用户名: 密码: 验证码:
腐皮镰孢菌壳聚糖酶CSN1的基因克隆、表达及其对致病性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳寡糖(Chitooligosaccharides)是由氨基葡萄糖以β-1,4-糖苷键缩合而成的低聚物,聚合度一般为2—20,具有较低的分子量,呈水溶性,易于被细胞吸收,具有多种生物学活性,广泛应用于医药、保健、日化、农业、生防等领域,有着广阔的市场前景,是近年来研究和开发的热点之一
     壳寡糖主要由壳聚糖(Chitosan)降解产生,而壳聚糖是由自然界中储量最为丰富的含氮类有机化合物甲壳素(Chitin)脱乙酰基形成的。目前壳寡糖的制备方法主要有壳聚糖化学降解法和酶解法。化学法包括浓酸降解法和过氧化氢降解法,但两种方法都较难得到低聚合度的壳寡糖,而且反应条件剧烈,容易引发环境问题。酶解法具有反应条件温和,壳寡糖得率高,不造成环境污染等优点。壳寡糖的酶法制备,又分为复合酶解法和专一性酶解法。复合酶解法是混合利用多种水解酶类,包括纤维素酶,蛋白酶,脂肪酶等,共同降解壳聚糖产生不同聚合度的壳寡糖。而专一性酶解法是利用壳聚糖的专一性水解酶—壳聚糖酶(Chitosanase)水解壳聚糖制备壳寡糖的过程。从壳寡糖的转化率、产物分子量分布范围、酶解产品的质量稳定性和酶解过程的可重复性来讲,利用专一性酶解法制备壳寡糖最具有前景和发展优势。壳寡糖市场前景的广阔促使了壳聚糖酶研究的活跃,目前已在多种微生物中分离到了壳聚糖酶,并对其酶学性质、水解机制进行了研究,其中以内切型壳聚糖酶最适合于壳寡糖的生产。
     酿酒酵母是非常理想的真核生物表达系统,具有原核细菌所没有的真核生物蛋白翻译后修饰加工系统和安全型基因工程受体系统,并能将外源基因表达产物分泌至培养基中,已广泛用于外源基因的表达。酿酒酵母同时也是广泛用于工业生产的经济微生物,具有培养条件简单、生长迅速,便于大规模、高密度发酵,公认的生物安全菌(GRAS),高抗逆性等优良工业生产特性。
     腐皮镰孢菌(Fusarium solani)在世界范围内分布广泛,可在土壤中长期进行腐生生活,同时也可寄生危害寄主植物。由于其在农业生产上的严重危害,腐皮镰孢菌受到了广泛关注Hadwiger (1980,1981)在研究F. solani与豌豆(Pisum sativum)的相互作用时发现,从F. solani细胞壁上释放出的壳寡糖类能够启动豌豆的防御机制,诱导豌豆细胞植保素(Phytoalexin)的产生,从而提高其抗病性,抑制F. solani的侵染,并通过免疫化学的方法检测到壳寡糖从F. solani细胞壁上释放出来,进入植物细胞中。Prapagdee(2007)研究发现低浓度的外源性壳聚糖类就能够抑制F solani的生长,保护豌豆免于病原真菌引发的猝死综合症(Sudden death syndrome)。鉴于壳聚糖和壳寡糖在病原真菌与植物相互作用中扮演着重要的角色,Shimosaka (1993)曾推测F. solani壳聚糖酶可能与真菌细胞壁的降解或致病性有关,但关于真菌壳聚糖酶生理功能的研究极少,至今尚没有实验性的证据被报道。
     本实验室前期研究中利用平板透明圈法结合薄层层析法(TLC),筛选到-株能分泌表达壳聚糖酶的腐皮镰孢菌F. solani 0114。对粗酶液的研究表明该菌所产壳聚糖酶的水解产物中不含单糖,水解产物的平均分子量为1.3 kDa,壳寡糖比例较高。本论文的主要研究工作包括:
     1. F. solani壳聚糖酶基因的克隆及酶学性质研究
     利用RT-PCR方法扩增得到F. solani 0114壳聚糖酶的cDNA序列,序列分析表明该cDNA中包含一个编码300个氨基酸残基的开放读码框(ORF,903bp)。该序列已提交至GeneBank,登录号为EU263917。将此序列N末端与His标签融合并在大肠杆菌DE3中异源表达,通过对该重组酶的镍柱纯化,透析复性,得到了纯化的壳聚糖酶CSN1。SDS聚丙烯酰胺凝胶电泳显示CSN1的分子量约为30 kDa,酶学性质分析表明CSN1的最适温度为50-℃,最适pH值为5.6,以脱乙酰度85%的壳聚糖为底物时Km值为0.063 Ing/ml, Vmax为126.58μmol/ml.min,比酶活为2.5 U/mg。利用薄层层析法(TLC)和高效液相色谱技术(HPLC)对CSN1的酶解产物进行分析,结果表明,水解产物中不含单糖,10糖以下组分占75%以上,为内切型壳聚糖酶。本研究得到的壳聚糖酶CSN1非常适合于壳寡糖的专一性酶解法生产。
     2. CSN1在酿酒酵母工业菌株中的表达
     将CSN1的cDNA序列与克鲁维酵母的菊粉酶(INU1A)信号肽序列融合,以实验室前期构建的多拷贝整合性酿酒酵母表达载体pYMIKP质粒为骨架,构建得到CSN1表达质粒pYMIKP-CHO,并将该质粒导入酿酒酵母N-27中,摇瓶发酵实验表明,酿酒酵母重组菌株N-27C所产壳聚糖酶粗酶液的体积酶活达到50.2 mU/ml,成功实现了CSN1在酿酒酵母中的分泌表达,TLC法酶解产物分析表明,重组壳聚糖酶的酶解特性与纯酶及F. solani 0114所产壳聚糖酶相一致。酿酒酵母重组菌株的构建对于CSN1的规模化生产具有潜在的应用价值。
     3.根瘤农杆菌介导的腐皮镰孢菌转化体系的建立
     选择两种转化筛选标记:潮酶素B (Hygromycin B)和草丁磷除草剂(PPT)测定其对腐皮镰孢菌孢子生长的最低抑制浓度,结果显示:400μg/ml潮霉素B或750μg/ml PPT能够完全抑制F. solani 0114孢子的萌发和生长。以质粒pCAMBIA1300为骨架,构建适合腐皮镰孢菌转化的双元载体pCABAR和pCAHPH,将构建好的质粒转入根瘤农杆菌LBA4404,利用根瘤农杆菌介导的转化技术(ATMT)转化腐皮镰孢菌F. solani 0114。根据前期本实验室对ATMT的研究结果,采用400μg/ml AS,6 h预培养时间处理用于转化的根瘤农杆菌,根瘤农杆菌与腐皮镰孢菌孢子的共培养时间为48小时。并对根瘤农杆菌与真菌孢子比进行优化,结果显示根瘤农杆菌与真菌孢子比为1.0/106-ml-1时转化效果较好。测定了两种选择标记:bar和hph对转化效率的影响。结果显示以bar为选择标记时,转化效率为13转化子/106孢子;以hph为选择标记时,转化效率为21转化子/106孢子。与PEG-CalCl2转化法相比(27转化子/107原生质体),ATMT法具有较高的转化效率,而且可以省略繁琐的原生质体制备与再生过程,操作更为简单。ATMT转化体系的建立为下一步的F. solani功能基因研究奠定了基础。
