino nitrogen atom has been described in yeast.
     Protein arginine methyltransferase 5 (PRMT5) has been implicated as an important regulator of many cellular processes and signaling pathways, including chromatin remodeling, RNA splicing, DNA transcription, and cell proliferation. Therefore, structural and functional studies on PRMT5 are quite important. The full length of PRMT5 gene was cloned into vector pGEX-4T-1, resulting in only low expression levels in Escherichia coli (E. coli). Here, we showed that the several N-terminal amino acids deletions could result in a significant increase in the amount of soluble fraction, while one of them did not affect the protein-arginine methyltransferase activity. And we also found that the N-terminal 15 amino acids region of PRMT5 may be important for the catalytic activity.
     The Golgi apparatus (GA) plays a central role in the post-translational modification, sorting, and transportation of proteins. Maintenance of GA structure and function depends on Golgin proteins and GRASPs (Golgi Re-Assembly Stacking Proteins).The posttranslational modification of golgins, such as phosphorylation of GM130, is critical for GA architecture2,4-9. The function of golgin methylation, however, has not been previously identified. Our group has shown that a PRMT5 complex contains several essential components involved in both GA stacking and vesicle tethering. One of them is GM130, a putative Golgi matrix protein.In order to show that GM130 directly interact with PRMT5, farwestern was applied. Our results show that the binding site for PRMT5 on GM130 maps to amino acids 180-619, a region conserved in the family. The same approach was used to show that the binding site for GM130 maps to the N-terminal 73 amino acids region.
引文
[1] Strahl BD, Allis CD 2000 The language of covalent histone modifications. Nature 403:41-45
    [2] Jenuwein T, Allis CD 2001 Translating the histone code. Science 293:1074-1080
    [3] Aletta JM, Cimato TR, Ettinger MJ 1998 Protein methylation: a signal event in posttranslational modification. Trends Biochem Sci 23:89-91
    [4] Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD 2000 Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5:905-915
    [5] Lo W-S, Trievel RC, Rojas JR, Duggan L, Hsu J-Y, Allis CD, Marmorstein R, Berger SL 2000 Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5:917-926
    [6] Stallcup MR 2001 Role of protein methylation in chromatin remodeling and transcriptional regulation. Oncogene 20:3014-3020
    [7] Zhang Y, Reinberg D 2001 Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343-2360
    [8] Gary, J.D., and Clarke, S. 1998. RNA and protein interactions modulated by protein arginine methylation. Prog. Nucleic Acid Res. Mol.Biol. 61, 65-131.
    [9] Lin, W, Gary, and Herschman, H.R. 1996. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginineN-methyltransferase. J. Biol. Chem. 271, 15034-15044.
    [10] Chen, D, Ma, and H. 1999. Regulation of transcription by a protein methyltransferase. Science 284, 2174-2177.
    [11] Frankel and Bedford. 2002. The novel human protein arginine N-methylphase-transferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J. Biol. Chem. 277, 3537-3543.
    [12] Gros, L, and Jacquemin-Sablon, A. 2003. Identification of new drug sensitivity genes using genetic suppressor elements: protein arginine N-methyltransferase mediates cell sensitivity to DNA-damaging agents. Cancer Res. 63,164-171.
    [13] Scorilas, A., Black, M.H., Talieri, M., and Diamandis, E.P, 2000, Genomic organization, physical mapping, and expression analysis of the human protein arginine methyltransferase 1 gene. Biochem. Biophys. Res. Commun. 278, 349-359.
    [14] Pawlak, M.R., Scherer, C.A., Chen, J., Roshon, M.J., and Ruley, H.E. (2000). Arginine N-methyltransferase 1 is required for early postim-plantation mouse development, but cells deficient in the enzyme are viable. Mol. Cell. Biol. 20, 4859-4869.
