用户名: 密码: 验证码:
碳九石油树脂催化加氢改性及显色原因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C9石油树脂具有分子量大、粘度高及含有S2-、Cl-等杂质的特点,导致催化剂在加氢过程中容易失活,使得其加氢改性制备高品质C9石油树脂的难度较大;特别是固定床石油树脂加氢对催化剂及反应条件的要求更加苛刻。因而开展C9石油树脂加氢改性催化剂及反应工艺的研究具有重要的理论和现实意义。加氢改性是制备高品质石油树脂的最重要途径,而色度又是衡量C9石油树脂质量和性能的关键指标之一。因此,对于C9石油树脂的显色原因及消除机理的分析和研究必将为C9石油树脂加氢催化剂及反应工艺的设计和优化提供支持。
     本文以浸渍法制备了NiWS/γ-Al2O3和PdRu/γ-Al2O3催化剂,对以上述两种催化剂串联为组合的C9石油树脂两段法加氢反应过程中的反应温度、加氢压力和氢油比等做了优化,运用H2-TPR、XRD、TEM和XPS等表征手段对加氢反应前后的催化剂进行了分析,并结合催化剂的反应性能和表征结果对以上两种催化剂进行了优化选择。另外,本文还运用拉曼光谱(RS)、1H核磁共振(H-NMR)、13C核磁共振(13C-NMR)和无机元素半定量分析(DRC-e ICP-MS)等对加氢前后的C9石油树脂作了比较分析,进而对C9石油树脂的显色原因及消除机理进行了探讨。通过以上实验研究主要得到以下一些结果:
     1.通过对石油树脂加氢前后无机元素的半定量分析,得出C9石油树脂原料中硫的含量约达500mg/Kg,这是引起C9石油树脂颜色深和受热产生臭味的主要原因。C9石油树脂原料中含有的少量Br和Hg、Cd、Fe、Ni等微量重金属元素,可能会诱发C9石油树脂中的苯环和富烯结构发生氧化或取代反应,从而使石油树脂的颜色变深。
     2.采用浸渍法制备的NiWS/γ-Al2O3催化剂,在C9石油树脂加氢改性中作为第一段催化剂,表现出良好的脱硫性能,但如果反应温度高于533K,会使C9石油树脂中的碳碳键明显地发生裂解。因此,基于NiWS/γ-Al2O3催化剂的C9石油树脂加氢预处理反应温度宜选在513~533K之间。C9石油树脂在第一段的加氢脱硫预处理,可以使第二段用于C9石油树脂深度加氢的PdRu/γ-Al2O3催化剂免于硫中毒,从而大大延长了其使用寿命;在本文的C9石油树脂两段加氢改性实验中,第二段PdRu/γ-Al2O3催化剂在反应1024小时后仍保持良好的催化活性。
     3.采用浸渍法制备的PdRu/γ-Al2O3催化剂,表现出良好的催化加氢性能,使得C9石油树脂的加氢程度达到99.9%,从而保证了加氢C9石油树脂的高品质。Pd/Ru摩尔比的优化结果表明,当Pd/Ru摩尔比为3.80时,PdRu/γ-Al2O3催化剂催化性能最佳并保持较好的稳定性,而第一段NiW/γ-Al2O3催化剂的最佳Ni/W摩尔比为0.23。
     4.对NiWS/γ-Al2O3和PdRu/γ-Al2O3催化剂的XRD、TEM、XPS等表征分析的结果表明:催化剂表面结构与加氢活性之间存在一定的对应关系:1.5NiO20WO3/γ-Al2O3催化剂硫化后WS2具有较短的片晶和较多的叠层数,WS2片晶的长度约为3-4nm,叠层数约为3-4。XPS分析显示1.5NiO20WO3/γ-Al2O3催化剂硫化还原后催化剂的表面NiSWO的含量最高,而且半峰宽最小:NiSWO的含量为46.04%,半峰宽为2.8;2.0Pd0.5Ru/γ-Al2O3催化剂表面活性组分分布均匀,PdRu合金粒子的粒径为3~5nm,加氢还原后Pd在催化剂表面的结合能比其标准高0.5eV,表明Ru的添加提高了Pd基催化剂的加氢还原能力。
     5.拉曼分析结果表明,未经加氢的C9石油树脂中的硫以芳香取代的形式为主,较少或没有观察到以硫醚和脂肪取代的形式存在;比较加氢前后C9石油树脂的拉曼图谱,可以看出C9石油树脂中的苯环已全部加氢,并且芳香取代的硫、溴等杂质得以脱除
     6.在聚合法生产C9石油树脂的过程中,原料裂解C9馏份中含有的硫化氢极易转变成硫茚及其衍生物,而硫茚及其衍生物不仅影响石油树脂的色相,也影响石油树脂的其他性能;在使用过程中,石油树脂产生难闻的气体主要是由于其中的硫化合物分解释放出了硫化氢。本文分析了C9石油树脂中硫茚及其衍生物的生成过程和在加氢过程中硫的去除机理,发现硫茚及其衍生物先通过部分加氢生成R-SH,然后在催化剂的进一步作用下以H2S的形式脱去。
     7.以NiWS/γ-Al2O3和PdRu/γ-Al2O3催化剂分别作为第一段和第二段加氢催化剂,采用两段中压加氢工艺对C9石油树脂进行加氢改性,可以使石油树脂中的苯环和烯烃完全饱和,同时使其中的硫、氯、溴等杂质基本脱除,最终得到品质高、性能稳定、无色透明的加氢C9石油树脂,并在空气气氛中经393K加热100h后,加氢C9石油树脂的颜色保持不变。
C9petroleum resin has high molecular weight, high viscosity and contains impurities such as sulfur, chlorine, resulting in a big trouble in hydrogenation modification of the C9petroleum resin due to catalyst deactiviation, especially by a fixed-bed continuous process. So study on the catalyst and reaction process for C9petroleum resin hydrogenation modification is of great important scientific and practical significance.