     4.腐皮镰孢菌CSN1超表达菌株和表达下调菌株的构建
     以质粒pCAMBIA1300为骨架,以勾巢曲霉(Aspergillus nidulans)强组成型启动子gpdA和终止子trpc,构建带有CSN1表达原件的双元载体pCHO。通过ATMT技术将pCHO转入F. solani 0114基因组中,构建超表达CSNl的腐皮镰孢菌。挑取12个阳性克隆进行产酶培养实验,结果表明有5个克隆的壳聚糖酶体积酶活明显增加,最高为出发菌株的2.1倍。
     根据CSN1 cDNA序列,对其mRNA二级结构进行软件分析,设计出两个能自我配对形成带有544 bp茎和229 nt环结构的发夹片段。以CSN1 cDNA为模板,PCR扩增得到两个片段,将两个片段反向连接,形成反向重复序列(IR)。以质粒pCAMBIA1300为骨架,构建带有IR转录原件的双元载体pCIR,通过ATMT技术将pCIR转入F. solani 0114基因组中,构建得到CSN1的RNA干扰(RNAi)菌株。利用平板透明圈法挑选到5株CSN1表达下调的菌株,Northernblot分析表明5株RNAi转化子胞内的CSN1 mRNA量与出发菌株相比明显降低。
     5.腐皮镰孢菌壳聚糖酶生理功能研究
     利用实时荧光定量RT-PCR技术(qRT-PCR)检测到F. solani 0114在液体培养时,CSN1主要在集中在菌体生长的延滞期表达,同时检测到CSN1在F.solani 0114对豌豆不同组织的侵染过程中也有明显表达。表明壳聚糖酶可能不参与菌体的生长过程,而与其致病性有关。对CSN1超表达菌株和RNAi菌株的生长状态,致病能力进行了测定。结果显示,与野生型菌株相比,CSN1超表达菌株在平板和液体培养时的生长都受到了明显的抑制,而RNAi菌株的生长较野生型无明显变化。对三种菌进行豆荚侵染测试,结果显示:与野生型菌株相比,RNAi干涉菌株的侵染能力有明显提高(>50%);而CSN1超表达菌株的侵染能力明显下降(<40%)。同时,豆苗侵染测试结果也显示RNAi菌株的毒性最高,野生型其次,CSN1超表达菌株的毒性最低,表明CSN1对F. solani的致病性有抑制作用。虽然CSN1对F. solani致病性的抑制机理有待于进一步的研究,但关于该酶的生理功能是首次报导,对于真菌壳聚糖酶的研究及腐皮镰孢菌致病性的研究都具有借鉴意义。
Chitooligosaccharides are polymers of 0-1,4 linked D-glucosamine residues with the polymerization below 20. Chitooligosaccharides have low molecular weight, high water-solubility and absorbability. Therefor, they have many applications in various fields, for instance, they can strengthen immunity systerm, control the growth of cancer cell. chitooligosaccharids are obtained mainly by chemical or enzymatic hydrolysis of the chitosan chains. Chemical hydrolysis is carried out by two alternative methods:acid hydrolysis with concentrated acids or oxidative degradation with hydrogen peroxide. Both methods have been applied successfully to chitosan degradation, but both show some drawbacks, including the difficulty to obtain low polymerization degree oligosaccharides, and to control the extent of hydrolysis, which frequently results in hydrolysates containing a high rato of monosaccharides. In addition, the harsh reaction conditions required may cause environmental problems. Alternatively to the aggressive chemical hydrolysis, chitosan may also be hydrolyzed in a milder way using enzymes. Enzyme catalyzed chitosan hydrolysis is more specific and allows a greater control of the extent of reaction and, therefor, of the product size. Enzymes that can hydrolyze chitosan include unsepcificity and specificity ones, the former includes cellulase, hemicellulases, pectinase, proteases and lipase, the latter is chitosanase. Chitosanase catalyzed hydrolysis of chitosan has many advantages and has been paid a lot of attentions by reseachers.