    [15] Kim, J.K., and, R.,and Moscarello, M.A, 2003, Multiple sclerosis: an important rolefor post-translational modifications of myelin basic protein in pathogenesis. Mol. Cell. Proteomics 2, 453-462.
    [16] Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT, 2002, The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277:3537-3543
    [17] Najbauer J, Johnson BA, Young AL, Aswad DW, 1993, Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem 268:10501-10509
    [18] Smith JJ, Rucknagel KP, Schierhorn A, Tang J, Nemeth A, Linder M, Herschman HR, Wahle E , 1999, Unusual sites of arginine methylation in Poly(A)-binding protein II and in vitro methylation by protein arginine methyltransferases PRMT1 and PRMT3. J Biol Chem 274:13229-13234
    [19] Li H, Park S, Kilburn B, Jelinek MA, Henschen-Edman A, Aswad DW, Stallcup MR, Laird-Offringa IA, 2002, Lipopolysaccharide-induced methylation of HuR, an mRNAstabilizing protein, by CARM1. J Biol Chem 277:44623-44630
    [20] Weiss VH, McBride AE, Soriano MA, Filman DJ, Silver PA, Hogle JM, 2000, The structure and oligomerization of the yeast arginine methyltransferase, Hmtl. Nat Struct Biol, 7:1165-1171
    [21] Zhang X, Zhou L, Cheng X , 2000, Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J 19:3509-3519
    [22] Frankel A, Clarke S, 2000, PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Conferral of substrate specificity by a zinc-finger domain. J Biol Chem 275:32974-32982
    [23] Teyssier C, Chen D, Stallcup MR, 2002, Requirement for Multiple Domains of the Protein Arginine Methyltransferase CARM1 in Its Transcriptional Coactivator Function. J Biol Chem 277:46066-46072
    [24] Najbauer, J., Johnson, B.A., Young, A.L., and Aswad, D.W, 1993, Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyl-transferase(s) modifying arginine in numerous proteins. J. Biol.Chem. 268, 10501-10509.
    [25] Zhang, X., and Cheng, X. 2003, Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure (Camb). 11, 509-520.
    [26] Herrmann, F., Bossert, M., Schwander, A., Akgun, E., and Fackelmayer, F.O. (2004). Arginine methylation of scaffold attachment factor A by heterogeneous nuclear ribonucleoprotein particle-associated PRMT1. J. Biol. Chem. 279, 48774-48779.
    [27] Lukong, K.E., and Richard, S. (2004). Arginine methylation signals mRNA export. Nat. Struct. Mol. Biol. 11, 914-915.
    
    [28] Brahms,H., Meheus, L., de Brabandere, V., Fischer, U., and Luhrmann, R. (2001). Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B# and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7, 1531-1542.
    [29] Bachand, F., and Silver, P.A. (2004). PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits. EMBO J. 23,2641-2650.
    [30] Jones, S., Daley, D.T., Luscombe, N.M., Berman, H.M., and Thornton, J.M. (2001). Protein-RNA interactions: a structural analysis. Nucleic Acids Res. 29, 943-954.
    [31] Calnan, B.J., Tidor, B., Biancalana, S., Hudson, D., and Frankel, A.D. (1991). Arginine-mediated RNA recognition: the arginine fork. Science 252, 1167-1171.
    [32] WysockaJ, MilneTA, AllisCD. 2005, Taking LSDI to a New High. Cell. 122: 654-658.
    [33] BriggsS, BrykM, StrahlM D, etal. 2001, Histone H3 lysine 4 methylation is mediated by Setl and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15: 3286-3295.
    [34] Santos-Rosa H, Schneider R'Bannister A J,et al, 2002, Active genes are trimethylated at K4 of histone H3. Nature, 419: 407-411.
    [35] Ng H H, Robert F, Young RA, et al, 2003, Targeted recruitment of Setl histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell, 709-719.
    [36] Pray-Grant M G, Daniel J A, Schieltz D, et al, 2005, Chdl chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature, 433: 434-438.
