用户名: 密码: 验证码:
有机钙盐协同脱除SO_2和NO的实验研究与机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤电厂排放SO2和NO引起严重的环境问题,亟待开发能保障电厂经济性的SO2和NO协同脱除技术。初步研究表明,羧酸类有机钙盐可对这两种污染物进行联合脱除,但对有机钙盐热解、脱硫以及脱硝等反应机理认识还存在许多不完善地方,不利于有机钙盐对燃煤电厂SO2和NO协同脱除工业化应用。
     本文以丙酸钙(Calcium Propionate,CP)、丙酸调质氢氧化钙产物(Modified Calcium hydroxide by Propionic acid, MCP)以及丙酸调质氢氧化钙与氧化镁产物(Modified Calcium hydroxide and Magnesium oxide by Propionic acid, MCMP)这3种有机钙盐为研究对象,从实验、动力学参数计算和机理分析等角度,对它们的热解、固硫和脱硝机理以及协同脱除SO2和NO反应特性和反应机理进行探索。
     在热分析天平实验系统上研究有机钙盐热解特性,通过非预置模型法和预置模型法计算热解过程动力学参数,揭示有机钙盐热解机理。与碳酸钙(Calcium Carbonate, CC)不同,有机钙盐热解曲线由有机气体和CO2析出构成。在一定范围内提高O2浓度或者降低升温速率,有机钙盐热解曲线向低温段推进。相对于O2/N2气氛,有机钙盐CO2析出在O2/CO2气氛下向高温阶段延迟。析出的有机气体在还原性气氛下可以促成再燃脱硝,固体钙基产物能够进行固硫,在理论上保证有机钙盐对SO2和NO协同脱除。扫描电镜微观结构分析表明,相比较无机钙,有机钙盐固体热解产物颗粒度更小,结构更为疏松。
     根据非预置模型法的Ozawa-Flynn-Wall法和Vyazovkin法计算所得MCP和MCMP在N2气氛下热解表观活化能数值接近,MCP值分别为146-735kJ/mol和138-761kJ/mol, MCMP值分别为370-474kJ/mol和375-490kJ/mol, Avrami理论计算MCP和MCMP反应级数值分别为0.050-0.386和0.090-0.649。根据Ozawa-Flynn-Wall法计算CP和CC在O2/N2气氛下热解过程表观活化能,CP和CC值分别为83-346kJ/mol和193-202kJ/mol,根据Avrami理论计算反应级数,CP和CC值分别为0.061-0.608和1.647-2.084。模型预置法的Coats-Redfern法计算CP和MCP热解动力学参数表明,4级化学反应模型(C4)可以解释CP和MCP在O2/N2以及O2/CO2气氛下热解时,第二失重阶段热解机理,而1级和4级扩散模型(D1和D4)分别揭示它们在O2/N2和O2/CO2气氛下第三失重阶段热解机理,同时,O2/CO2气氛下计算的表观活化能数值明显高于O2/N2气氛下的相应值。
     在快速智能定硫仪实验系统上表征CP、MCP和MCMP固硫率,得出有机钙盐对煤燃烧过程固硫特性。1323K时,以钙硫摩尔比(Ca/S)为1和1.5的量添加CP,龙口褐煤(brown coal, BC)固硫率分别为69.80%和57.08%。1223K和1323K时,Ca/S为2的MCP对聊城贫煤(lean coal, LC)固硫率分别为73.46%和65.40%。无机钙效果不好,1323K时,Ca/S为2的CC对BC和LC固硫率分别只有34.08%和40.07%。
     通过热分析天平实验系统,分析CP和MCP固硫过程中CaO转化率,探讨有机钙盐与烟气中SO2作用的固硫特性,并借助等效粒子模型分析固硫过程的机理特征。1323K时,CP和MCP的CaO转化率分别为44.32%和54.95%,是CC相应值的5.49倍和6.80倍。采用等效粒子模型对表面化学反应控制阶段的Gfp(χ)~t以及产物层扩散控制阶段的Pfp(χ)~t进行拟合,能取得良好线性关系。高温下拟合直线斜率得到提高,固硫反应进程得到强化。