     S. cerevisiae, which can grow rapidly on simple medium to a high-cell density, is the most useful eukaryotic microorganism for heterologous protein production. More importantly, S. cerevisiae is a GRAS strain that causes no harm to plants or humans. The rapid growth, ease of genetic manipulation, and a well-defined genetic system of S. cerevisiae make it vey usefull for applied studies.
     F. solani is a soilborne filamentous fungus of worldwide distribution that has been recognized for a long time as important plant pathogens. It causes an important economic loss in the agriculture industry. Hadwiger et al (1980,1981) found that chitosan polymers released from F. solani cell walls can inhibit fungal growth and elicit disease resistance responses in pea pod tissue. Prapagdee et al (2007) also found that low concentrations of chitosan can inhibit the F. solani f. sp. glycines growth and protect soybeans from sudden death syndrome (SDS). Therefore, the fungal chitosanase probably is also involved in the plant-pathogen interactions (Shimosaka 1993).
     In a previouse work, we obtained a chitosanase-producing strain F. solani 0114 using the plate halo secreening and TLC analysis. In this study, we want to clone the chitosanase gene of F. solani 0114 and investigate its characterizations. We also want to study the physiological functions of chitosanase in F. solani growth and pathogenicity.
     1. Cloning of the chitosanase gene (csnl) from F. solani and research on biochemical characterizations of CSN1
     The chitosanase cDNA of F. solani 0114 was amplified by reverse transcription-mediated PCR (RT-PCR), The cDNA sequence, which containing an open reading frame (ORF) encoding 300 amino acid residues, was submitted to GeneBank with the accession number EU263917. The ORF of the cDNA was ligated into pET-15b and expressed in E. coli BL21 (DE3). The recombinant protein was expressed as inclusion bodies. After solubilization, the denatured proteins were purified with the Ni-NTA Purification System. The molecular weight of the purified protein was about 30 kDa. A chitosanase assay showed that the specific activity of the renatured protein was 2.5 U/mg. The purified enzyme functioned between pH 3 and 6 with an optimum at pH 5.6. The enzyme was most active at 50℃. Kinetic analysis results showed that the Km of the enzyme was 0.063 mg/ml,Vmax was 126.58μmol/ml.min. TLC and HPLC results indicated that most of the enzyme hydrolysates were chitooligosaccharides with a polymerization below 10, and no monomers were detected. The chitosanase from F. solani 0114 is an endochitosanase. Because of its special characteristics, this enzyme is very useful in chitooligosaccharides production.
     2. Expression of csnl in Saccharomyces cerevisiae industrial strain
     Based on the yeast multiple integration plasmid pYMIKP, a CSN1 expression vector pYMIKP-CHO was constructed. The vector was introduced into S. cerevisiae industrial strain N-27. To direct the recombinant protein into the secretory pathway, the INU1A signal sequence was fused to 5'end of the csn cDNA, because the INU1A signal sequence can cause highly efficient secretion of large proteins in S. cerevisiae. In S. cerevisiae N-27. Chitosanase assay results showed that CSN1 was successfully secreted from S. cerevisiae transformant, and the yield of chitosanase reached 50.2 mU/ml. The transformant has better application prospects for the large-scale production of CSN1 than F. solani 0114.
     3. Agrobacterium tumefaciens-mediated transformation (ATMT) of F. solani
     Based on the plasmid pCAMBIA1300, we constructed binery vectors fit for F. solani transformation, and the F. solani was successfully transformed using ATMT. The hygromycin resistent gene hph and herbicide resistance gene bar were used as selection markers. The transformation efficiency was 13 transformants/106 spores when using bar as selection marker, and for hph, the efficiency was 21 transformants/106 spores. Compared to PEG-CalCl2 transformation method in F. solani, whose transformation efficiency was 27 transformants/107 protoplasts, ATMT has higher transformation efficiency. It allows fungal conidia to be used as the starting material, provides a easier way for fungal transformation.
     4 Construction of CSNl-overexpression strain and CSN1-silenced strain of F. solani
     A transformation vector carried csn1, which was under the control of the A. nidulans gpdA promoter and A. nidulans trpC terminator was constructed and denoted as pCHO. It was derived from the s binary vector pCAMBIA 1300. A. tumefaciens LBA 4404 containing vector pCHO was used for transformation of F. solani 0114 conidia and 12 resistant colonies were obtained. Enzyme production results suggested that 5 of the 12 colonies had a significant increase in chitosanase production (~2.1-fold than control). A silencing vector containing an inverted repeat (IR) sequence was constructed. It is derived from the binary vector pCAMBIA 1300 as well. The IR sequence was obtained by ligating, in the opposite orientation, two PCR fragments corresponding to CSN1 cDNA. The pCIR construct was expected to produce a self-complimentary transcript forming a hairpin RNA with a 544 bp stem and a 229 nt loop. The construct was introduced into the F. solani 0114 genome by A. tumefaciens-mediated transformation. Plate halo results showed that five of the transformants had a significant reduction in chitosanase activity Northern blot analysis was carried out to determine the expression levels of Csnl in the silenced transformants. We found that all the mutants showed a strong decrease of the endogenous Csnl mRNA compared with the wild-type strain. Therefore, it was confirmed that the reduction of chitosanase activity was due to the Csnl silencing.