    [37] Wysocka J, Swigut T, Mitne T et al, 2005, WDR5 associates with histone H3 methylated at K4 and is essential for H3-K4 methylation and vertebrate development. Cell, 121: 859-872.
    [38] Rice JC, Allis CD 2001 Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13:263-273
    [39] Fischle W, Wang YM, Allis CD 2003 Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172-183
    [40] An W, Kim J, Roeder RG 2004 Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117:735-748
    [41] Daujat S, Bauer UM, Shah V, Turner B, Berger S, Kouzarides T 2002 Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12:2090-2097
    [42] Pal S, Yun R, Datta A, Lacomis L, Erdjument-Bromage H, Kumar J, Tempst P, Sif S 2003 mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol Cell Biol 23:7475-7487
    [43] Koh SS, Li H, Lee YH, Widelitz RB, Chuong CM, Stallcup MR 2002 Synergistic coactivator function by coactivator-associated arginine methyltransferase (CARM) 1 and betacatenin with two different classes of DNA-binding transcriptional activators. J Biol Chem 277:26031-26035
    [44] Rezai-Zadeh N, Zhang X, Namour F, Fejer G, Wen YD, Yao YL, Gyory I, Wright K, Seto E 2003 Targeted recruitment of a histone H4-specific methyltransferase by the transcription factor YY1. Genes Dev 17:1019-1029
    [45] Xu W, Cho H, Kadam S, Banayo EM, Anderson S, Yates JR, III, Emerson BM, Evans RM 2004 A methylation-mediator complex in hormone signaling. Genes Dev 18:144-156
    [46] Lee YH, Campbell HD, Stallcup MR 2004 Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity. Mol Cell Biol 24:2103-2117
    [47] Fabbrizio E, El Messaoudi S, Polanowska J, Paul C, Cook JR, Lee JH, Negre V,Rousset M, Pestka S, Le Cam A, Sardet C 2002 Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep 3:641-645
    [48] Rogatsky I, Zarember KA, Yamamoto KR 2001 Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J 20:6071-6083
    [49] Vo N, Goodman RH 2001 CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276:13505-13508
    [50] Chevillard-Briet M, Trouche D, Vandel L 2002 Control of CBP co-activating activity by arginine methylation. EMBO J 21:5457-5466
    [51] Mowen KA, Tang J, Zhu W, Schurter BT, Shuai K, Herschman HR, David M 2001 Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell 104:731-741
    [52] Kwak YT, Guo J, Prajapati S, Park KJ, Surabhi RM, Miller B, Gehrig P, Gaynor RB 2003 Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol Cell 11:1055-1066
    [53] Friesen WJ, Massenet S, Paushkin S, Wyce A, Dreyfuss G 2001 SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol Cell 7:1111-1117
    [54] Meister G, Eggert C, Buhler D, Brahms H, Kambach C, Fischer U 2001 Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Current Biology 11:1990-1994
    [55] Liu Q, Dreyfuss G 1995 In vivo and in vitro arginine methylation of RNA-binding proteins. Mol Cell Biol 15:2800-2808
    [56] Green DM, Marfatia KA, Crafton EB, Zhang X, Cheng X, Corbett AH 2002 Nab2p is required for poly(A) RNA export in Saccharomyces cerevisiae and is regulated by arginine methylation via Hmtlp. J Biol Chem 277:7752-7760
    [57] Lee J, Bedford MT 2002 PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. EMBO Rep 3:268-273
    [58] Nichols RC, Wang XW, Tang J, Hamilton BJ, High FA, Herschman HR, Rigby WF 2000 The RGG domain in hnRNP A2 affects subcellular localization. Exp Cell Res 256:522-532
    [59] Cote J, Boisvert FM, Boulanger MC, Bedford MT, Richard S 2003 Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol Biol Cell 14:274-287
    [60] McBride, A.E., and Silver, P.A. (2001). State of the arg: protein methylation at arginine comes of age. Cell 106, 5-8.