     In this paper, hydrogenation modification of C9petroleum resin was carried out by two-stage process with NiWS/γ-Al2O3as the first stage catalyst and PdRu/γ-Al2O3catalyst as the second one, and a series of characteristic technologies, such as H2-TPR, XRD, TEM, XPS were used for in-depth analysis of NiWS/γ-Al2O3and PdRu/γ-Al2O3catalyst before and after the catalytic hydrogenation. The hydrogenation modification is the most important ways to get high-quality petroleum resin, and its color is one of the key indicators that measures quality and performance of C9petroleum resin. So a series of analytical methods such as Raman spectroscopy,1H NMR,13C NMR, DRC-e ICP-MS, were used for in-depth analysis of C9petroleum resin before and after the catalytic hydrogenation. Based on the above works, the main conclusions were drawn as following:
     1. By DRC-e ICP-MS analysis of C9petroleum resin before and after the catalytic hydrogenation, it is known that the sulfur content of C9 petroleum resin raw materials is very high (about500mg/Kg). High sulfur cotent of C9petroleum resin might be one of the causes why C9petroleum resin shows yellow or amber color, and foul odor, poor thermal stability. A small amount of Br, Hg, Cd, Fe, Ni and other trace heavy metal ions existing in C9petroleum resin may act as the catalyst that induces oxidation or substitution reactions of aromatic rings and the fulvene structure in C9petroleum resin. In sum, the causes of color of C9petroleum resin may be mainly due to the synergy effects of aromatic rings and the fulvene structure, a small amount of inorganic metals, and sulfur, chlorine, bromine and other impurities in C9petroleum resin.
     2. The NiWS/γ-Al2O3catalyst exhibited excellent desulfurization performance in hydrogenation pretreatment of C9petroleum resin, avoiding the PdRu/γ-Al2O3catalyst at second stage from poisoning by sulfur or other impurities, and therefore greatly extending the life of PdRu catalyst. NiWS/γ-Al2O3catalysts might lead scission of carbon chain of C9petroleum resin when reaction temperature is higher than533K. TEM results showed that the morphology and size of metal particles of the two kinds of catalysts remained almost unchanged after the reaction of1204hours, accounting for their good catalytic stability.
     3. The colorless C9petroleum resin was obtained by two-stage catalytic hydrogenation over NiWS/γ-Al2O3and PdRu/γ-Al2O3catalyst in series. The hydrogenated petroleum resin became colorless, transparent, and stable and its color remain unchanged after being heated at393K for100hours in atmosphere. The optimum Ni/W atomic ratio was found close to0.23for NiWS/γ-Al2O3catalyst at first stage, while the optimum Pd/Ru atomic ratio was close to3.80for PdRu/γ-Al2O3catalyst at second stage.
     4. XRD, TEM and XPS characterization results of the NiWS/γ-Al2O3and PdRu/γ-Al2O3catalyst show that a certain relationship exists between the structure of the catalyst surface and hydrogenation activity:WS2crystallites over the sulfided1.5NiO20WO3/γ-Al2O3catalyst show shorter particle length and more layer number; the particle length is about to3-4nm and the layer number is about to3-4. XPS results show that the sulfided1.5NiO20WO3/γ-Al2O3catalyst exhibits the highest content of NiSWO and smallest FWHM(Full Width Half Maximum):NiSWO content is46.04%and FWHM is equal to2.8. The TEM views reveal the presence of hompgeneously dispersed PdRu particle on the support, and the PdRu particle diameter is about to3-5nm. The reduced Pd binding energy increased by0.5eV compare to that of the standard Pd, showing hydrogenation capacity of the Pd-based catalyst is obviously increased by addition of Ru.