     5. Functional analysis of CSN1 in F. solani
     Using real-time quantitative RT-PCR, the obvious expression of CSN1 was found when F. solani was applied to pea pod, leaf and seed root separately. Meanwhile, CSN1 expression levels at different developmental stages were also determined. We found that CSN1 was mostly expressed in the staling phase when F. solani 0114 was cultured in CZ liquid medium. These results suggested that the F. solani chitosanase probably is involved in the plant-pathogen interactions, and may be not essential to fungal growth. Further, growth rate assays were performed to determine the effect of chitosanas expression on fungal growth. The CSN1-silenced strain exhibited no distinguishable change in both radial and submerged growth. However, the csn1-overexpression strain showed an obvious growth inhibition compared with the wild-type strain, indicating that CSN1 overexpression had an adverse effect on fungi mycelial growth. To determine the role of chitosanase expression in fungal virulence, both pea pod and seedling infection assays were performed. The silenced transformant showed an increase of virulence (150%) over the wild type strain (100%). Meanwhile, the Csnl-overexpression strain exhibited a reduction in virulence (~60%). In the second assay, seedlings infected with the silenced transformant CKD3 showed a significant increase, and seedlings infected with the csnl-overexpression strain had a little reduction in disease severity, in comparison to seedlings infected with the wild type strain. These data are consistent in that the silenced transformant has the highest, wild type has the medium, and the csn1-overexpression strain has the weakest virulence. Although the mechanism remains unclear, our findings did suggest that F. solani chitosanase has a negative effect on fungal pathogenicity. This finding is important in the regard that chitosanases are found in many plant pathogenic fungi. Further studies and findings for the role of chitosanase in virulence and the host-pathogen function would likely have broad application.
引文
Akada R. Genetically modified industrial yeast ready for application. J Biosci Bioeng.2002,94,536-544
    Akiyama K, Fujita T, Kuroshima K I, et al. Purification and gene cloning of a chitosanase from Baiclluse himensis EA G1 [J]. J Biosci Bioeng,1999,87 (3): 383-385
    An HJ, Lurie S, Greve LC, Rosenquist D, Kirmiz C, Labavitch JM, Lebrilla CB. Determination of pathogen-related enzyme action by mass spectrometry analysis of pectin breakdown products of plant cell walls. Anal Biochem.2005,338: 71-82.
    Bai GH, Shaner G. Scab of wheat:prospects for control. Plant Dis.1994,78: 760-766.
    Bateman DE Hydrolytic and trans-eliminative degradation of pectic substances by extracellular enzymes of Fusarium solani f.phaseoli. Phytopathology.1966 56(2):238-244
    Bosher JM, Labouesse M. RNA interference:genetic wand and genetic watchdog. Nat Cell Biol.2000,2(2):E31-6.
    Bromley M, Gordon C, Rovira-Graells N, Oliver J:The Aspergillus fumigatus cellobiohydrolase B (cbhB) promoter is tightly regulated and can be exploited for controlled protein expression and RNAi. FEMS Microbiol Lett 2006, 264:246-254.
    Bundock P, Hooykaas P J. Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc. Natl. Acad. sci. USA,1996,93:15272-15275.
    Bundock Paul, Dulk-Ras Amkeden, Beijersbergen Alice GM et al. Trans-kingdom T-DNA transfer from Agrobacterium tumefaeiens to saccharomyces cerevisiae. The EMBO Journal.1995,14(3):3206-3214
    Campoy S, Perez F, Martin JF, Gutierrez S, Liras P. Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr Genet,2003,43 (6):447-452
    Caracuel Z, Roncero MI, Espeso EA, Gonzalez-Verdejo CI, Garcia-Maceira FI, Di Pietro A. The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol Microbiol.2003,48(3):765-779.
    Caruso C, Caporale C, Chilosi G. Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. J. Protein Chem.1996,15: 35-44.
    Caruso C, Chilosi G, Caporale C, Leonardi L, Bertini L, Magro P, Buonocore V. Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci.1999,140,87-97.
    Casas-Flores S, Rosales-Saavedra T, Herrera-Estrella A. Three decades of fungal transformation:novel technologies. Methods Mol Biol,2004,267:315-325
    Catalanotto C, Azzalin G, Macino G, Cogoni C:Gene silencing in worms and fungi. Nature 2000,404:245.
    Catalanotto C, Azzalin G, Macino G, Cogoni C:Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Genes Dev 2002,6:790-795.
    Catalanotto C, Pallotta M:ReFalo P, Sachs MS, Vayssie L, Macino G, Cogoni C: Redundancy of the two dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa. Mol Cell Biol 2004,24:2536-2545.
    Celotto AM, Graveley BR:Exon-specific RNAi:a tool for dissecting the functional relevance of alternative splicing. RNA 2002,8:718-724
    Chandy T, Sharma CP. Chitosan-as a biomaterial. Biomater. Artif Cells Artif Organs.1990;18(1):1-24. Review
    Chen X, Stone M, Schlagnhaufer C, Romaine CP. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol,2000,66 (10):4510-4513
    Cheng CY, L i Y-K. An Aspergillus chitosanase with potential for large-scale preparation of chitosan oligosaccharides. [J] Biotechnol Appl Biochem,2000,32: 197-203
    迟彦,周东坡,平文祥,李姗姗,朱婧.根癌农杆菌介导的真菌遗传转化及其应用[J].菌物学报,2005,24:612-619
    Chobot V, Kremenak J, Opletal L. Phytotherapeutic aspects of diseases of the circulatory system.4. chitin and chitosan. Ceska Slov Farm 1995, Aug,44: 190-197
    Choudhary S, Lee HC, Maiti M, He Q, Cheng P, Liu Q, Liu Y:A double-stranded-RNA response program important for RNA interference efficiency. Mol Cell Biol 2007,27:3995-4005.
    Cogoni C, Macino G:Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 1999b,399:166-169.
