用户名: 密码: 验证码:
横突间入路腰椎椎体间融合术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     腰椎椎体间融合术是目前治疗椎间盘源性下腰痛、腰椎滑脱症、腰椎不稳症等原因引起的下腰痛效果较为满意的一种腰椎融合手术方式,其主要分为前路椎体间融合术(ALIF)、后路椎体间融合术( PLIF)以及经关节突入路椎体间融合术(TLIF)。由于ALIF易引起腹腔脏器及大血管损伤以及逆向射精等并发症以及PLIF术后神经损伤风险较大,目前临床上已少用。而TLIF通过切除一侧关节突后,斜向通过椎管侧方进行椎体间融合,降低了神经根、马尾及硬膜损伤的可能性,并可减少术后腰椎不稳、滑脱等并发症的发生,临床应用广泛。但其仍不能完全避免术后硬膜外血肿,疤痕粘连及蛛网膜炎等并发症,同时,去除单侧小关节后明显降低腰椎运动节段本身的稳定性。横突间入路腰椎椎体间融合术(ILIF)手术采用后外侧切口,通过横突间区域进行椎体间融合,不破坏任何骨质,不骚扰椎管,克服了以上的不足,且理论上具有生物力学优势。但目前对该术式的研究较少,对其可行性、生物力学稳定性、安全性和疗效等均未见相关报道。
     目的
     1、通过CT增强三维重建检查研究横突间区域骨性结构和动脉走形的特点,探讨CT模拟解剖研究的价值,以及横突间区域的临床意义,并初步评价ILIF手术的可行性。
     2、通过尸体解剖观察横突间区域的解剖结构,并模拟ILIF手术操作以及椎弓根钉和椎间融合器的植入,进一步评价其可行性和安全性,并对该术式进行完善。
     3、通过生物力学实验评价ILIF手术及附加椎弓根钉后的生物力学稳定性,并与TLIF手术进行比较以明确其生物力学优势。
     4、通过动物实验与TLIF手术进行比较,进一步对ILIF手术的安全性进行评价,并明确附加同侧椎弓根钉的可行性和安全性。
     5、通过组织学切片观察手术节段的融合情况,评价ILIF手术及附加椎弓根钉对融合的影响。
     方法
     1、对20名正常志愿者L3-S1节段进行CT增强+三维重建检查,在三维重建图形上测量横突长度、上下横突间距、椎间孔外椎间隙高度及斜径,观查横突间区域血管走形特点并测量血管内径,然后进行统计分析及评价。
     2、采用福尔马林固定尸体标本六具,模拟ILIF手术对L3-S1节段进行操作,观察横突间区域重要结构的位置和毗邻关系,并模拟同侧椎弓根钉和单枚椎间融合器的置入过程,探讨该术式存在的问题并改进。
     3、采用小牛脊柱运动节段标本12具,依序进行不同处理后分为以下7组:⑴正常对照组(CG);⑵左侧小关节切除+椎间融合器植入组(TLIF);⑶TLIF附加同侧椎弓根钉固定组;⑷TLIF附加双侧椎弓根钉固定组;⑸左侧横突间入路椎间融合器植入组(ILIF);⑹ILIF附加同侧椎弓根钉固定组;⑺ILIF附加双侧椎弓根钉固定组。分别测试各组在轴向压缩、前屈、后伸、左右侧屈时的载荷-应变、载荷-位移变化以及轴向刚度和双向扭转稳定性等生物力学指标,并进行统计学比较。
     4、选用健康40-50Kg重的成年绵羊24只,随机分为ILIF手术组、TLIF手术组、ILIF+椎弓根钉固定组及TLIF+椎弓根钉固定组,每组各6只。ILIF组行右侧横突间入路腰椎椎体间融合术,TLIF组行右侧经关节突入路椎体间融合术。ILIF+椎弓根钉固定组及TLIF+椎弓根钉固定组均附加同侧同节段的椎弓根钉固定。记录各组手术过程所需要的时间、出血量、术中或术后死亡、切口感染、双下肢肌力、活动及大小便等情况。
     5、术后12周将四组绵羊全部处死,完整取下腰椎手术节段标本,对其做不脱钙骨切片。应用甲苯胺蓝染色切片后,使用Nikon SMZ800反光显微镜光镜观察各组的融合情况。
     结果
     1、腰椎横突长度L3>L5>L4,上下横突间距和椎间孔外椎间隙高度均为L3/4>L4/5>L5/S1,椎间隙斜径三个节段间比较无显著差异;同节段相比L3/4、L4/5节段上下横突间距大于椎间孔外椎间隙高度,而L5/S1节段上下横突间距与椎间孔外椎间隙高度则无显著差异。横突前方血供均源自腰椎节段动脉,其主要分为主支从支型和主支分叉型两类,L3/4以主支从支型(87.5%)为主,L4/5以主支分叉型(92.5%)为主。穿过横突间的血管支主要在此区域的内侧(80%),而大多横突前的血管(96%)跨过侧后方椎间隙下行。横突间区域血管内径L4/5>L3/4,左右两侧相比无明显差异,主要血管支中内径平均最大值可达3.3±0.6mm。
     2、取后正中外侧10cm纵行切口,从多裂肌和最长肌间可方便的到达横突间区域,在L3-4及L4-5节段轻柔的牵开神经根即刻显露椎间盘,并有足够的空间完成椎间融合器的植入。从此入路寻找椎弓根钉入钉点简便,可顺利完成椎弓根钉置入操作。L5-S1节段横突间空间较小,且存在后髂翼阻挡操作,完成ILIF操作困难。