    [61] Bedford, M.T., Frankel, A., Yaffe, M.B., Clarke, S., Leder, P., and Richard, S. (2000a). Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J. Biol. Chem. 275, 16030-16036.
    [62] Boisvert, F.M., Cote, J., Boulanger, M.C., and Richard, S. (2003). A proteomic analysis of arginine-methylated protein complexes. Mol. Cell. Proteomics 2, 1319-1330.
    [63] Abramovich, C., Yakobson, B., Chebath, J., and Revel, M. (1997). A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. EMBO J. 16, 260-266.
    [64] Chen, W., Daines, M.O., and Hershey, G.K. (2004). Methylation of STAT6 modulates STAT6 phosphorylation, nuclear translocation, and DNA-binding activity. J. Immunol. 172, 6744-6750.
    [65] Henry KW, Wyco A, Lo WS. 2003, Transcriptional activation via sequential histone H2B ubiquitylation and deubiq-uitylation, mediated by SAGA-associated Ubp8. Gene, 17(21): 2648-2663.
    [66] Cimato TR, Tang J, Xu Y, Guarnaccia C, Herschman HR, Pongor S, Aletta JM 2002 Nerve growth factor-mediated increases in protein methylation occur predominantly at type I arginine methylation sites and involve protein arginine methyltransferase 1. J Neurosci Res 67:435-442
    [67] Cimato TR, Ettinger MJ, Zhou X, Aletta JM 1997 Nerve growth factor-specific regulation of protein methylation during neuronal differentiation of PC12 cells. J Cell Biol 138:1089-1103
    [68] Boisvert, F.M., Dery, U., Masson, J.Y., and Richard, S. (2005). Arginine methylation of MRE11 by PRMT1 is required for the intra-S-phase DNA damage checkpoint. Genes Dev. 19, 671-676.
    [69] Stewart, G.S., Maser, R.S., Stankovic, T., Bressan, D.A., Kaplan, M.I., Jaspers, N.G., Raams, A., Byrd, P.J., Petrini, J.H., and Taylor, A.M. (1999). The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577-587.
    [70] Charier, G., Couprie, J., Alpha-Bazin, B., Meyer, V., Quemeneur, E. Guerois, R., Callebaut, I, Gilquin, B., and Zinn-Justin, S. (2004). The Tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding. Structure 12, 1551-1562.
    [71] Huyen, Y., Zgheib, O., Ditullio, R.A., Jr., Gorgoulis, V.G., Zacharatos, P., Petty, T.J., Sheston, E.A., Mellert, H.S., Stavridi, E.S., and Halazonetis, T.D. (2004). Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406-411.
    [72] Singh,V.,Miranda, T.B., Jiang,W., Frankel ,A., Roemer, M.E., Robb, V.A., Gutmann,D.H.,Herschman,H.R.,Clarke,S.,anddNewsham,I.F. .(2004) .DAL-1/4.1B Btumor rsuppressor rinteracts swith hprotein narginine eN-methyltransferase e3 3(PRMT3) and dinhibits sits sability yto omethylate esubstrates sin nvitro oand din nvivo. Oncogene e23, 7761-7771.,
    [73] Xu,C.,and dHenry, ,M.F. .(2004) .Nuclear exportof hnRNP PHrplp and nuclear export of hnRNP Npl3p are linked and influenced by the methylation state of Npl3p. Mol. Cell. Biol 24 ,10742-10756.
    [74] Weiss, V.H., McBride, A.E., Soriano, M.A., Filman, D.J., Silver, P.A., and Hogle, J.M. (2000). The structure and oligomerization of the yeast arginine methyltransferase, Hmtl. Nat. Struct. Biol. 7, 1165- 1171.