    Cogoni C, Macino G:Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc Natl Acad Sci USA 1997,94:10233-10238.
    Cogoni C, Macino G:Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 1999a,286:2342-2344.
    Combier JP, Melayah D, Raffier C, Gay G, Marmeisse R,. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol Lett,2003,220 (1):141-148
    戴芸,朱旭芬.微生物壳聚糖酶的研究概况,2004,浙江大学学报(农业与生命科学版)30(2):229-236
    Daboussi MJ, Djaballi A, Gerlinger C. Transformation of seven species of filamentous fungi using nitrate reductase gene of Aspergillus nidulans. Curr Genetics,1989,15:453-456
    Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC:An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 2000,101:543-553.
    Dantzig AH, Zuckerman SH, Andonov-Roland MM. Isolation of a Fusarium solani mutant reduced in cutinase activity and virulence. J Bacteriol.1986,168(2): 911-916
    De-Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotech,1998,16: 839-842
    Di Pietro F, Garcfa-Maceira I, Meglecz E, Roncero MIG. A MAP kinase of the vascular wilt fungus is essential for root penetration and pathogenesis. Mol. Microbiol.2001,39:1140-1152.
    杜声亮,袁建平等.高活性壳聚糖酶制剂的制备及其对壳聚糖降解作用的研究,第四届甲壳素科技与应用研讨会,2004(410-413)
    杜昱光,白雪芳,虞星炬等.壳寡糖类物质生理活性的研究.中国生化药物杂志,1997.18(5):268-275
    杜昱光,白雪芳.甲壳素生物降解制备壳寡糖.精细与专用化学品,2003,7:16-18
    El-Gendy W, Brownleader MD, Ismail H, Clarke PJ, Gilbert J, El-Bordiny F, Trevan M, Hopkins J, Naldrett M, Jackson P.Rapid deposition of wheat cell wall structural proteins in response to Fusarium-derived elicitors. J. Exp. Bot.2001, 54(354):85-90.
    Fang WG, Zhang YJ, Yang XY, Pei Y,. Transformation in fungi mediated by Agrobacterium tumefaciens. Journal of Chinese Biotechnology,2002,22(5): 40-44 (in Chinese)
    方卫国,张永军.球孢白僵菌降解昆虫体壁蛋白酶基因CDEP-1的克隆与序列分析.遗传学报,2002,29(3):278-282.
    方祥年,杜昱光,黄秀梨,洪洞.球孢白僵菌高壳聚糖酶突变株的筛选.微生物学通报,2001,28(3):60-64
    Fernandes JC, Eaton P, Nascimento H, Belo L, Rocha S, Vitorino R, Amado F, Gomes J, Santos-Silva A, Pintado ME, Malcata FX. Effects of chitooligosaccharides on human red blood cell morphology and membrane protein structure. Biomacromolecules.2008,9(12):3346-52.
    Fernandes JC, Tavaria FK, Soares JC, Ramos OS, Joao Monteiro M, Pintado ME, Xavier Malcata F. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol.2008,25(7):922-8
    Fincham J R S.1989.Transformation in fungi. Microbiology Review,5: 148-170.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998,391(6669):806-11.
    Fitzgerald A, Van Kan JA, Plummer KM:Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genet. Biol.2004,41:963-971.
    Fukamizo T, Ohkawa T, Ikeda Y, et al. Specificity of chitosanase from Bacillus pumilus [J]. Biochem Biophys Acta,1994,1205:183-188
    Gao XD, Katsumoto T, Onodera K. Purification and characterization of chitin deacetylase from Absidia coerulea. J Biochem.1995,117:257-263
    Godio RP, Fouces R, Gudina EJ, Martin JF. Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Curr Genet,2004,46(5):287-294
    Goldoni M, Azzalin G, Macino G, Cogoni C:Efficient gene silencing by expression of double stranded RNA in Neurospora crassa. Fungal Genet Biol 2004, 41:1016-1024.
    Gouka RJ, Gerk C, Hooykaas PJ, Bundock P, Musters W, Verrips CT, De-Groot MJ,. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotech,1999,17(6): 598-601
    Granado JD, Kertesz-Chaloupkova K, Aebi M, Kues U. Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol Gen Genet.1997, 256:28-36
    Guo S, Kemphues KJ.par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell.1995,81(4):611-20
    Hadwiger LA, Loschke DC. Molecular communication in host-parasite interactions: hexosaminepolymers (chitosan) as regulator compounds in race-specific and other interactions [J]. Phytopathology,1981,71:756-762.
    Hadwiger LA, Beckman JM, Adams MJ. Localization of fungal components in the pea-Fusarium interaction detected immunochemically with anti-chitosan and anti-fungal cell wall antiseta. Plant Physiol.1981,67:170-175
    Hadwiger LA, Beckman JM. Chitosan as a component of pea-Fusarium solani interactions. Plant Physiol 1980,66:205-211
    Hammond TM, Andrewski MD, Roossinck MJ, Keller NP:Aspergillus mycoviruses are targets and suppressors of RNA silencing. Eukaryot Cell 2008,7:350-357.
    Hanif M, Pardo AG, Gorfer M, Raudaskoski M. T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet,2002,41(3):183-188
    Hartman G L, Sinclair J B, Rupe J C. Compendium of soybean diseases[M]. Minnesota, USA:APS Press,1999.
    Hirano S, Tanaka Y, Hasegawa M, Tobetto K, Nishioka A. Effect of sulfated derivatives of chitosan on some blood coagulant factors. Carbohydr Res.1985 137:205-15.
    Horowitz ST et al. The preparation of gluco-samine oligosaccharides 1. Separation. Am Chem Soc,1957,79:5046-5049
    Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu J-R. A mitogen-activated protein kinase gene (MGVI) in Fusarium graminearum is required for female fertility, heterokaryon formation and plant infection. Mol. Plant-Microb. Interact.2002, 15(11):1119-1127.
    Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS:Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003,21:635-637.
    Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS: Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA 2006,12:1179-1187.
    Janus D, Hoff B, Hofmann E, Ku(?)ck U:An efficient fungal RNAsilencing system using the DsRed reporter gene. Appl Environ Microbiol 2007,73:962-970.
    金成,张树政.糖生物学与糖工程的兴起与前景.生物工程进展,1995,15(3):12-17
    Kadotani N, Nakayashiki H, Tosa Y, Mayama S:RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 2003, 16:769-776.
    Kang HA, Nam SW, Kwon KS, Chung BH, Yu MH. High-level secretion of human alpha 1-antitrypsin from Saccharomyces cerevisiae using inulinase signal sequence. J Biotechnol.1996,48:15-24.
    Katherine F, Dobinson SJ, Grant SK,. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae:Curr Genet,2004,45: 104-110
    Khan RH, AppaRao KBC, Eshwari ANS, Totey SM, Panda AK. Solubilization of recombinant ovine growth hormone with retention of native like secondary structure and its refolding from the inclusion bodies of E. coli. Biotechnol. Prog. 1998,14,722-728.
    Khatri M, Rajam MV:Targeting polyamines of Aspergillus nidulans by siRNA specific to fungal ornithine decarboxylase gene. Med Mycol 2007,45:211-220.
    Kurakake M, You S,Nakagawa K, et al. Properties of chitosanase from Bacillus cereus S1 [J]. Curr Microbiol,2000,40:6-9
    Laloux O, Cassart JP, Delcour J, Van Beeumen J, Vandenhaute J. Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett.1991,289 (1):64-72
    Leclerque A, Wan H, Abschutz A, Chen S, Mitina GV, Zimmermann G, Schairer HU,. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Curr Genet,2004,45 (2): 111-119
    Li J, Xu H, Bentley WE, Rao G. Impediments to secretion of green fluorescent protein and its fusion from Saccharomyces cerevisiae. Biotechnol Prog.2002, 18(4):831-839.
    Lillo L, Alarcon J, Cabello G, Cespedes C, Caro C. Antibacterial activity of chitooligosaccharides. Z Naturforsch C.2008,63(9-10):644-8.
    李风平,何潇,鲍晓明.壳聚糖酶产生菌的筛选及其酶解产物的初步研究.山东大学学报(Journal of Shandong Univercity),2003,38:96-98
    廖春燕,马国瑞,郑海龙,洪文英.壳聚糖诱导植物抗病机制研究进展.东海海洋,2001,19:23-31
    刘向勇,沈煜,郭亭,鲍晓明.rDNA介导的多拷贝整合表达载体的构建及其在酿酒酵母工业菌株中的应用.山东大学学报(Jounal of Shandong University),2005,40:105-109.
    Liu H, Bao X. Overexpression of the chitosanase gene in Fusarium solani via Agrobacterium tumefaciens-mediated transformation. Curr Microbiol.2009,58: 279-282
    Liu H, Cottrell TR, Pierini LM, Goldman WE, Doering TL:RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 2002,160:463-470.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-AACT method. Methods 2001,25:402-408
    陆仁德,沃绍菁,张文清.黑曲霉壳聚糖降解酶生产菌株的初步筛选,第四届甲壳素科技与应用研讨会,2004(407-409)
    马淑梅,丁俊杰,顾鑫.黑龙江省大豆主要病害发生危害调查[J].黑龙江农业科学,2005(6):48-51.
    Mahr SER, Stevenson WR, Sequeira L. Control of bottom rot of head lettuce with iprodione. Plant disease 1986,70:506-509
    Maiti IB, Kolattukudy PE. Prevention of fungal infection of plants by specific inhibition of cutinase. Science.1979,205:507-508
    Maiti M, Lee HC, Liu Y:QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands.Genes Dev 2007.
    Malonek S, Meinhardt F. Agrobacterium tumefaciens-mediated genetic transformation of the Phytopathogenic ascomycete Calonectria morganii. Curr Genet,2001,40 (2):152-155
    Masahiro N, Hiroya T, Aya K, et al. Purification and characterization of exo-β-D-glucosam inidase from a cellulolytic fungus, Trichod ermareesei PC2327 [J]. Appl Env ironM icrobiol,1998,64:890-895
    Masaru M, Makotol, Asako U, et al. Chitosanase activity of the enzyme previously reported as β-1,3-1,4-glucanase from Bacillus circulans WL 212 [J]. Biosci Biotechnol Biochem,1998,62 (11):2107-2114
    Masson JY, Boucher I, Neugebauer W A, et al. A new chitosanase gene from a Nocardioides sp. is a third member of glycosyl hydrolase family 46 [J].Microbiology,1995,141:2629-2635
    McDonald T, Brown D, Keller NP, Hammond TM. RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant Microbe Interact. 2005,18(6):539-545
    Meyer V, Mueller D, Strowig T, Stahl U. Comparison of different transformation methods for Aspergillus giganteus. Curr Genet,2003,43(5):371-377
    Michielse CB, Ram AF, Hooykaas PJ, Hondel CA. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet Biol.2004a.41(5):571-578
    Michielse CB, Salim K, Ragas P, Ram AF, Kudla B, Jarry B, Punt PJ, van den Hondel CA. Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Mol Genet Genomics,2004b.271 (4):499-510
    Mitsutomi M, Hata T, Kuwahara T. Purification and characterization of novel chitinase from Streptomyces griseus HUT 6037. Ferment Bioeng,1995,80: 153-158
    Moon JS, Kim HK, Koo HC, JooYS, Nam HM, Park YH, Kang MI. The antibacterial and immunostimulative effect of chitosan-oligosaccharides against infection by Staphylococcus aureus isolated from bovine mastitis. Appl Microbiol Biotechnol.2007,75,989-98.
    Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 2000,101:533-542.
    Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S. Agrobacterium-mediated transformation of Fusarium oxysporum:an efficient tool for insertional mutagenesis and gene transfer. Phytopathology,2001,91: 173-180
    Muzzarelli R, Tomasetti M, Liari P. Depolymerization of chitosan with the end of papain. Enzyme Microb Technol.,1994,16:110-113
    Nakayashiki H, Nguyen QB. RNA interference:roles in fungal biology. Curr Opin Microbiol.2008, 11(6):494-502.
    Nam SW, Yoda K, Yamasaki M. Secretion and localization of invertase and inulinase in recombinant Saccharomyces cerevisiae. Biotecnol Lettes.1993,15: 1049-1054.
    Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H: Systematic functional analysis of calciumsignalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 2008,68:1348-1365.
    Nightingale MJ, Marchylo BA, Clear RM, Dexter JE, Preston KR. Fusarium head blight:Effect of fungal proteases on wheat storage proteins. Cereal Chem.1999, 76:150-158.
    Ouchi T, Banba M, atsumoto T, et al. Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chem Pharm Bull,1998,36:784
    Oyarzun PJ, Dijst G, Zoon FC, Maas PW. Comparison of soil receptivity to Thielaviopsis basicola, Aphanomyces euteiches, and Fusarium solani f. sp. pisi causing root rot in pea. Phytopathology.1997,87:534-41
    Pantaleone D, Yalpani M, Scollar M. Unusual.susceptibility of chitosan to enzymatic hydrolysis. CarbohyDa.Res.,1992,237:318-320.
    Park JK, Shimono K, Ochiai N, et al. Purification, characterization and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001 [J] J Bacteriol,1999,181:6642-6649
    Pearlmutter NL, Lembi CA.Localization of chitin in algal and fungal cell walls by light and electron microscopy.J Histochem Cytochem.1978,26(10):782-91.
    Pekkarinen AI, Mannonen L, Jones BL, Niku-Paavola ML. Production of proteases by Fusarium species grown on barley grains and in media containing cereal proteins. J. Cereal Sci.2000,31,253-261.
    Pelletier A, Sygusch J. Purification and characterization of three chitosanase activities from Bacillus megaterium P1 [J]. Appl Env ionM icrobiol,1990,56: 844-848
    Prapagdee B, Kotchadat K, Kumsopa A, Visarathanonth N. The role of chitosan in protection of soybean from sudden death syndrome caused by Fusarium solani f. sp. glycines. Bioresour Technol 2007,98:1353-1358
    Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP. Fungal development and induction f defense response genes during early infection f wheat spikes by Fusarium graminearum. Mol. Plant icrobiol. Interact.2000, 3(2):159-169.
    Rappleye CA, Engle JT, Goldman WE:RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence. Mol Microbiol 2004,53:153-165
    Rho HS, Kang S, Lee YH,. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol Cells,2001,12 (3): 407-411
    Romano N, Macino G:Quelling:transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 1992,6:3343-3353.
    Roncal T, Oviedo A, de Armentia I L, Fernandez L, Villaran MC. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan.2007, Carbohydr Res.342, 2750-2756.
    Roncero MIG, Hera C, Ruiz-Rubio M, Garcia-Maceira FI, Madrid, MP, Caracuel Z, Calero F, Delgado-Jarana J, Roldan-Rodriguez R, Martinez-Rocha AL,2003. Fusarium as a model for studying virulence in soilborne plant pathogens. Physiol. Mol. Plant Pathol.62:87-98.
    Ruiz-Roldan MC, Maier FJ, Shafer W. PTK1, a mitogen-activated-protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity of on barley. Mol. Plant-Microbe Interact.,2001,14:116-125.
    Saito J, Kita A, Higuchi Y, et al. Crystal structure of chitosanase from Bacillus circulans MH-K1 at 1.62-(?) resolution and its substrate recognition mechanism [J]. J Biol Chem,1999,274:30818-30825
    Sajomsang W, Gonil P, Tantayanon S. Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties:preparation and characterization. Int J Biol Macromol.2009,44(5):419-27.
    Sakai K, Katsumi R, Isobe A, et al. Purification and hydrolyticaction of a chitosanase from Nocardia orientalis[J]. Biochem Biophys Acta,1991,1097: 65-72.
    Sambrook J, Fritsch EF, Maniatis T,, Molecular cloning:a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York,1989.
    Sato K, Azama Y, Nogawa M, Taguchi G, Shimosaka M.J Analysis of a change in bacterial community in different environments with addition of chitin or chitosan. Biosci Bioeng.2010,109:472-478.
    Savard T, Beaulieu C, Boucher I, Champagne CP. Antimicrobial action of hydrolyzed chitosan against spoilage yeasts and lactic acid bacteria of fermented vegetables. J Food Prot.2002,65,828-833.
    Schmidt HL. Cereal grain structure and the way in which fungi colonize kernel cells. In:Cereal Grain Mycotoxins, Fungi and Quality in Drying and Storage. J. Chekowski.1991. Elsevier, Amsterdam, pp.1-22.
    Seino H, Tsukuda K, Shimasue Y. Properties and action pattern of a chitosanase from Bacillus sp. P I-7S [J]. Agric Biol Chem,1991,55:2421-2423
    Sekiguchi Y, Kariya K, Ogawa K. Purification and some properties of a novel chitosanase from B acillus subtilis KH1 [J]. Appl Microbiol,1999,46:16-27
    Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol.2009, 47(8):1864-71.