     5. By Raman spectrum analysis of C9petroleum resin before and after the catalytic hydrogenation, we can see that sulfur exists in the form of aromatic substitution (υC-S), while the sulfide (υS-S) and thiosulfate aliphatic hydrocarbons (υC-S) are small or nonexistent. By comparing the Raman spectra of C9petroleum resin before and after the catalytic hydrogenation, it can be seen that the benzene ring of C9petroleum resin has completely saturated after hydrogenation, while the sulfur, bromine and other impurities in C9petroleum resin were largely removed.
     6. Pyrolysis C9fraction still contains a certain amount of hydrogen sulfide, sulfur indene and its derivatives. In the polymerization process, the sulfur indene and its derivatives not only affect the petroleum resin color but also affect the smell of petroleum resin. It is believable that the unpleasant smell of petroleum resin is mainly due to the attendance of hydrogen sulfide produced from decomposition of sulfur compounds. In this paper, the formation process and removal mechanism of sulfur indene and its derivatives in C9petroleum resin was analyzed, in which sulfur indene and its derivatives first is hydrogenated with the formation of R-SH, and then R-SH is again hydrogenated with the release of H2S.
     7. The colorless C9petroleum resin was obtained by two-stage catalytic hydrogenation over NiWS/γ-Al2O3and PdRu/γ-Al2O3catalyst in series. After catalytic hydrogenation, benzene and olefin resin were completely saturated and the sulfur, chlorine, bromine and other impurities were basically removed; meanwhile the hydrogenated petroleum resin become colorless, transparent, stable, and its color remain unchanged after being heated at393K in100hours in atmosphere.
引文
[1]李成贵,张杰.国内外石油树脂发展态势分析及建议[J].石化技术与应用,2001,19(5):287-292.
    [2]马江权,周凯,陆敏等.C5/C9共聚石油树脂的加氢工艺研究[J].江苏工业学院学报,2008,12,20(4):36-39.
    [3]朱明慧.加氢石油树脂的开发与应用[J].石油化工,1991,20(8):568-569.
    [4]朱佩玉.C5石油树脂国内外发展现状[J].江苏化工,2000,28(2):28-31.
    [5]Lefu Yang, Chunkai Shi, Xiang He, et al. Catalytic combustion of methane over PdO supported on Mg-modifiedal alumina [J]. Applied Catalysis B: Envimmnental,2002,38:117-125.
    [6]Basile F, Fornasari G. Thermal evolution and catalytic activity of Pd/Mg/Al mixed oxides obtained from a hydrotalcite-type precursor [J]. Applied Clay Science, 2001,3:51-57.
    [7]朱明慧,蒲延芳.国内外加氢石油树脂的技术进展[J].石油化工动态,1996,9,4(9):18-23.
    [8]杨洪江,张孔远.陈刚等.国内石油树脂加氢现状[J].化工纵横,1997,11(11):3-7.
    [9]中国树脂网.近年来我国C5石油树脂生产发展较快[OL].2010-4-13.
    [10]Karsten Herbert Moritz, Leonard Joseph Delany, Baton Rouge. Batch hydrogenation of petroleum resin [P]. US:3362939(1968).
    [11]Karsten Herbert Moritz, Leonard Joseph Delany, Baton Rouge. Preventing color degradation in the hydrogenation of hydrocarbon resins [P]. US:3356660(1967).
    [12]Karsten Herbert Moritz, Lioyd Aibort Pine, Baton Rouge. Two-stage hydrogenation process[P]. US:3442877(1969).
    [13]柴忠义.C9石油树脂加氢技术进展[J].合成树脂及塑料,2009,26(6):71-74.
    [14]Nikom S Ma, Piyasan P. Color improvement of C9 hydrocarbon resin by hydrogenation over 2% Pd/Al2O3 catalyst:effect of degree of aromatic rings hydrogenation [J]. Journal of Applied Polymer Science,2010,117(3):2862-2869.
    [15]王英龙.石油树脂生产及应用研究进展[J].青岛科技大学学报(自然科学版),2003(S1).
    [16]孙玉声.石油树脂制造技术与产品加工应用[T].兰化科技,1996,14(1):42-45.
    [17]刘君佐.双环戊二烯(DCPD)系列石油树脂[J].精细石油k-Z,1986(1):27-33.
    [18]李平任.热聚环戊二烯WHR的合成[J].石油化工,1986(3):347-355.
    [19]曾庆环,关玉香,姚维骆等.石油树脂生产中的几种催化剂[J].大庆石油学院学报,1995(19)1:59-62.
    [20]Kenneth Lewlas, Maria Leonor Carcia. Process resin and their production with BF3 catalyst [P]. EP:4283518,2002-08-23.
    [21]中国石油兰州石油化工公司.一种石油树脂的制备方法[P].CN:1923869A(2007).
    [22]汪宝和,刘邦孚.芳烃石油树脂的生产及研究进展[J].现代化工,1997,(6):12-14.
