用户名: 密码: 验证码:
金属包装材料的腐蚀失效过程和腐蚀检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属包装材料其缺点之一就是容易发生腐蚀,其腐蚀机制尚未探明,而金属包装实罐产品的腐蚀检测也存在困难。本文针对金属包装材料镀锡薄钢板在功能饮料和氯化钠溶液中的腐蚀实效过程与机制以及金属包装实罐的腐蚀检测而开展的。
     采用电化学阻抗谱技术,结合扫描电镜(SEM)、能量散射X射线谱(EDS)、X射线光电子能谱(XPS)、扫描探针显微镜(SPM)等表面分析技术,研究了镀锡薄钢板平板试样在功能饮料和氯化钠溶液中的腐蚀行为并探讨了腐蚀机制。结果表明,两者腐蚀机制完全不同。在功能饮料中主要是有机酸对镀锡薄钢板的腐蚀,镀锡薄钢板在功能饮料中浸泡24天后其表面的腐蚀产物膜由外层的富锡层和内层的富铁层组成,XPS结果表明其成分主要是Sn(II)/Sn(IV)与柠檬酸阴离子及Fe(III)与柠檬酸阴离子组成的化合物;而在氯化钠溶液中主要是对镀锡层缺陷处暴露的基底金属碳钢的腐蚀,其腐蚀产物主要是γ-FeOOH。
     根据涂覆镀锡薄钢板在氯化钠溶液和功能饮料中的EIS特征和EN特征,利用低频阻抗模值和噪声电阻值评价了涂覆镀锡薄钢板的耐蚀性能,并探讨了涂覆镀锡薄钢板在氯化钠溶液和功能饮料中的腐蚀机制。结果表明,其腐蚀过程主要分为涂层的润湿和涂层下金属的腐蚀两个阶段,而润湿过程通常只有几天。
     发展了快速评价涂层失效程度的方法,提出了利用电化学阻抗谱(EIS)中Bode图中频区(1—100Hz)阻抗模值的变化率为切入点,提取特征参数p作为表征涂层失效程度的参数。实验结果表明该方法可以用来快速评价有机涂层的失效程度而无需建立等效电路模型。
     研制了适用于饮料金属包装实罐腐蚀检测的电化学传感器,并对不同实罐进行了EIS和电化学噪声(EN)检测。采用电感耦合离子质谱仪(ICP-MS)技术检测实罐容器中的金属离子含量,结果表明随着服役期的延长,饮料实罐中的金属离子Fe和Sn的含量增加,而EIS和EN结果表明随着服役期的延长,涂层电阻、电荷转移电阻、噪声电阻则不断减小,表明腐蚀引发了离子的溢出,ICP-MS结果与电化学参数具有直接的关联性。研究结果表明,研制的传感器可以用于实罐耐蚀性能检测,并为评估金属包装产品的货架寿命提供科学依据。
     将混沌分析引入了电化学噪声的数据分析之中,并针对304不锈钢、316L不锈钢、涂覆镀锡薄钢板腐蚀过程的电化学电位噪声进行了初步分析。结果表明:利用电位噪声的关联维数可以判断腐蚀类型,局部腐蚀对应的关联维数较大而钝化过程对应的关联维数较小。
One disadvantage of metal packaging materials is that it is more likely to becorroded, but its corrosion mechanism and corrosion detection of metal cans stilltroubled the researchers. This paper focus on the deterioration process and corrosionmechanism of tinplate in functional drink and NaCl solution, the corroson detection ofbeverage cans.