    Sherman F. Getting started with yeast. Meth. Enzymol.1991,194,3-21
    Shimokawa T, Kakegawa K, Ishii T.. Feruloyl esterases from suspension-cultured rice cells. Bull. FFPRI.2002,1 (4),225-230.
    Shimosaka M, Fukumori Y, Zhang W Y, et al.Molecular cloning and characterization of a chitosanase from the chitosanolytic bacterium Burkholderia gladioli strain CHB101[J]. ApplM icrobiol Biotechnol,2000,54:354-360
    Shimosaka M, Nogawa M, Ohno Y, Okazaki M Chitosanase from the plant pathogenic fungus, Fusarium solani f. sp. Phaseoli-purification and some properties. Biosci Biotec Biochem.1993,57:231-235
    Smardon A, Spoerke JM, Stacey SC, Klein ME, Mackin N, Maine EM:EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interferencein C. elegans. Curr Biol 2000,10:169-178.
    Somasherkar D, Jo seph R1 Ch ito sanases p ropertiesand app lications:A review [J] Bioresource Technology,1996,55:35-45
    Suarez T, Penalva MA. Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbABpcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol.1996, 20:529-540.
    Subramanyam C, Venkateswerlu G, Rao SL. Cell Wall Composition of Neurospora crassa Under Conditions of Copper Toxicity.Appl Environ Microbiol.1983, 46(3):585-590.
    Sun L, A dam s B, Gurnon J R, et al. Characterization of two ch itinase genes and one chitosanase gene encoded by Chlorella virus PBCV 21 [J] Virology,1999, 263:376-387
    Sun T, Yao Q, Zhou D, Mao F. Antioxidant activity of N-carboxymethyl chitosan oligosaccharides. Bioorg Med Chem Lett.2008,18(21):5774-6.
    Suzuki K, Mikami T, Okawa Y, et al. Antitum or effect of hexa-N-acetyl chitohexaose and chitohexaose. Carbohy Daate Research,1986,151:403
    Sweigard JA, Carrol AM, Farral L, Chumley FG, Valent V. Magnaporte grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant-Microbe Interact,1998,11:404-412
    Takahara H, Tsuji G, Kubo Y, Yamamoto M, Toyoda K, Inagaki Y, Ichinose Y, Shiraishi T. Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. J Gen Plant Pathol,2004,70: 93-96
    Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, et al. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acidand alkaline-expressed genes by ambient pH. EMBO J 1995,14:779-790.
    Tsuji G, Fujii S, Fujihara N, Hirose C, Tsuge S, Shiraishi T, Kubo Y. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J Gen Plant Pathol,2003,69: 230~239
    王中和,陆顺娟,胡海生,等.低分子壳多糖对癌症放疗患者免疫功能的影响.首都医科大学学报.1997,18(1):80-89
    Wang Y, Zhou P, Yu J, Pan X, Wang P, Lan W, Tao S. Antimicrobial effect of chitooligosaccharides produced by chitosanase from Pseudomonas CUY8. Asia Pac J Clin Nutr.2007,16:174-7.
    Wang ZY, Wang QH, Li DB,. Agrobacterium tumefaciens mediated transformation in filamentous fungi. Mycosystema,2003,22(2):339-344
    Whisson SC, Avrova AO, West PV, Jones JT:A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Mol Plant Pathol 2005,6:153-163.
    Yamasaki Y, Hayashi I, Ohta Y, et al. Purification and mode of action of chitosanolytic enzyme from Enterobacter sp. G21 [J]. Biosci Biotechnol Biochem,1993,57:444-449.
    Yanada T, H iramatsu S, Songsri P, et al. A lternative expression of a chitosanase gene produces two different proteins in cells infected w ith Chlorella virus CV K2 [J]. Virology,1997,230:361-368
    Yasuda K. Histochemical staining of hyaluronic acid with chitosan.Okajimas Folia Anat Jpn.1953,25(2):55-60
    Yonni F, Moreira MT, Fasoli H, Grandi L. Simple and easy method for the determination of fungal growth and decolourative capacity in solid media. Int Biodeterrio Biodegrad.2004,54:283-287
    Yoon HG, Kim HY, Lim YH, Kim HK, Shin DH, Hong BS, Cho HY. Thermostable chitosanase from Bacillus sp. Strain CK4:cloning and expression of the gene and characterization of the enzyme. Appl Environ Microbiol 6.2000,6:3727-3734
    You-Jin Jeon, Se-Kwon Kim, Continuous production of chitooligosaccharides using a dual reactor system, Process Biochemistry,2000,35:623-632
    Zeilinger S. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr Genet,2004,45(1):54-60
    Zhang A, Lu P, Dahl-Roshak AM, Paress PS, Kennedy S, Tkacz JS, An Z,. Efficient disruption of a polyketide synthase gene (pksl) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Genet Genomics,2003,268 (5):645-655
    Zhang XY, Dai AL, Kuroiwa K, Kodaira R, Nogawa M., Shimosaka M, Okazaki M. Cloning and characterization of a chitosanase gene from the koji mold. Biosci Biotec Biochem.2001,65:977-81
    Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 2007, 21:1190-1203.
    Zhu H, Gilchrist L, Hayes P, Kleinholfs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojindra T, Vivar H. Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor. Appl. Genet. 1999,99:1221-1232.
    Zwiers LH, De Waard MA,. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola.2001, Curr Genet, 39 (5-6):388-393
    Zwiers LH, Deward MA. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphae-rellagraminicola. Current Genetic. 2001.39:388-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700