    [23]赵开鹏,韩松.裂解C9芳烃的综合利用[J].石油化工,1999,28(3):205-208.
    [24]江苏联东化工股份有限公司.一种碳九石油树脂加氢精制的方法[P].CN:102618326 A(2012).
    [25]鲁佳,马磊,李小年.用于C9石油树脂加氢的γ-A1203负载钯基催化剂的研究[D].浙江工业大学硕士论文,2011,3-4.
    [26]Diaz, Zaida, Gibler, et al. Removal of hydrogenation catalyst from polymer solutions by catalyzed precipitation [P]. US:5212285(1990).
    [27]Diaz, Zaida, Gibler, et al. Removal of Hydrogenation catalyst from polymer solutions by catalyzed precipitation [P]. US:5212285(1990).
    [28]Lee Aldridge Clyde, Bailey Small Augustus. Hydrogenated Resin and process therefore [P]. US:2824860(1958).
    [29]Bailey Small Augustus. Hydrogenated petroleum resins [P]. US:2911395(1959).
    [30]Wadsworth Francis T, Kenton Joseph R, Process for the hydrogenation of hydrocarbon resins with metallic nickel [P]. US:3040009(1962).
    [31]大连理工大学.一种C5和C9石油树脂釜式催化加氢脱色除异味的方法[P].CN:1803871A(2006).
    [32]中国石油兰州化工研究中心成功研发镍系裂解加氢催化剂.www.ccicn.com 2008-03-25.
    [33]Malatesta, Alberto, Bossaert, et al. Production of hydrofined hydrocarbon resin [P]. US:4629766(1985).
    [34]Stuckey A, et al. Precess for production of hydrogenated hydrocarbon polymers and catalyst usefore therefore [P]. EP:813033198(1982).
    [35]Bossaert Bernard, Malatesta Alberto. Production of hydrofined hydrocarbon resins [P]. EP:82726(1983).
    [36]Yamakawa, Fumio, Kitamura, et al. Catalyst for petroleum resin hydrogenation and process for producing hydrogenated petroleum resin [P]. EP:1552881(2003).
    [37]Okazaki Takumi, Tanaka Katsumi. Preparation of hydrogenated petroleum resin [P].JP:4-110304(1992).
    [38]Okazaki Takumi, Azuma Kenji. Decoloration of petroleum resin through hydrogenation [P]. JP:1-165604(1989).
    [39]陈梅奎等.中国催化剂工业使用指南[M].化学工业出版社,1993.
    [40]周忠信,张曼征,陈传正等.钯离子交换树脂催化硝基化合物加氢的性能及其结构研究[J].催化学报,1987,8(1):69-74.
    [41]林辉,史鸿鑫,吴美宁.Pd/C催化剂的制备与活性[J].浙江工业大学学报,1998,6(2):94-97.
    [42]曾双亲,石亚华.氧化铝载体表面化学性质对NiW/A1203加氢催化剂活性的影响.
    [43]李矗,王安杰等.加氢脱氮反映于减轻脱氮催化剂的研究进展[J].化工进展,2003,22(6):585.
    [44]William J. Tropf, Michael E. Thomas. Aluminum Oxide (Al2O3) Revisited [M]. Handbook of Optical Constants of Solids,1997,3:653-682.
    [45]Rodriguez Reinoso F. The role of carbon materials in heterogeneous catalysis [J]. Carbon,1998,36:741-744.
    [46]Kowalczyk Z, Sentek J, Jodzis S, et al. Thermally modified active carbon as support for catalysts for a mmonia synthesis [J]. Carbon,1996,34:403-409.
    [47]Auer E, Freund A, Pietsch J, et al. Carbons as supports for industrial precious metal catalysts [J]. Appl Catal A:General,1998,173:259-271.
    [48]Kowalczyk Z, Sentek J, Rarog W, et al. Effect of potassium and barium on the stability of a carbon supported ruthenium catalyst for the synthesis of ammonia [J]. Appl Catal A:General,1998,173:153-160.
    [49]Zhong Z, Aika K. Effect of ruthenium precursor on hydrogen treated active carbon supported ruthenium catalysts for a mmonia synthesis [J]. Inorg Chim Acta,1998,280:183-188.
    [50]周忠信,张曼征,陈传正等.钯离子交换树脂催化硝基化合物加氢的性能及其结构研究[J].催化学报,1987,8(1):69-74.
    [51]林辉,史鸿鑫,吴美宁.Pd/C催化剂的制备与活性[J].浙江工业大学学报,1998,6(2):94-97.
    [52]Usman, Yamamoto T, Kubota T, et al. Effect of phosphorus addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene [J]. Appl Catal:A,2007,328(2):219-225.
    [53]Van Veen J A R, Colijn H A, Hendriks P A J M, et al. On the formation of type I and type Ⅱ NiMoS phase in NiMo/Al2O3 hydrotreating catalysts and its catalystic implications [J]. Fuel Proc Tech.,1993,35(1-2):137-157.