     The corrosion process of a tinplate in functional beverage and NaCl solution wasinvestigated using electrochemical impedance spectroscope (EIS), scanning electronmicroscopy (SEM), energy dispersive X-ray spectroscopy (EDS), scanning probemicroscopy (SPM), and X-ray photoelectron spectroscopy (XPS), and a corrosionmechanism is proposed. The results show that the corrosion mechanism under twoconditons are different. We propose that the tinplate is mainly corroded by the organicacids that exist in functional beverages. X-ray photoelectron spectroscopy (XPS)results show that the corrosion product is mainly composed of a Sn(II)/Sn(IV) citratecomplex or an Fe(III) citrate complex. Furthermore, the corrosion product film is firstenriched with Sn and then enriched with Fe after immersion in functional beverage for24d. The corrosion of tinplate in0.5mol/L NaCl solution was mainly the dissolutionof carbon steel substrate because of the defects in the tin layer and the corrosionproduct was mainly γ-FeOOH.
     The anti-corrosion performance of lacquered-tinplate were evaluated usingimpedance modulus at low frequency and noise resistance, obtained from EIS and ENdata, respectively. Furthermore, the corrosion mechanism of lacquered-tinplate inenergy drink and NaCl solution was discussed. The results showed that the corrosionprocess could be divided into2stages: wetting of the organic coating and thecorrosion of the tinplate beneath the coating, and the wetting process was only acouple of days.
     The degradation coefficient is proposed to evaluate the degradation degree oforganic coatings by directly analyzing the Bode plots of the electrochemicalimpedance spectroscopy (EIS) data (1—100Hz). We investigated the degradation ofphenolic epoxy coating/tinplate system by EIS and the degradation coefficient value,which correlates well with the results of breakpoint frequency and variation of phase angle at10Hz. It is concluded that degradation coefficient can be used for the fastevaluation of degradation degree of organic coatings without constructingelectrochemical equivalent circuits in practical applications.
     An electrochemical sensor was designed to detect the corrosion degree of metalcans for beverage packaging, and the effective testing area of the sensor wasdetermined. Electrochemical impedance spectroscopy (EIS) and electrochemical noise(EN) were performed to detect the corrosion degree of beverage cans. ICP-MS resultsshowed that tin and iron release increased with storage time while EIS and EN resultsshowed that coating resistance, charge transfer resistance and noise resistancedecreased with the increase in storage time, thus indicating that the corrosion beneaththe organic coating induced a metal release. A clear and direct relationship wasobtained between ICP-MS and electrochemical data. The designed electrochemicalsensor was successfully applied to detect the performance of beverage cans andfurther provided scientific proof to evaluate the shelf life of metal cans for packaging.
     Chaos theory and the use of phase space reconstruction produce a novelmethodology to study electrochemical noise (EN) signals, obtaining novelinformation to distinguish corrosion types. To evaluate the chaotic nature ofelectrochemical noise, phase space is reconstructed and the embedding parameter isobtained by the mutual information and Cao's methods. Subsequently, the correlationdimension is calculated. From the correlation dimension, we can conclude that localcorrosion shows a higher correlation dimension while passivation shows a lowercorrelation dimension.
引文
[1]Barilli F. Study on the adhesion of different types of lacquers used in foodpackaging. Progress in Organic Coatings,2003,46(2):91-96.
    [2]Blunden S., Wallace T. Tin in canned food: a review and understanding ofoccurrence and effect. Food and Chemical Toxicology,2003,41(12):1651-1662.
    [3]Boelen B. Product performance of polymer coated packaging steel, study of themechanism of defect growth in cans. Progress in Organic Coatings,2004,50(1):40-46.
    [4]Kontominas M., Prodromidis M., Paleologos E., Badeka A., Georgantelis D.Investigation of fish product–metal container interaction using scanning electronmicroscopy–X-ray microanalysis. Food Chemistry,2006,98(2):225-230.
    [5]Zhang X., Boelen B., Beentjes P., Mol J. M. C., Terryn H., de Wit J. H. W.Influence of uniaxial deformation on the corrosion performance of pre-coatedpackaging steel. Progress in Organic Coatings,2007,60(4):335-342.
    [6]Bastos A. Effect of uniaxial strain on the protective properties of coil-coatings.Progress in Organic Coatings,2003,46(3):220-227.