    [75] Lin, W.J., Gary, J.D., Yang, M.C., Clarke, S., and Herschman, H.R.(1996). The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginineN-methyltransferase. J. Biol. Chem. 271, 15034-15044.
    [76] Friesen, W.J., Paushkin, S., Wyce, A., Massenet, S., Pesiridis, G.S.,Van Duyne, G., Rappsilber, J., Mann, M., and Dreyfuss, G. (2001b).The methylosome, a20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell. Biol. 21,8289-8300.
    [77] .Kwak, Y.T., Guo, J., Prajapati, S., Park, K.J., Surabhi, R.M., Miller,B., Gehrig, P., and Gaynor, R.B. (2003). Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptionalelongation properties. Mol. Cell 11, 1055-1066.
    [78] Pal, S., Vishwanath, S.N., Erdjument-Bromage, H., Tempst, P., and Sif, S. (2004). Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol. Cell. Biol. 24, 9630-9645.
    [79] Frankel, A., Yadav, N., Lee, J., Branscombe, T.L., Clarke, S., and Bedford, M.T. (2002). The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J. Biol. Chem. 277, 3537-3543.
    [80] Nakashima, K., Hagiwara, T., and Yamada, M. (2002). Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J. Biol. Chem. 277, 49562-49568.
    [81] Cuthbert, G.L., Daujat, S., Snowden, A.W., Erdjument-Bromage, H., Hagiwara, T., Yamada, M., Schneider, R., Gregory, P.D., Tempst, P., Cuthbert, G.L., Daujat, S., Snowden, A.W., Erdjument-Bromage, H., Hagiwara, T., Yamada, M., Schneider, R., Gregory, P.D., Tempst, P.,
    [82] Wang, Y., Wysocka, J., Sayegh, J., Lee, Y.H., Perlin, J.R., Leonelli, L., Sonbuchner, L.S., McDonald, C.H., Cook, R.G., Dou, Y., et al. (2004). Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279-283.
    [83] Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., and Casero, R.A. (2004). Histone demethylation mediated by the nuclear amine Oxidase homolog LSD1. Cell 119, 941-953.
    [84] Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., and Jenuwein, T. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593-599.
    [85] Boulanger, M.C., Liang, C., Russell, R.S., Lin, R., Bedford, M.T.,Wainberg, M.A., and Richard, S. (2005). Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J. Virol. 79, 124-131.
    [86] Miranda, T.B., Khusial, P., Cook, J.R., Lee, J.H., Gunderson, S.I.,Pestka, S., Zieve, G.W., and Clarke, S. (2004a). Spliceosome Smproteins D1, D3, and B/B# are asymmetrically dimethylated at arginine residues in the nucleus. Biochem. Biophys. Res. Commun.323, 382-387.
    [87] Bedford, M.T., Reed, R., and Leder, P. (1998). WW domain-mediatedinteractions reveal a spliceosome-associated protein that binds athird class of proline-rich motif: the proline glycine and methionine-rich motif. Proc. Natl. Acad. Sci. USA 95, 10602-10607.
    [88] Wang, H., Huang, Z.Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B.D., Briggs, S.D., Allis, C.D., Wong, J., Tempst, P., and Zhang, Y. (2001). Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293, 853-857.
    [89] Hong, H., Kao, C., Jeng, M.H., Eble, J.N., Koch, M.O., Gardner, T.A.,Zhang, S., Li, L., Pan, C.X., Hu, Z., et al. (2004). Aberrant expressionof CARM1, atranscriptional coactivator of androgen receptor, inthe development of prostate carcinoma and androgen-independentstatus. Cancer 101, 83-89.
    [90] Cheng, D., Yadav, N., King, R.W., Swanson, M.S., Weinstein, E.J.,and Bedford, M.T. (2004). Small molecule regulators of protein arginine methyltransferases. J. Biol. Chem. 279, 23892-23899.