    [54]Kwak C, Kim M Y, Choi K. Effect of phosphorus addition on the behavior of CoMoS/Al203 catalyst in the hydrodesulfurization of dibenthiophene and 4, 6-dimethy dibenthiophene [J]. Appl Catal:A,1999,185(1):19-27.
    [55]南军.贵金属选择性加氢催化剂Pd/Al2O3研究[J].石油炼制与化工,2004,8(8):37-40.
    [56]Basile F, Fornasari G. Thermal evolution and catalytic activity of Pd/Mg/Al mixed o xides obtained from a hydrotalcite-type precursor [J]. Applied Clay Science, 2001,3:51-57.
    [57]Lefu Yang, Chunkai Shi, Xiang He, et al. Catalytic combustion of methane over PdO supported on Mg-modifiedal alumina [J]. Applied Catalysis B: Envimmnental,2002,38:117-125.
    [58]穆纬,朱警,戴伟等.选择加氢催化剂载体氧化铝的改性及其工业应用[J].化工进展,2004,23(3):300-307.
    [59]郝茂荣,姚亦淳等.镍基甲烷化催化剂中的助剂作用.稀土氧化物添加剂的电子效应[J].分子催化,1990,4:321-327.
    [60]南军.贵金属选择性加氢催化剂Pd/Al2O3的研究[J].石油炼制与化工,2004,8(8):37-40.
    [61]F.Basile, G Fornasari. Thermal evolution and catalytic activity of Pd/Mg/Al mixed oxides obtained from a hydrotalcite-type precursor [J]. Applied Clay Science,2001,3:51-57.
    [62]Richard B. Pannell, Kingwood, Tex. Halogen resistant hydrotreating process and catalysit [P]. US:5107051(1992).
    [63]Esen M J, Noel W, David L, et al. The effect of metal distribution across pellets on the activity of nickel-tungsten hydrotreating catalysis [J].Journal of Chemical Technology and Biotechnology,1990,47(2):143-149.
    [64]Maatman R.W. Adsorption and exclusion in impregnation of porous catalytic supports [J]. Ind Eng Chem,1957,49:253-7.
    [65]Tewari D M. Studies on the characterization of cholesterol liquid membrane [J]. Journal of Colloid&Interface Science,1987,49(2):253-265.
    [66]Kili K, Le Normand F. Modification of the catalytic properties of palladium by rare earth(La, Ce)addition Catalytic activity and selectivity in hydrocarbon conversion [J]. Journal of Molecular Catalysis A:Chemical,1999,140:267-285.
    [67]Massimo Morbidelli, Asterios Gavriilides, Arvind Varma.催化剂设计-活性组分在颗粒、反应器和膜中的最优分布[M].北京:化学工业出版社,2004.
    [68]过中儒,史鸿鑫.H2PdCl4和金属离子在Al2O3上吸附研究[J].催化学报,1990,11(3):189-194.
    [69]Roberts R M, Benesi H A. A method for studing catalytic hydrogenation of aqueous emnamaldehyde over platinum and nickel wire [J]. Journal of Catal, 1976,9:307-309.
    [70]过中儒,徐慧珍,蒋志成.Pd/Al2O3催化剂制备因素的研究[J].催化学报,1984,5(3):214-219.
    [71]张高良.工业催化剂的生产[M].上海:科学技术出版社,1985.
    [72]Lee Sheng-Yi, et al. The distribution of active ingredients in supported catalysts pred by impregnation [J]. Catal Rev-sci Eng,1985,27(2):207-210.
    [73]Komiyama M. Design and preparatin of impregnated catalysts [J]. Catal Rev-Sci Eng,1985,27(2):341-372.
    [74]Marjan Marinsek, Martin Sala, Bostjan Jancar. A study towards superior carbon nanotubes-supported Pd-based catalysts for formic acid electro-oxidation: Preparation, properties and characterization [J]. Journal of Power Sources,2013, 235:111-116.
    [75]Esen M J, Noel W, David L, et al. The effect of metal distribution across pellets on the activity of nickel-tungsten hydrotreating catalysis [J] Journal of Chemical Technology and Biotechnology,1990,47(2):143-149.
    [76]Maatman R W, et al. Adsorption and exclusion in impregnation of porous catalytic supports [J]. Ind Eng Chem,1957,49:253-257.
    [77]Becker E K, et al. The influence of diffusion on catalyst particle design [J]. J.Catal,1977,46:365-372.
    [78]Tewari D M. Studies on the characterization of cholesterol liquid membrane [J]. Journal of Colloid &Interface Science,1987,49(2):253-265.
    [79]刘寿长.制备高碳醇Cu/Fe系催化剂的比表面积:孔结构和孔径分布[J].分子催化,1999,13(3):199-202.