    [7]Veríssimo Marta I. S., Gomes M. Teresa S. R. Aluminium migration intobeverages: Are dented cans safe? Science of The Total Environment,2008,405(1-3):385-388.
    [8]Montanari Angela, Pezzani A., Cassarà A., Quaranta A., Lupi R. Quality oforganic coatings for food cans: evaluation techniques and prospects ofimprovement. Progress in Organic Coatings,1996,29(1–4):159-165.
    [9]Vela M. M., Toma R. B., Reiboldt W., Pierri A. Detection of aluminum residue infresh and stored canned beer. Food Chemistry,1998,63(2):235-239.
    [10]杨文亮,辛巧娟,金属包装容器-金属罐制造技术,北京:印刷工业出版社,2009.58-62.
    [11]Abrantes J., Ferreira A., Horovistiz A., Frade J. Interpretation of impedancespectra based on local minima of imaginary Z vs frequency. Electrochimica Acta,2008,53(28):8222-8227.
    [12]Gao Zhiming, Song Shizhe, Xu Yunhai. Electrochemical impedance spectroscopyanalysis of coating deterioration process with Kohonen neural networks. Journalof Chinese Society for Corrosion and Protection,2005,25(2):106-109.
    [13]Mansfeld F., Han L. T., Lee C. C., Zhang G. Evaluation of corrosion protectionby polymer coatings using electrochemical impedance spectroscopy and noiseanalysis. Electrochimica Acta,1998,43(19-20):2933-2945.
    [14]Conde A., de Damborenea J. J. Electrochemical impedance spectroscopy forstudying the degradation of enamel coatings. Corrosion Science,2002,44(7):1555-1567.
    [15]Duval S., Keddam M., Sfaira M., Srhiri A., Takenouti H. Electrochemicalimpedance spectroscopy of epoxy-vinyl coating in aqueous medium analyzed bydipolar relaxation of polymer. Journal of the Electrochemical Society,2002,149(11): B520-B529.
    [16]Yao Z. P., Jiang Z. H., Xin S. G., Sun X. T., Wu X. H. Electrochemicalimpedance spectroscopy of ceramic coatings on Ti-6Al-4V by micro-plasmaoxidation. Electrochimica Acta,2005,50(16-17):3273-3279.
    [17]Zheludkevich M. L., Yasakau K. A., Bastos A. C., Karavai O., Ferreira M. G. S.On the application of electrochemical impedance spectroscopy to study theself-healing properties of protective coatings. Electrochemistry Communications,2007,9(10):2622-2628.
    [18]Amami S., Lemaitre C., Laksimi A., Benmedakhene S. Characterization byacoustic emission and electrochemical impedance spectroscopy of the cathodicdisbonding of Zn coating. Corrosion Science,2010,52(5):1705-1710.
    [19]Shreepathi S., Bajaj P., Mallik B. P. Electrochemical impedance spectroscopyinvestigations of epoxy zinc rich coatings: Role of Zn content on corrosionprotection mechanism. Electrochimica Acta,2010,55(18):5129-5134.
    [20]Catala R., Cabanes J. M., Bastidas J. M. An impedance study on the corrosionproperties of lacquered tinplate cans in contact with tuna and mussels in pickledsauce. Corrosion Science,1998,40(9):1455-1467.
    [21]Isao Sekine, Kazuhiko Sakaguch, Makoto Yuasa. Estimation and prediction ofdegradation of coating films by frequency at maximum phase angle. Journal ofCoatings Technology and Research,1992,64:45-49.
    [22]Zuo Y., Pang R., Li W., Xiong J., Tang Y. The evaluation of coating performanceby the variations of phase angles in middle and high frequency domains of EIS.Corrosion Science,2008,50(12):3322-3328.
    [23]Mahdavian M., Attar M. Another approach in analysis of paint coatings with EISmeasurement: Phase angle at high frequencies. Corrosion Science,2006,48(12):4152-4157.
    [24]Touzain Sébastien. Some comments on the use of the EIS phase angle to evaluateorganic coating degradation. Electrochimica Acta,2010,55(21):6190-6194.