     3、ILIF组在载荷-应变、载荷-垂直位移、轴向刚度、扭角扭距及扭转刚度等生物力学指标均分别优于TLIF组(P<0.05),在定量扭矩扭角方面差距最大达72%。但ILIF组和TLIF组生物力学稳定行均低于对照组。ILIF附加双侧椎弓根钉固定的稳定性最高,在前屈载荷应变方面较CG组差别最大达53%,而ILIF+HPSF组与ILIF+BPSF组比较差异无统计学意义(P>0.05)。
     4、动物实验显示,与TLIF组相比,ILIF手术时间更短,术后并发症特别是椎管内的并发症明显减少。ILIF附加椎弓根钉固定比不固定手术时间增加20.6min,出血量和并发症发生情况无明显差异(P>0.05)。
     5、组织学显示各组手术节段均有新生骨和骨小梁形成,ILIF组融合情况好于TLIF组。ILIF附加椎弓根钉固定组融合情况最好,与ILIF组相比有显著性差异(P<0.05)。
     结论
     1、CT增强三维重建技术对腰椎骨性结构及动脉分布走形的解剖研究具有较好的应用价值。横突间及小关节区域血供丰富,血管走行具有一定规律,熟悉此区域解剖结构并注意操作可减少术中出血。横突间入路腰椎椎体间融合术在L3-4、L4-5节段具有可行性。
     2、在L3-4、L4-5节段可提供足够的空间行ILIF手术,并可通过同一切口附加椎弓根钉固定,操作安全、简便。L5-S1节段横突间区域较小,操作困难,不适合行ILIF手术。
     3、ILIF手术术后生物力学稳定性有所下降但优于TLIF手术;ILIF附加同侧椎弓根钉固定与附加双侧椎弓根钉固定生物力学稳定性相当,使用ILIF术式附加侧同椎弓根螺钉固定,可提供较好的即刻稳定性。
     4、ILIF手术及附加同侧椎弓根钉固定是一种安全、简便、有效的手术方式,在减少椎管内并发症方面具有优势。
     5、ILIF手术可获得较好的融合率,其融合情况从组织学观察稍好于TLIF手术。附加同侧椎弓根钉固定后可明显促进ILIF手术的融合效果。
Background
     Lumbar interbody fusion(ILF) has been acknowledged as a efficacious surgical technique for lumbosacral disease such as disc-genesis low back pain, lumbar spondylolithesis and lumbar unsteadiness, et al. According to different approach, ILF can be performed as antirior lumbar interbody fusion(ALIF), posterior lumbar interbody fusion(PLIF) and transforaminal lumbar interbody fusion(TLIF). Because of the complications of abdominal organs injury or retrograde ejaculation after ALIF, and the high risk of nerve injury after PLIF, these two surgeries were reduce to perform in clinic nowadays. While TLIF has be consider to have less risk of injuries of nerve root, cauda equine, dura matar, and less incidence of lumbar unsteadiness and spondylolithesis. It is applied in clinic widespread. But this technique still can’t avoid the complications of epidural hematoma, scar accretion and arachnoiditis. Besides, TLIF need to resect the articular process unilaterally, and it will lead to decrease the stability postoperatively. Intertransverse lumbar interbody fusion(ILIF) is performed through the intertransversse area, with no bony structure destroyed and veterbral canal offend. It overcome the deficients of other ILF techniques and has predominance on biomechanics in abstracto. But researches about ILIF are rare, and no report about its feasibility, biomechanical stability, safety and curative effect were found.