    [80]Massimo Morbidelli, Asterios Gavriilides, Arvind Varma.催化剂设计-活性组分在颗粒、反应器和膜中的最优分布[M].北京:化学工业出版社,2004.
    [81]艾伯斯P,巴梅斯特R,德尔K等.含有贵金属、活性炭的加氢催化剂的制备方法[P].CN:43081010(1995).
    [82]J.R.安德森.金属催化剂的结构[M].北京:化学工业出版社,1985.
    [83]Massimo Morbidelli, Asterios Gavriilides, Arvind Varma.催化剂设计-活性组分在颗粒、反应器和膜中的最优分布[M].北京:化学工业出版社,2004.
    [84]艾伯斯P,巴梅斯特R,德尔K等.含有贵金属、活性炭的加氢催化剂的制备方法[P].CN:43081010(1995).
    [85]谢炳炎,蔡海林,徐竹生等.Pd/C催化剂在不同气氛中热处理的考察[J].燃烧化学学报,1992,20(2):210-213.
    [86]J.R.安德森.金属催化剂的结构[M].北京:化学工业出版社,1985.
    [87]张晓敏.碳载纳米钯催化剂半工业制备工艺研究[J].贵金属,2002,23(3):35-38.
    [88]寇建朝,张晓听,宗保宁.苯甲酸加氢催化剂Pd/C抗重毒方法研究及应用[J].化工进展,2002,21(10):741-744.
    [89]Cullis C F, et al. The inhibition of hydrocarbon oxidation over supported precious metal catalysts [J]. J.Catal,1984,86(1):187-200.
    [90]Simone D O, et al. Reversible poisoning of palladium catalysts for methane oxidation [J]. J.Catal,1991,70(1):87-100.
    [91]Roth D, et al. Appl. Catalytic behavior of Cl-free and Cl-containing Pd/Al2O3 catalysts in the total oxidation of methane at low tempetature [J]. Catal.A,2000, 203(1):37-45.
    [92]过中儒,史鸿鑫.钯系双金属催化剂的制备及其表面性质[J].催化学报,1993,14(1):14-17.
    [93]Hicks R.F. Effect of catalyst structure on Methane Oxidation over Palladium on Alumina [J]. J.Catal,1990,122(2):295-360.
    [94]Massimo Morbidelli, Asterios Gavriilides, Arvind Varma.催化剂设计-活性组分在颗粒、反应器和膜中的最优分布[M].北京:化学工业出版社,2004.
    [95]马江权,周凯,陆敏等.C5/C9共聚石油树脂的加氢工艺研究[J].江苏工业学院学报,2008,12,20(4):36-39.
    [96]朱明慧等.加氢石油树脂的开发与应用[J].石油化工,1993,22,(12):788-791.
    [97]中国石油化工股份有限公司抚顺石油化工研究院.一种石油树脂加氢脱色的方法[P].CN:102453217A(2012).
    [1]李树棠.X射线衍射实验方法[M].北京:冶金工业出版社,1993,30-42.
    [2]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003,21-30.
    [3]刘文西,黄晓英,陈玉如.材料结构电子显微分析[M].天津:天津大学出版社,1989,50-63.
    [4]朱宜,张存琏.电子显微镜的原理和使用[M].北京:北京大学出版社,1983,30-41.
    [5]Osatake H, Tanaka K, Inoue T. An application of rapid freeze substation fixation for scanning electron microscopy [J]. Journal of Electron Microsc Tech,1985, 2(5):201-208.
    [6]辛勤,罗孟飞.现代催化研究方法[M].科学出版社,2009,229-244.
    [7]高健会,赵良娟,葛宝坤.ICP-MS分析国际比对样品中无机元素含量[J].质谱学报,2006,27(4).
    [1]朱晓军,朱建华.脱氯技术现状与研究进展[J].化工生产与技术,2005,12(1).
    [2]汤杰国,邢卫东.固态脱氯技术在重整催化剂再生系统的开发应用[J].工业催化,2008,3,16(3).
    [3]北京三聚环保新材料股份有限公司.一种常温锌钙脱氯剂及制备方法[P].CN:101269294A(2008).
    [4]南开大学.一种制备新型催化还原脱氯剂的办法[P].CN:101147864A(2007).
    [5]谢洪波,胡国银.JX-5B型脱氯剂在重整装置中的工业应用[J].石油炼制与化工,2009-8-31.
    [6]罗平,李新怀,李耀会.液相脱氯剂的制备及其性能研究[J].石油与天然气化工,2009,39(3):221-222
    [7]Claudia AMORIM. Application of Hydrodechlorination in Environmental Pollution Control:Comparison of the Performance of Supported and Unsupported Pd and Ni Catalysts [J]. Chinese Journal of Catalysis,2011, Vol.32 No.5.
    [8]Han Yuze, Jia Shunchao, Kang Xiaohong. Preparaitono of hydrogenated petroleum resin [P]. CN:1199742(1998).