    [25]Bovard F. S., Burleight T. D., Smiths A. T. Electrochemial impedancespectroscopy of elecreocoated aluminium food cans. Electrochimica Acta,1995,40(2):201-207.
    [26]Pournaras A., Prodromidis M., Katsoulidis A., Badeka A., Georgantelis D.,Kontominas M. Evaluation of lacquered tinplated cans containing octopus inbrine by employing X-ray microanalysis and electrochemical impedancespectroscopy. Journal of Food Engineering,2008,86(3):460-464.
    [27]Bastidas J.M., Cabaiiesb J.M., Catalib R. Evaluation of prolonged exposure oflacquered tinplate cans to a citrate buffer solution using electrochemicaltechniques. Progress in Organic Coatings,1997,30.
    [28]张鉴清,电化学测试技术,北京:化学工业出版社,2010.83-86.
    [29]Macak J., Sajdl P., Kucera P., Novotny R., Vosta J. In situ electrochemicalimpedance and noise measurements of corroding stainless steel in hightemperature water. Electrochimica Acta,2006,51(17):3566-3577.
    [30]Arganisjuarez C., Malo J., Uruchurtu J. Electrochemical noise measurements ofstainless steel in high temperature water. Nuclear Engineering and Design,2007,237(24):2283-2291.
    [31]Kim Jong Jip. Wavelet analysis of potentiostatic electrochemical noise. MaterialsLetters,2007,61(18):4000-4002.
    [32]Kovac J., Leban M., Legat A. Detection of SCC on prestressing steel wire by thesimultaneous use of electrochemical noise and acoustic emission measurements.Electrochimica Acta,2007,52(27):7607-7616.
    [33]Shi Z., Song G., Cao C., Lin H., Lu M. Electrochemical potential noise of321stainless steel stressed under constant strain rate testing conditions.Electrochimica Acta,2007,52(5):2123-2133.
    [34]Zaveri N., Sun R., Zufelt N., Zhou A., Chen Y. Evaluation of microbiallyinfluenced corrosion with electrochemical noise analysis and signal processing.Electrochimica Acta,2007,52(19):5795-5807.
    [35]Liu L., Li Y., Wang F. Pitting mechanism on an austenite stainless steelnanocrystalline coating investigated by electrochemical noise and in-situ AFManalysis. Electrochimica Acta,2008,54(2):768-780.
    [36]Planinsic P., Petek A. Characterization of corrosion processes by current noisewavelet-based fractal and correlation analysis. Electrochimica Acta,2008,53(16):5206-5214.
    [37]Kim S., Kim H. Electrochemical noise analysis of PbSCC of Alloy600SG tubein caustic environments at high temperature. Corrosion Science,2009,51(1):191-196.
    [38]Klapper H., Goellner J. Electrochemical noise from oxygen reduction on stainlesssteel surfaces. Corrosion Science,2009,51(1):144-150.
    [39]Li Yan, Hu Ronggang, Wang Jingrun, Huang Yongxia, Lin Chang-Jian.Corrosion initiation of stainless steel in HCl solution studied usingelectrochemical noise and in-situ atomic force microscope. Electrochimica Acta,2009,54(27):7134-7140.
    [40]Liu X. F., Zhan J., Liu Q. J. The influence of tensile stress on electrochemicalnoise from aluminum alloy in chloride media. Corrosion Science,2009,51(6):1460-1466.
    [41]Mabbutt S., Simms N., Oakey J. High temperature corrosion monitoring byelectrochemical noise techniques. Corrosion Engineering Science andTechnology,2009,44(3):186-195.
    [42]Naderi R., Attar M. M. Application of the electrochemical noise method toevaluate the effectiveness of modification of zinc phosphate anticorrosionpigment. Corrosion Science,2009,51(8):1671-1674.
    [43]Sanchez-Amaya J. M., Bethencourt M., Gonzalez-Rovira L., Botana F. J.Measurement of electrochemical noise for the study of corrosion processes ofmetallic alloys. Revista De Metalurgia,2009,45(2):143-156.