     Objective
     1. To mimesis the anatomic research by contrasted enhancement and 3D reconstruction CT examination of lumbar intertransverse area and approach its value. Then discuss the feature of anatomy and blood supply and the clinical significance of this area, and preliminary assessment the feasibility of ILIF.
     2.To observe the anatomic structure by necroscopy, and to simulate operative procedure of ILIF with transpedicle screw fixation and evaluate its feasibility and safety.
     3. To assess the relative stability and kinematics of the lumbar segmental stiffness among intertransverse lumbar interbody fusion(ILIF) with or without transpedicular screw rod fixation and transforaminar lumbar interbody fusion(TLIF) with or without transpedicular.
     4. To assess the safety of ILIF and compare to TLIF through animal experiment, and to identify the feasibility of ILIF with transpedicle screw fixation.
     5. To observe the fusion condition of operation segment and evaluate the contribution of ILIF with transpedicle screw fixation.
     Method
     1.Contrasted enhancement and 3D reconstruction CT examination was performed in 20 volunteers on the lumbar segment L3-S1, then the statistical analysis and evaluation was made by measuring the length of transverse process, the distance of upper and lower transverse process, the height of extraforminal intervertebral space, the oblique diameter of intervertebral space, the blood vessels’internal diameter and observing the distribution of the blood vessels in the intertransverse area.
     2. Six cadavers were prepared for necroscopy, operative procedure of ILIF were simulated on L3-S1, and all related important anatomic structure and their relationship were observed and record. ILIF with transpedicle screw fixation were also performed with cage insertion.
     3. Twelve fresh frozen bovine lumbar functional spinal units(FSU) were prepared for biomechanical testing. According to the different treatment order, the specimens were devided into 7 groups, which included: 1)intact specimens(CG), 2)specimens were treated by left unilateral facetectomy and had homolateral anatomical threaded cages inserted(TLIF), 3) TLIF with homolateral pedicle screw fixation(TLIF+HPSF), 4) TLIF with bilateral pedicle screw fixation(TLIF+BPSF), 5) specimens had anatomical threaded cages inserted on the left by intertransverse process approach(ILIF), 6) ILIF with homolateral pedicle screw fixation (ILIF+HPSF), 7) ILIF with bilateral pedicle screw fixation (ILIF+BPSF). Data were record about load-strain, load-displacement, axial rigidity , twist angle, twist displacement and twist rigidity.
     4.twenty-four adult sheep were prepared for animal experiment. They were devided into 4 groups randomly, which included: ILIF group, TLIF group, ILIF with transpedicle screw fixation group, TLIF with transpedicle screw fixation group. Operation time, bleeding were record in the operations and complications such as infection and paralysis were record after operations.
     5.All the sheep were executed 12 weeks after operation. The operation segment should be cut integratedly for slicing without decalcification and toluidine blue dyeing for histology study. Using microscope to observe the fusion condition of each group.
     Result
     1. The order of the length of transverse process is L3>L5>L4, the order of the distance of upper and lower transverse process and the height of extraforminal interbertebral space is L3/4>L4/5>L5/S1, the oblique diameter for interbertebral space had no significant difference between three segments. The distance of upper and lower transverse process is bigger than the height of extraforminal interbertebral space in the same segment in L3/4 and L4/5, but in segment L5/S1 there isn’t significant difference. All the blood supply is come from the lumbar arteries, which can be divided into two kinds---main branch with small branches and main branch bifurcated. The former is mainly in segment L3/4(87.5%), while the latter is mainly in L4/5(92.5%). The perforating branches(80%) mainly go through the medial side of the intertransverse area, and most descending branches(96) step over the lateroposterior intervertebral space. The order of the blood vessels’inner diameter is L4/5>L3/4, and there is no significatant difference between two sides, and the biggest inner diameter of the main vessels averaged 5.3±0.6mm.