    [9]Malatesta Alberto, Bossaert Bernard, et al. Production of hydrofined hydrocarbon resins [P].EP:82726(1983).
    [10]鲁佳.γ-Al2O3载体孔结构对负载钯催化剂催化C9石油树脂加氢性能的影响[J].石油化工,2011,40(10).
    [11]孔令艳等.TS-1/过氧化氢催化体系中有机硫化物的选择氧化[J].化学通报2004,10(3):178-185.
    [12]H. R. Reinhoudt, R. Troost, A. D. van Langeveld. The Nature of the Active Phase in Sulfided NiW/γ-Al2O3 in Relationto Its Catalytic Performance in Hydrodesulfurization Reactions [J]. Journal of Catalysis,2001,203:509-515.
    [13]E.J.M. Hensen, Y. van der Meer, J.A.R. van Veen. Insight into the formation of the active phases in supportedNiW hydrotreating catalysts [J]. Applied Catalysis A:General,2007,322:16-32.
    [14]Valeri Petkov, Simon J. L. Billinge, Joy Heising, et al. Application of Atomic Pair Distribution Function Analysis to Materials with Intrinsic Disorder. Three-Dimensional Structure of Exfoliated-Restacked WS2:Not Just a Random Turbostratic Assembly of Layers [J]. Journal of American Chemical Society, 2000,122(47):11571-11576.
    [15]Lilia Y. Lizama, Tatiana E. Klimova. SBA-15 modified with Al, Ti, or Zr as supports for highly active NiW catalysts for HDS [J]. Journal of Mater Science, 2009,44:6617-6628.
    [16]出光兴产株式会社.石油树脂氢化用催化剂及生产氢化石油树脂的方法[P].CN:1662301(2005).
    [17]荒川化学工业株式会社.制备氢化的C9石油树脂的方法和由该方法获得的氢化的C9石油树脂[P].CN:1217966C(2005).
    [18]J. E. Carnahan, T. A. Ford, W. F. Gresham, at al. Nature of the Non-Haem Iron in Ferredoxin and Rubredoxin [J]. Nature 1965,208:769-771.
    [19]Fabing Su, Lu Lv, Fang Yin Lee, at al. Sandwiched Ruthenium/Carbon Nanostructures for Highly Active Heterogeneous Hydrogenation [J]. Adv. Funct. Mater.2007,17,1926-1931.
    [20]Shou Chang Liu, Zhongyi Liu, Zheng Wang, at al. Characterization and study on performance of the Ru-La-B/ZrO2 amorphous alloy catalysts for benzene selective hydrogenation tocyclohexene under pilot conditions [J]. Chemical Engineering Journal,2008,139:157-164.
    [21]Arlette Solladie-Cavallo, Baram Ahmed, Michel Schmitt, at al. Heterogeneous hydrogenation of 1-naphtol and 2-naphtol over Ru/Al2O3:a simple 1H NMR method for determination of the diastereoselectivity [J]. Comptes Rendus Chimie, 2005,8:1975-1980.
    [22]Breysse M, C attenot M, Decamp T, et al. Optimization of the composition of NiW/Al2O3 hydrotreating catalysts using model molecules and real feedstock conversion studies [J]. Catal Today,1988,4(1):7-22
    [23]Yi Xia, Chen Fana, Zi-Lan Zhou. Effect of Zn on the selectivity of Ru in benzene partial hydrogenation from density functional theory investigations [J]. Journal of Molecular Catalysis A:Chemical,2013,370:44-49.
    [24]黄苑.硫化态NiW/Al2O3加氢脱硫催化剂的微观结构[D].华南理工大学硕士学位论文,2005,6-10.
    [25]王锦业,金泽明,李大东等.硫化态NiW/γ--Al2O3加氢脱硫催化剂的微观结构[J].分子催化,2002,16(6),420-422.
    [26]Topsoe H, ClausenB S, MassothF E. Hydrotreating Catalysis [M]. Berlin: Springer,1995,188 (1):36-45.
    [27]孙乃健.曲良龙,金泽明等.制备因素对Ni-W/C催化剂活性及结构的影响[J].催化学报,1994,15(4):257-261.
    [28]Remigijus Jus(?)kenas, Ignas Valsiunas, Vidas Paksw tas. XRD, XPS and AFM studies of the unknown phase formed on thesurface during electrodeposition of NiW alloy [J]. Applied Surface Science,2006,253:1435-1442.
    [29]R. Cury, J-M. Joubert, S. Tusseau-Nenez. On the existence and the crystal structure of Ni4W, NiW and NiW2 compounds [J]. Intermetallics,2009,17: 174-178.
    [30]D. Zuo, D. Lia, H. Niea. Acid-base properties of NiW/Al2O3 sulfided catalysts: relationship withhydrogenation, isomerization and hydrodesulfurization reactions [J]. Journal of Molecular Catalysis A:Chemical,2004,211:179-189.