    [44]Smith M. T., Macdonald D. D. Wavelet Analysis of Electrochemical Noise Data.Corrosion,2009,65(7):438-448.
    [45]Zhan J., Liu X. F., Zhang Q., Liu Q. J., Long F. Chaos Analysis of The Influenceof Tensile Stress on Electrochemical Noise.2009International Conference onIndustrial Mechatronics and Automation,2009:418-421.
    [46]Allahar K. N., Su Q., Bierwagen G. P. Electrochemical Noise Monitoring of theCathodic Protection of Mg-Rich Primers. Corrosion,2010,66(8):48-52.
    [47]Huang J. Y., Qiu Y. B., Guo X. P. Comparison of polynomial fitting and wavelettransform to remove drift in electrochemical noise analysis. CorrosionEngineering Science and Technology,2010,45(4):288-294.
    [48]Iannuzzi M., Mendez C., Avila-Gray L., Maio G., Rincon H. Determination of theCritical Pitting Temperature of Martensitic and Supermartensitic Stainless Steelsin Simulated Sour Environments Using Electrochemical Noise Analysis.Corrosion,2010,66(4):1-8.
    [49]Klapper Helmuth Sarmiento, Goellner Joachim, Heyn Andreas. The influence ofthe cathodic process on the interpretation of electrochemical noise signals arisingfrom pitting corrosion of stainless steels. Corrosion Science,2010,52(4):1362-1372.
    [50]Kovac Jaka, Alaux Carole, Marrow T. James, Govekar Edvard, Legat Andraz.Correlations of electrochemical noise, acoustic emission and complementarymonitoring techniques during intergranular stress-corrosion cracking of austeniticstainless steel. Corrosion Science,2010,52(6):2015-2025.
    [51]Soltis J., Krouse D. P., Laycock N. J., Zavadil K. R. Automated processing ofelectrochemical current noise in the time domain: I. Simulated signal. CorrosionScience,2010,52(3):838-847.
    [52]Lafront Anne-Marie, Safizadeh Fariba, Ghali Edward, Houlachi Georges. Studyof the copper anode passivation by electrochemical noise analysis using spectraland wavelet transforms. Electrochimica Acta,2010,55(7):2505-2512.
    [53]Muniandy S. V., Chew W. X., Kan C. S. Multifractal modelling ofelectrochemical noise in corrosion of carbon steel. Corrosion Science,2010,53(1):188-200.
    [54]Du G., Li J., Wang W. K., Jiang C., Song S. Z. Detection and characterization ofstress-corrosion cracking on304stainless steel by electrochemical noise andacoustic emission techniques. Corrosion Science,2011,53(9):2918-2926.
    [55]Cottis R. A. The significance of electrochemical noise measurements onasymmetric electrodes. Electrochimica Acta,2007,52(27):7585-7589.
    [56]Huttunen-Saarivirta E., Tiainen T. Characterising the quality of chemical tincoatings on copper by electrochemical current noise method. Applied SurfaceScience,2002,191(1–4):106-117.
    [57]Aldrich C., Qi B., Botha P. Analysis of electrochemical noise data with phasespace methods. Minerals Engineering,2006,19(14):1402-1409.
    [58]Wharton J. A., Wood R. J. K., Mellor B. G. Wavelet analysis of electrochemicalnoise measurements during corrosion of austenitic and superduplex stainlesssteels in chloride media. Corrosion Science,2003,45(1):97-122.
    [59]Girija S., Mudali U., Raju V., Dayal R., Khatak H., Raj B. Determination ofcorrosion types for AISI type304L stainless steel using electrochemical noisemethod. Materials Science and Engineering: A,2005,407(1-2):188-195.
    [60]Zhou X. Y., Lvov S. N., Wei X. J., Benning L. G., Macdonald D. D. Quantitativeevaluation of general corrosion of Type304stainless steel in subcritical andsupercritical aqueous solutions via electrochemical noise analysis. CorrosionScience,2002,44(4):841-860.