     2.. After bilateral posterior skin incisions approximately 10 cm lateral to the midline and separating of multifidus and longissimus muscles, we could observed the intertransverse area. The root could be retracted gently in L3-4 and L4-5, exposing the underlying intervertebral disc. There are enough space to implant the cage. And with this incision, transpedicle screws could be insert conveniently. The intertransverse area was too narrow to perform ILIF on L5-S1.
     3. ILIF group was more stable than TLIF group in all tests, and the most obvious disparity of 72% was in twist angle. While ILIF+BPSF group was the most stable group, which outweigh IS group 53% at most in flexion load-strain. And group6 and group7 had no significantly difference in all indicators(p>0.05).
     4. The animal experiments showed that the operation time of ILIF was short than TLIF, and complications after operation, especially intraspinal, were happened mostly in TLIF groups. transpedicle screw fixation would increase operation time about 20.6min, while had same conditions of bleeding and complications to no-fixation group.
     5. The fusion condition of ILIF was better than TLIF, and the best was the ILIF with transpedicle screw fixation group. There was significant different between ILIF and the latter.
     Conclusions
     1. To begin with, Contrasted enhancement and 3D reconstruction CT examination have good value for anatomy of bony structures and arteries in lumbar spine. In addition, the blood supply is adequate in the intertransverse area, and the distribution of blood vessels follows some regularities, so to be familiar with the anatomy and to operate carefully can reduce bleeding. At last, ILIF in segment L3-4 and L4-5 is feasible.
     2. There are enough operation space for ILIF in L3-4 and L4-5 with the root being retracted gently. And it is feasible to insert a couple transpedicle screws homolaterally. The intertransverse area was too narrow to perform ILIF on L5-S1.
     3. ILIF provide greater biomechanical stability than TLIF. while there was no significantly different stability between ILIF with homolateral or bilateral pedicle screw fixation. Adequate postoperative stability can be achieved by intertransverse lumbar interbody fusion with homolateral pedicle screw fixation.
     4. ILIF with transpedicle screws fixation homolaterally was a safe, convenient and effective operation, and less intraspinal complications were occurred of ILIF than TLIF.
     5. The fusion condition was satisfaction in ILIF group, which was better than TLIF group. Combined homolateral pedicle screw fixation can facilitate fusion significantly.
引文
1. Rosenberg WS, Mummaneni PV. Transforaminal lumbar interbody fusion: technique, complications, and early results. Neurosurgery, 2001, 48(3):569-575.
    2. Phillips FM, Cunningham B. Intertransverse lumbar interbody fusion. Spine, 2002, 27(2):E37-41.
    3. Boden SD. Overview of the biology of lumber spine fusion and principles for selecting a bone graft substitute. Spine, 2002, 27(2):S26-31.
    4.郭昭庆,陈仲强,党耕町,等。椎间孔及椎间孔外腰椎间盘突出症的手术治疗。中华骨科杂志,1999,19(6):332-335。
    5.孙凤翔,张文祥,季祝永,等。极外侧腰椎间盘突出症发病机理及诊治探讨。中国矫形外科杂志,2003,11(7):494。
    6. Epstein NE. Evaluation of varied surgical approaches used in the management of 170 far lateral lumbar disc herniations: indications and results. J Neurosurg, 1995, 83:648-656.
    7. Hodges SD, Humphreys SC, Eck JC, et al. The srugical treatment of far lateral L3-L4 and L4-L5 disc herniations: a modified technique and outcomes analysis of 25 patients. Spine, 1999, 24:1245-1246.
    8. Epstein NE. Different surgical approaches to far lateral lumbar disc herniations. J Spinal Disord, 1995, 8:383-394.
    9.方国华。极外型腰椎间盘突出症手术入路。中国脊柱脊髓杂志,2000,10:368-359。
    10.周跃,王建,张峡,等。内窥镜下经横突间入路治疗椎间孔外型腰椎间盘突出症。中国脊柱脊髓杂志,2004,14(2):86-89。
    11.金大地,瞿东滨。腰椎间盘微创手术。中国脊柱脊髓杂志,2002,12(1):58-59。
    12. Harms JG, Jeszenszky D. the unilateral transforaminal approach for posteriolumbar interbody fusion. Orthop Traumatol,1998,6(1):88-99.