    [31]杨先春,张馨维.硫化态NiW//γ-Al2O3加氢精制催化剂活性相的化学形态及其表面光谱特性[J].催化学报,1987,8(3):242-249.
    [32]H. R. Reinhoudt, E. Crezee, A. D. van Langeveld. Characterization of the active phase in NiW/γ-Al2O3 catalysts in variousStages of sulfidation with FTIR(NO) and XPS [J]. Journal of Catalysis,2000,196:315-329.
    [33]S. Bendezu, R. Cid, J.L.G. Fierro. Thiophene hydrodesulfurization on sulfided Ni, W and NiW/USY zeolite catalysts:effect of the preparation method [J]. Applied Catalysis A:General,2000,197:47-60.
    [34]Nicola C. King, Ross A. Blackley, M. Lesley Wears. The synthesis of mesoporous silicates containing bimetallic nanoparticles and magnetic properties of PtCo nanoparticles in silica [J]. Chemical Communications,2006,3414-3416.
    [35]Xirong Chen, HanboZou, Shengzhou Chen. Selective oxidation of CO in excess H2 over Ru/Al2O3 catalysts modified with metal oxide [J]. Journal of Natural Gas Chemistry,2007,16:409-414.
    [36]Nikom S Ma, Piyasan P. Color improvement of C9 hydrocarbon resin by hydrogenation over 2%Pd/Al2O3 catalyst:effect of degree of aromatic rings hydrogenation [J]. Journal of Applied Polymer Science,2010,117(3):2862-2869.
    [37]C. Tsukadaa, S. Ogawaa, H. Niwaa. Morphological and spectroscopic studies on enlargement of Pd nanoparticle in L-cysteine aqueous solution by AFM and XPS [J]. Applied Surface Science,2013,267:48-52.
    [38]扈林杰,李大东,曲良龙等.负载贵金属芳烃饱和催化剂抗硫性能研究[J].石油学报,1999,15(3):41-45.
    [1]中国树脂网.近年来我国C5石油树脂生产发展较快[OL].近年我国C5石油树脂的生产发展较快,2010-4-13.
    [2]Nikom Sae-Ma, Piyasan Praserthdam, Joongjai Panpranot, et al. Color improvement of C9 hydrocarbon resin by hydrogenation over 2%Pd/Al2O3 catalyst: effect of degree of aromatic rings hydrogenation [J]. Journal of Applied Polymer Science,2010,117,2862-2869.
    [3]Okazaki T, Nagahara E, Keshi H. Process for producing hydrogenated C9 petroleum resin and hydrogenated C9 petroleum resin obtained process [P]. US:6458902B1 (2002).
    [4]王英龙.石油树脂生产及应用研究进展[J].青岛科技大学学报(自然科学版),2003(S1):
    [5]Nagabara Eiji, Keshi Hirokazu, Okazaki Takumi. Process for producing hydrogenated C9 petroleum resin and hydrogenated C9 petrolum resin obtained by the process [P]. US:6458902 (2000).
    [6]出光兴产株式会社.氢化石油树脂的生产方法[P].China:1726231A (2006)
    [7]汪宝和,刘邦孚.芳烃石油树脂的生产及研究进展[J].现代化工,1997,(6):12-14.
    [8]赵开鹏,韩松.裂解C9芳烃的综合利用[J].石油化工,1999,28(3):205-208.
    [9]贾惠芳,齐民华,严诚.茚基钠/四氢呋喃体系引发丙烯腈聚合的研究[J].化学与生物工程,2007,24(4):37-39.
    [10]刘二保,蔡瑞.芳碱金属布和芍衍生物的制备[J].化学试剂,1994,16(1),3-4.
    [11]D. Zuo, D. Li, H. Nie. Acid-base properties of NiW/Al2O3 sulfided catalysts: relationship with hydrogenation, isomerization and hydrodesulfurization reactions [J]. Journal of Molecular Catalysis A:Chemical,2004, (211)179-189.
    [12]朱全力,赵旭涛,赵振等.加氢脱硫催化剂与反应机理的研究进展[J].分子催化,2006,8,20(4),372-383.
    [13]左东华,谢玉萍,聂红等.4,6-二甲基二苯并噻吩加氢脱硫反应机理的研究:NiW体系催化剂的催化行为[J].催化学报,2002,5,23(3),272-276.
    [14]Erik Berrevoets Middelburg, Jan Van Drongelen Grijpskerke. Process for hydrotreating resins to lighten color [P]. US:5817900(1998).
    [15]Norman E Daughenbaugh, Turtle Creek, Dane G Gooddfellow. Process for hydrotreating resins to lighten color [P]. US:5491214(1996).
    [16]Rolf Mildenberg, Mechthild Zander, Gerd Collin. Hydrocarbon Resins [M]. Willey: New York,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700