    [61]Cao F., Zhang Z., Su J., Shi Y., Zhang J. Electrochemical noise analysis ofLY12-T3in EXCO solution by discrete wavelet transform technique.Electrochimica Acta,2006,51(7):1359-1364.
    [62]Park C., Kwon H. Electrochemical noise analysis of localized corrosion of duplexstainless steel aged at475°C. Materials Chemistry and Physics,2005,91(2-3):355-360.
    [63]Cuevasarteaga C., Porcayocalderon J. Electrochemical noise analysis in thefrequency domain and determination of corrosion rates for SS-304stainless steel.Materials Science and Engineering: A,2006,435-436:439-446.
    [64]Leban M. Detection and differentiation between cracking processes based onelectrochemical and mechanical measurements. Electrochimica Acta,2004,49(17-18):2795-2801.
    [65]Anita T., Pujar M., Shaikh H., Dayal R., Khatak H. Assessment of stresscorrosion crack initiation and propagation in AISI type316stainless steel byelectrochemical noise technique. Corrosion Science,2006,48(9):2689-2710.
    [66]Gomezduran M., Macdonald D. Stress corrosion cracking of sensitized Type304stainless steel in thiosulphate solution. II. Dynamics of fracture. CorrosionScience,2006,48(7):1608-1622.
    [67]Sanchez-Amaya J. M., Bethencourt M., Gonzalez-Rovira L., Botana F. J. Noiseresistance and shot noise parameters on the study of IGC of aluminiurn alloyswith different heat treatments. Electrochimica Acta,2007,52(23):6569-6583.
    [68]Girija S., Mudali U. K., Khatak H. S., Raj B. The application of electrochemicalnoise resistance to evaluate the corrosion resistance of AISI type304SS in nitricacid. Corrosion Science,2007,49(11):4051-4068.
    [69]Doherty M. Micro-cells beneath organic lacquers: a study using scanning Kelvinprobe and scanning acoustic microscopy. Corrosion Science,2004,46(5):1265-1289.
    [70]Frankel G. S., Stratmann M., Rohwerder M., Michalik A., Maier B., Dora J.,Wicinski M. Potential control under thin aqueous layers using a Kelvin Probe.Corrosion Science,2007,49(4):2021-2036.
    [71]Zhao R., Zhang Z., Shi J. B., Tao L., Song S. Z. Characterization of stresscorrosion crack growth of304stainless steel by electrochemical noise andscanning Kelvin probe. Journal of Central South University of Technology,2010,17(1):13-18.
    [72]Arutunow A., Darowicki K. DEIS assessment of AISI304stainless steeldissolution process in conditions of intergranular corrosion. Electrochimica Acta,2008,53(13):4387-4395.
    [73]Arutunow A., Darowicki K. DEIS evaluation of the relative effective surface areaof AISI304stainless steel dissolution process in conditions of intergranularcorrosion. Electrochimica Acta,2009,54(3):1034-1041.
    [74]Reddy B., Sykes J. Degradation of organic coatings in a corrosive environment: astudy by scanning Kelvin probe and scanning acoustic microscope. Progress inOrganic Coatings,2005,52(4):280-287.
    [75]Doherty M., Sykes J. A quantitative study of blister growth on lacquered foodcans by scanning acoustic microscopy. Corrosion Science,2008,50(10):2755-2772.
    [76]Catala R., Cabanes J. M., Bastidas J. M. Monitoring the corrosion of lacqueredtinplate sheets using a new electrochemical double cell. Jocca-Surface CoatingsInternational,1998,81(1):37-40.
    [77]Bastidas J. M., Cabanes J. M., Catala R. Corrosion behavior of lacquered tinplatecans in contact with cockles (Cardium edulis) in brine solution. Corrosion,2000,56(4):429-432.