    13. Lowe TG, Tahernia AD, Brien MF, et al. unilateral transforaminal approach for posteriolumber interbody fusion. J Spinal Disord Tech, 2002, 15(1):21-28.
    14. Rosenberg WS, Mummaneni PV. Transforaminal approach for posteriolumbar interbody fusion: technique, complication, and early results. Neurosurg, 2001, 48(3):569-574.
    15.王亮,罗卓荆,罗莉静等。幼犬胸腰椎形态与椎弓根螺钉置入相关数据的CT测量研究。中国临床解剖学杂志。2008,26(6):642-646.
    16.朱继兰,何树岗,韩金花等。国人成人腰椎管的CT测量。中国临床医学影像杂志。2008,19(5):350-352。
    17.边卫国,党晓谦,汤少杰等。计算机辅助下腰椎CT图像自动化测量及其临床价值。中国脊柱脊髓杂志。2007,17(10):749-752。
    18.陈红,刘斌,赵红等。64层螺旋CT在不同心率情况下对不同直径冠状动脉测量准确性的评价。中国医学影像技术。2008,24(8):848-851。
    19.谢晓勇,丁自海。椎板侧方入路治疗极外侧腰椎间盘突出症的解剖及临床应用[J]。中国矫形外科杂志。2006,14(21):1651-1653。
    1. Phillips FM, Cunningham B. Intertransverse lumbar interbody fusion. Spine, 2002, 27(2):E37-41.
    2. Ozgur BM, Aryan HE, Pimenta L, et al. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. The spine journal. 2006, 6(4):435-443.
    3. Beglaibter N, Zamir O, Milgrum M, et al. Laparoscopic anterior lumbar interbody spinal fusion. Harefuah. 2003, 142(5):326-8.
    4. Deutsch H, Musacchio MJ Jr.Minimally invasive transforaminal lumbar interbody fusion with unilateral pediclescrew fixation[J].Neurosurg Focus,2006,20(3):10.
    5. Scheufler KM, Dohmen H,Vougioukas VI.Percutaneous transforaminal lumbar interbody fusion for the treatment of degenerative lumbar instability. Neurosurgery,2007,60(4 Suppl 2):203.
    6.周跃,王建,张峡,等。内窥镜下经横突间入路治疗椎间孔外型腰椎间盘突出症[J]。中国脊柱脊髓杂志,2004,14(2):86-89。
    7. Foley KT,Gupta SK.Percutaneous pedicle screw fixationof the lumbar spine:preliminary clinical results.J Neurosurg, 2002, 97(Suppl 1):7-12.
    1.王炤,赵杰,王以近等。单枚腰椎间融合器附加椎弓根螺钉行后路腰椎椎体间融合术的生物力学评价。第二军医大学学报。2004,25(4):433-425.
    2. Swartz DE , Wittenberg RH , Shea M, et al . Physical and mechanical properties of calf lumbarsacraltrabecular bone [J ] . J Biomech ,1991 , 24 : 1059– 1068。
    3. Chutkan NB, Zhou H, Akins JP, et al. Effects of facetectomy and crosslink augmentation on motion segment flexibility in posterior lumbar interbody fusion. Spine. 2008, 33(22):E828-835.
    4. Lebwohl NH, Cunningham BW, Dmitriev A, et al. Biomechanical comparCGon of lumbosacral fixation techniques in a calf spine model. Spine. 2002, 27(21):2312-2320.
    5. Wilke H n J , KrCGchak S , Claes L. Biomechanical compression of calf and human spines[J ] . J Orthop Res , 1996 , 14 : 500– 503.
    6.王新伟,陈德玉,鲍达等。小牛胸腰椎解剖、生物力学研究及其临床意义。脊柱外科杂志。2003,1(4):223-225.
    7. (4)唐运章,丁义良,刘梅.单节段腰椎后部结构逐级切除对脊柱三维运动稳定性的影响.中华实验外科杂志,2005,22:845-846.
    8. Abumi K, Panjabi MM, Kramer KM, et al. Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine, 1990, 15:1142-1147.
    9.董凡,戴剋戎,侯筱魁。小关节在腰椎结构刚度中的作用[J]。中华外科杂志,1993, 13(7):417-420.