    [91] Yadav, N., Lee, J., Kim, J., Shen, J., Hu, M.C., Aldaz, C.M., and Bedford, M.T. (2003). Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc. Natl. Acad. Sci. USA 100, 6464-6468.
    [92] Marmorstein, R. (2003). Structure of SET domain proteins: a new twist on histone methylation. Trends Biochem. Sci. 28, 59-62.
    [93] Stuhlinger, M.C., Tsao, P.S., Her, J.H., Kimoto, M., Balint, R.F., and Cooke, J.P. (2001). Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 104, 2569-2575.
    [94] Vallance, P., and Leiper, J. (2002). Blocking NO synthesis: how, where and why? Nat. Rev. Drug Discov. 1, 939-950.
    [95] Li, Y.J., Stallcup, M.R., and Lai, M.M. (2004). Hepatitis delta virusantigen is methylated at arginine residues, and methylation regulates subcellular localization and RNA replication. J. Virol. 78,13325-13334.
    [96] Carroll, M.C. (2004). Aprotective role for innate immunity in systemic lupus erythematosus. Nat. Rev. Immunol. 4, 825-831.
    [97] Bassell, G.J., and Kelic, S. (2004). Binding proteins for mRNA localization and local translation, and their dysfunction in genetic neurological disease. Curr. Opin. Neurobiol. 14,574-581.
    [98] Cusco, I., Barcelo, M.J., del Rio, E., Baiget, M., and Tizzano, E.F.(2004). Detection of novel mutations in the SMN Tudor domain intype I SMA patients. Neurology 63, 146-149.
    [99] Lin, Q., Jiang, F., Schultz, P.G., and Gray, N.S. (2001). Design ofallele-specific protein methyltransferase inhibitors. J. Am. Chem.Soc. 123, 11608-11613.
    [100] Mary GILBRETH et.al(1996) The highly conserved skb1gene encodes a protein that interactes with Shkl,a fission yeast Ste20/PAK homolog PNAS,Vol.93.13802-13807
    [101]Arie Abo et.al(1998) PAK4, a novel effector for Cdc42Hs ,is implicated in the reorganization of the actin cytosheleton and in the formation of filopodia.EMBO.Vol 17 .No22.6527-6540
    [102]Bao.SL et.al (2001) The Highly Conserved Protein Methyltransferase ,Skbl,Is a Mediator of Hyperosmotic Stress Responese in the Fission Yeast Schizosaccharomyces poombe. JBC, Vol.276,No.18.14549-14552.
    [103]Antonino Colanzi et.al.(2003).Cell -cycle-specific Golgi Fragmentation :How and Why? CORRENT OPINION Vol 15.1-6.
    [104] James Shorter and Graham Warren(2002) GOLGI ARCHITECTURE AND INHERITANCE. Annu. Rev. Cell Dev. Biol. 2002. 18:379-420
    [105] Christine S et.al(2002)Fragmentation and Dispersed of the Pericentriolar Golgi Complex Is Required for Entry into Mitosis in Mammalian Cells. Cell Vol. 109.359-369.
    [106] Christian Preisinger et.al(2004)YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3.JCB.Vol 164.7.1009-1020
    [107]Ferri, K.F., and G. Kroemer. 2001. Organelle-specific initiation of cell death pathways.Nat. Cell Biol. 3:E255-E263.
    [108]Bivona, T.G., and M.R. Philips. 2003. Ras pathway signaling on endomembranes. Curr. Opin. Cell Biol. 15:136-142.
    [109]Rios, R.M., and M. Bornens. 2003. The Golgi apparatus at the cell centre. Curr.Opin. Cell Biol. 15:60-66.
    [110]Sharmistha Pal et.all (2004)Human SWI/SNF-Associated PRMT5 Methylates Histone H3 Arginine8 and Negatively Regulates Expression of ST7 and NM23Tumor Suppressor Genes. MOLECULAR AND CELLULAR BIOLOGY, Nov.24.21.9630-9645

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700