    [78]Mora N., Cano E., Bastidas J. M., Almeida E., Puente J. M. Characterization ofpassivated tinplate for food can applications. Journal of Coatings Technology,2002,74(935):53-58.
    [79]Huang B. X., Tornatore P., Li Y. S. IR and Raman spectroelectrochemical studiesof corrosion films on tin. Electrochimica Acta,2000,46(5):671-679.
    [80]Joshi S. P., Toma R. B., Medora N., O'Connor K. Detection of aluminium residuein sauces packaged in aluminium pouches. Food Chemistry,2003,83(3):383-386.
    [81]Birkin Peter R., Nestoridi Maria, Pletcher Derek. Studies of the anodic dissolutionof aluminium alloys containing tin and gallium using imaging with a high-speedcamera. Electrochimica Acta,2009,54(26):6668-6673.
    [82]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层.腐蚀与防护,1998,19(3):99-104.
    [83]Zoltowski P. Non-traditional approach to measurement models for analysis ofimpedance spectra. Solid State Ionics,2005,176(25-28):1979-1986.
    [84]Floyd F. L., Avudaiappan S., Gibson J., Mehta B., Smith P., Provder T.,Escarsega J. Using electrochemical impedance spectroscopy to predict thecorrosion resistance of unexposed coated metal panels. Progress in OrganicCoatings,2009,66(1):8-34.
    [85]Shiro Haruyama, Shirohi Sudo. Electrochemical impedance for a large structurein soil. Electrochimica Acta,1993,38(14):1857–1865.
    [86]黄家怿,邱于兵,郭兴蓬.电化学噪声直流漂移的分段多项式拟合消除.中国腐蚀与防护学报,2009,29(1):9-14.
    [87]Shi Y., Zhang Z., Cao F., Zhang J. Dimensional analysis applied to pittingcorrosion measurements. Electrochimica Acta,2008,53(6):2688-2698.
    [88]Liu X., Wang H., Gu H. Fractal characteristic analysis of electrochemical noisewith wavelet transform. Corrosion Science,2006,48(6):1337-1367.
    [89]Huang X. Q., Li N., Wang H. Y., Sun H. X., Sun S. S., Zheng H.Electrodeposited cerium film as chromate replacement for tinplate. Thin SolidFilms,2008,516(6):1037-1043.
    [90]Tselesh A. S. Anodic behaviour of tin in citrate solutions: The IR and XPS studyon the composition of the passive layer. Thin Solid Films,2008,516(18):6253-6260.
    [91]Sasaki T., Kanagawa R., Ohtsuka T., Miura K. Corrosion products of tin in humidair containing sulfur dioxide and nitrogen dioxide at room temperature. CorrosionScience,2003,45(4):847-854.
    [92]Graat Peter C.J., Somers Marcel A.J. Simultaneous determination of compositionand thickness of thin iron-oxide films from XPS Fe2p spectra. Applied SurfaceScience,1996,100-101:36-40.
    [93]Guo J., Yang S. W., Shang C. J., Wang Y., He X. L. Influence of carbon contentand microstructure on corrosion behaviour of low alloy steels in a Cl-containingenvironment. Corrosion Science,2009,51(2):242-251.
    [94]Nam Nguyen Dang, Kim Min Jun, Jang Young Wook, Kim Jung Gu. Effect of tinon the corrosion behavior of low-alloy steel in an acid chloride solution.Corrosion Science,2010,52(1):14-20.
    [95]Donik C., Kocijan A., Grant J. T., Jenko M., Drenik A., Pihlar B. XPS study ofduplex stainless steel oxidized by oxygen atoms. Corrosion Science,2009,51(4):827-832.
    [96]Reddy B. Breakdown of organic coatings in corrosive environments examined byscanning kelvin probe and scanning acoustic microscopy. Electrochimica Acta,2004,49(17-18):2965-2972.
    [97]Ma Y. T., Li Y., Wang F. H. Corrosion of low carbon steel in atmosphericenvironments of different chloride content. Corrosion Science,2009,51(5):997-1006.