    10.周跃,王建,张峡等.内窥镜下经横突间入路治疗椎间孔外型腰椎间盘突出症.中国脊柱脊髓杂志,2004,14:86
    11. Mummaneni, Praveen VMD, Rodts, et al. The mini-open transforaminal lumbar interbody fusion[J]. Neurosurgery, 2005, 57: 256-261
    12. Dickerman RD, Reynolds AS, Tackett J, et al. Percutaneous pedicle screws significantly decrease muscle damage and operative time: surgical technique makes a difference. Eur Spine J. 2008, 17(10):1398-1400.
    13. Pechlivanis I, Kiriyanthan G, Engelhardt M, et al. Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine. 2009, 34(4):392-398.
    1. Yan DL, Pei FX, Li J, et al. Comparative study of PILF and TLIF treatment in adult degenerative spondylolisthesis. Eur Spine J. 2008, 17(10):1311-6.
    2. el-Masry MA, Khayal H, Salah H. Unilateral transforaminal lumbar interbody fusion (TLIF) using a single cage for treatment of low grade lytic spondylolisthesis. Acta Orthop Belg. 2008, 74(5):667-71.
    3. Acosta FL Jr, Dowd CF, Chin C, et al. Current treatment strategies and outcomes in the management of symptomatic vertebral hemangiomas. Neurosurgery. 2006, 58(2):287-95.
    4. Blattert TR, Delling G, Dalal PS, et al. Successful transpedicular lumbar interbody fusion by means of a composite of osteogenic protein-1 (rhBMP-7) and hydroxyapatite carrier: a comparison with autograft and hydroxyapatite in the sheep spine. Spine. 2002, 27(23):2697-2705.
    5. Blattert TR, Delling G, Weckbach A. Evaluation of an injectable calcium phosphate cement as an autograft substitute for transpedicular lumbar interbody fusion: a controlled, prospective study in thesheep model. Eur Spine J. 2003, 12(2):216-23.
    6. Manunta ML, Careddu GM, Masala G, et al. Lumbar interbody expanding cage. A preliminary study on an animal model. Vet comp orthop traumatol. 2008; 21(4):382-384.
    7. Ito M, Kotani Y, Hojo Y, et al. Evaluation of hydroxyapatite ceramic vertebral spacers with different porosities and their binding capability to the vertebral body: an experimental study in sheep. J Neruosurg Spine. 2007; 6(5):431-437.
    8. Lazennec JY, Madi A, Rousseau MA, et al. Evaluation of the 96/4 PLDLLA polymer resorbable lumbar interbody cage in a long term animal model. Eur Spine J. 2006; 15(10):1545-1553.
    9. Sandhu. Distractive properties of a threaded interbody fusion device. Spine, 1996, 21:1201-1210.
    10.贾桂林,黄焯民,韩世发等。速眠新复合麻醉对动物应用的实验研究。武警医学院学报,2003,12(4):258-260.
    1. Kandziora F, Schollmeier G, Scholz M, et al. Influence of cage design on interbody fusion in a sheep cervical spine model. J Neurosurg (Spine 3) 2002,96:321-332.
    2. Boden SD, Schimandle JH, Hutton WC. An experimental lumbar intertransverse process spinal fusion model. Spine 1995;20:412-20.
    3. Burwell RG. The function of bone marrow in the incorporation of a bone graft. Clin Orthop1985;200:125-4.
    4. Kirkeby OJ. Revascularization of bone grafts in rats. J Bone Joint Surg [Br] 1991;73:501-5.
    5. Martin G,Borden SD,Morone MA,et al.New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 1999,24;637-45.
    6. Silcox DH, Daftari T,Boden SD,et al.The effect of nicotine on spinal fusion. Spine 1995;20:1549-53.
    7. Martin G,Borden SD,Titus L . Recombinant human bone morphogenetic protein-2 reverses the inhibitory effect of ketorolac,a nonsteroidal anti-inflammatory drug (NSAID)on posterolateral.
    8. Rapoff AJ , Ghanayem AJ , Zdeblick TA. Biomechanical comparison of posterior lumbar intetbody fusion cage. Spine , 1997 , 22 : 2375.