    [98]Xiao K., Dong C. F., Li X. G., Wang F. M. Corrosion Products and FormationMechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel.Journal of Iron and Steel Research International,2008,15(5):42-48.
    [99]George K. S., Nesic S. Investigation of carbon dioxide corrosion of mild steel inthe presence of acetic acid-Part1: Basic mechanisms. Corrosion,2007,63(2):178-186.
    [100]Perez F. R., Barrero C. A., Walker A. R. H., Garcia K. E., Nomura K. Effects ofchloride concentration, immersion time and steel composition on the spinel phaseformation. Materials Chemistry and Physics,2009,117(1):214-223.
    [101]El-Mahdy G. A., Nishikata A., Tsuru T. Electrochemical corrosion monitoringof galvanized steel under cyclic wet-dry conditions. Corrosion Science,2000,42(1):183-194.
    [102]Zhao X., Wang J., Wang Y. H., Kong T., Zhong L. A., Zhang W. Analysis ofdeterioration process of organic protective coating using EIS assisted by SOMnetwork. Electrochemistry Communications,2007,9(6):1394-1399.
    [103]Amirudin A., Thieny D. Application of electrochemical impedance spectroscopyto study the degradation of polymer-coated metals. Progress in Organic Coatings,1995,26(1):1-28.
    [104]Xia Dahai, Wang Jihui, Song Shizhe, Zhong Bo, Han Zhewen. The corrosionbehavior of lacquered tinplate in functional beverage. Advanced MaterialsResearch,2011,233-235:1747-1751.
    [105]Xia Dahai, Song Shizhe, Wang Jihui, Bi Huichao, Han Zhewen. Corrosionbehavior of tinplates in a functional beverage. Acta Physico-Chimica Sinica,2012,28(1):121-126.
    [106]Jafarian M., Gobal F., Danaee I., Biabani R., Mahjani M. G. Electrochemicalstudies of the pitting corrosion of tin in citric acid solution containing Cl-.Electrochimica Acta,2008,53(13):4528-4536.
    [107]Rehim S. S. A., Sayyah S. M., El Deeb M. M. Corrosion of tin in citric acidsolution and the effect of some inorganic anions. Materials Chemistry andPhysics,2003,80(3):696-703.
    [108]Patrick G. W. Internal corrosion of tinplate food containers. Anti-CorrosionMethods and Materials,1976,23(6):9-11.
    [109]E. Zumelzua, C. Cabezasb. Observations on the influence of microstructure onelectrolytic tinplate corrosion Materials Characterization,1995,34(2):143-148.
    [110]钟云霄,混沌与分形浅谈,北京:北京大学出版社,2010.8-11.
    [111]Cottis R. A., Turgoose S., Mendoza-Flores J., Electrochemical noisemeasurement for corrosion applications, ASTM Publication,1996.78-83.
    [112]Cottis R. A. Interpretation of electrochemical noise data. Corrosion,2001,57(3):265-285.
    [113]Burioka N., Cornelissen G., Halberg F., Kaplan D. T. Relationship betweencorrelation dimension and indices of linear analysis in both respiratory movementand electroencephalogram. Clinical Neurophysiology,2001,112(7):1147-1153.
    [114]Carvajal R., Wessel N., Vallverdu M., Caminal P., Voss A. Correlationdimension analysis of heart rate variability in patients with dilatedcardiomyopathy. Computer Methods and Programs in Biomedicine,2005,78(2):133-140.
    [115]Yilmaz D., Guler N. F. Analysis of the Doppler signals using largest Lyapunovexponent and correlation dimension in healthy and stenosed internal carotidartery patients. Digital Signal Processing,2010,20(2):401-409.
    [116]Xia Dahai, Song Shizhe, Wang Jihui, Shi Jiangbo, Bi Huichao, Gao Zhiming.Determination of corrosion types from electrochemical noise by phase spacereconstruction theory. Electrochemistry Communications,2012,15(1):88-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700