    9.董凡,戴剋戎,侯筱魁。小关节在腰椎结构刚度中的作用[J]。中华外科杂志,1993, 13(7):417-420。
    1. Capener N. Spondylolisthesis [J]. Br J Surg, 1932, 19:374-376.
    2. Wolfla CE, Maiman DJ, Coufal FJ, et al. Retroperitoneal lateral lumbar interbody fusion with titanium threaded fusion cages. J Neurosurg Spine, 2002, 96(1):50-55.
    3. Obenchain TG, Cloyd D. Outpatient laparoscopic lumbar diskectomy: description of technique and review of first 21 cases. Surgical Technology International, 1994, 2:415-418.
    4. Obenchain TG. Laparoscopic lumbar diskectomy: case report. J Laparoendosc Surg, 1991, 1:145-149.
    5. Zhao jie, Hai Y, Ordway NR, et al. Posterior lumbar interbody fusion using posterolateral placementof a single cylindrical threaded cage[J]. Spine, 2000, 25(4):425-430.
    6. Couture DE, Branch CL. Posteriro lumbar interbody fusion with bioabsobable spacers and local autograft in a series of 27 patients. Neurosrug Focus, 2004, 16(3):E8.
    7. Harms J, Rolinger H. A one-stager procedure in operative treatment of spondylolistheses: dorsal traction-reposition and anterior fusion. Z Orthop Ihre Grenzgeb, 1982, 120(3):342-347.
    8. Ozgur BM, Yoo K, Rodriguez G, et al. Minimally-invasive technique for transforaminal lumbar interbody fusion (TLIF). Eur Spine J, 2005, [Epub ahead of print].
    9. Phillips FM, Cunningham B. Intertransverse lumbar interbody fusion. Spine, 2002, 27(2):E37-41.
    10. Wang JC, Mummaneni PV, Haid RW. Current treatment strategies for the painful lumbar motion segment: posterolateral fusion versus interbody fusion. Spine, 2005, 30(16S):S33-43.
    11. Zdeblick TA, David SM. A prospective comparison of surgical approach for anterior L4-L5 fusion[J]. Spine, 2000, 25(20):2682-2687.
    12. Ray CD. Threaded fusion cages for lumbar interbody fusions: An economic comparison with 360 degrees fusions[J]. Spine, 1997, 22(6):681-685.
    13. Rosenberg WS, Mummaneni PV. Transforaminal lumbar interbody fusion: technique, complications, and early results. Neurosurgery, 2001, 48(3):569-575.
    14. Humphreys SC, Hodges SD, Patwardhan AG, et al. Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine, 2001, 26(5):567-571.
    15. Kim SM, Lim TJ, Paterno J, et al. Biomechanical comparison: stability of lateral-approach anterior lumbar interbody fusion and lateral fixation compared with anterior-approach anterior lumbar interbody fusion and posterior fixation in the lower lumbar spine. J Neurosurg Spine, 2005, 2(1):62-68.
    16. Phillips, FM, Cunningham, B, Carandang G, et al. Effect of supplemental translaminar facet screw fixation on the stability of stand-alone anterior lumbar interbody fusion cages under physiologic compressive preloads. Spine, 2004, 29(16):1731-1736.
    17. Kim SM, Lim TJ, Paterno J, et al. A biomechanical comparison of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion. J Neurosurg Spine, 2004, 1(1): 101-107.
    18. Kai, Y, Oyama, M, Morooka M. Posterior lumbar interbody fusion using local facet joint autograft and pedicle screw fixation. Spine, 2004, 29(1): 41-46.
    19. Harris BM, Hilibrand AS, Savas PE, et al. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Spine, 2004, 29(4):E65-70.
    20. Rivet DJ, Jeck D, Brennan J, et al. Clinical outcomes and complications associated with pedicle screw fixation-augmented lumbar interbody fusion. J Neurosurg Spine, 2004, 1(3):261-266.
    21. Toth JM, Wang M, Estes BT, et al. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials, 2006, 27(3):324-334.
    22. van Dijk M, Smit TH, Sugihara S, et al. The Effect of Cage Stiffness on the Rate of Lumbar Interbody Fusion: An In Vivo Model Using Poly(L-Lactic Acid) and Titanium Cages. Spine, 2002, 27(7):682-688.
    23. Haid RW, Branch CL, Alexander JT, et al. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J, 2004, 4(5):527-539.
    24. 2. Ozgur BM, Aryan HE, Pimenta L, et al. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. The spine journal. 2006, 6(4):435-443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700