     在沉降炉实验系统上研究CP、MCP以及MCMP再燃还原NO特性。1323K时,CP、MCP和MCMP效率分别为79.65%、76.36%和72.65%,与生物质的效率值相当,并且远高于煤粉的脱硝效率。为达到较好脱硝效果,有机钙盐再燃比应维持在25%附近,O2浓度不宜超过4%,并且应保证0.65s左右停留时间。氨气和尿素的选择性非催化还原脱硝进程都有非常明显“温度窗口”,分别在1273K和1223K达到脱硝峰值,氨气的氨氮摩尔比为1.75和1.25时,效率值为85.34%和79.32%,尿素的氨氮摩尔比为2和1.5时,效率值为78.89%和70.19%。综合考虑NO还原率和氨剂有效利用率,氨气和尿素的氨氮摩尔比以1.5-2为宜。提高O2浓度,氨气和尿素的脱硝强度都遭到削弱,同时反应区应保持0.60s左右停留时间。CP和MCMP先进再燃脱硝效率明显高于基本再燃和选择性非催化还原相应值,再燃比为19.83%、氨氮摩尔比为0.8时,CP和MCMP在1273K最高效率值分别为93.37%和91.74%。在再燃燃料和氨气共同作用下,先进再燃“温度窗口”明显拓宽,并且O2浓度从2%提高到6%,脱硝效率降低不再明显,同时,以氨氮摩尔比为0.8的量添加氨气,就能保证CP和MCMP先进再燃的脱硝效率接近同等条件下的最高值。
     在固定床实验系统上研究CP、MCP和MCMP对煤燃烧过程中SO2和NO协同脱除特性和反应规律。在1073-1373K温度区间,这3种有机钙盐均能表现出很好的SO2脱除效果。Ca/S为2时,CP对BC和LC的SO2脱除率最高值分别为66.01%和71.72%,MCP的SO2脱除率最高值分别为67.20%和69.85%,MCMP的SO2脱除率最高值分别为70.72%和67.06%,均高于同等条件下CaO相应值。有机钙盐对NO的脱除表现在1173K以上温度区,Ca/S为2.5时,CP对BC和LC的NO脱除率最高值分别为49.38%和50.15%,MCP的NO脱除率最高值分别为47.57%和56.44%,MCMP的NO脱除率最高值分别为46.19%和56.67%。同时,添加有机钙盐后,煤粉的着火温度、失重峰温度以及转化率曲线向低温区移动,并且失重峰降低,失重半峰宽值增大。预置模型法的动力学参数计算表明,有机钙盐的添加,降低煤燃烧过程的表观活化能,使反应易于进行。
     在沉降炉实验系统上研究CP对烟气中SO2和NO的协同脱除特性。在1500×10-6的SO2作用下,随着O2浓度的变化,丙酸钙基本再燃的脱硝趋势与不含SO2时一样,但脱硝效率比不含SO2时有所提高。钙基固硫过程是一个需氧过程,在2-6%的O2浓度范围内,提高其值,能够强化丙酸钙对SO2的脱除能力。与基本再燃一样,SO2同样能够强化先进再燃的脱硝能力,但由于它自身的效率已较高,所以在1273K时,1500×10-6的SO2仅将其效率值提高1.96%(O2浓度4%)和2.03%(O2浓度6%)。但另一方面,氨气的加入并未对SO2的脱除产生明显的影响,1273K时,在2%、4%和6%的O2浓度条件下,先进再燃的SO2脱除效率仅比基本再燃时分别提高1.19%、0.67%和0.53%。
     在耦合戊酮和小分子碳氢化合物燃烧模型以及它们与NO相互反应模型基础上,建立包含453个基元反应和110种反应物质的反应机理,通过动力学模拟软件Chemkin,描述丙酸根类有机钙盐基本再燃脱硝反应本质。基元反应H+O2=O+OH对基本再燃脱硝进程影响最大,它产生的链锁反应能强化HCO、CH3、CH2、CH2CO、CH2O、CH2OH、CH3O、HOCHO等与NO的反应。对选择性非催化还原进程有重要影响的连锁分支反应系数ζ为0.29,这个值能够保证反应自维持进行,而NH2+NO=NNH+OH和NH2+NO=N,+H2O对氨剂脱除NO作用最大。在再燃燃料和氨剂共同作用下,反应H+O2=O+OH对NO还原的敏感性系数,相对于其它反应来说,其值更大,同时反应NH2+NO=NNH+OH和NH2+NO=N2+H2O对于NO浓度改变(向减小方向发展)所作的贡献比例也较选择性非催化还原时大。另一方面,C1型碳氢化合物对NO的还原能力要强于C2型,所以当需要平衡氨气与碳氢化合物的效果以达到优化反应进程的目的时,尽量使用C1型小分子化合物,而对于反应物质为C5等较大的分子来说,则应促进其向尽量小的碳氢化合物转变。
     在SO2的作用下,不仅H+O2=O+OH、C2H2+O=HCCO+H等原有基元反应活性有所提高,而且催生H+SO2=HOSO等新的基元反应,它们能够产生一系列的链锁反应,使得O以及OH等活性基团的浓度大大提高,从而强化脱硝进程。同时,含硫中间产物直接参与到NO的还原反应中,引发SN+NO=N2+SO、CH2(S)+NO=HCN+OH等新的基元反应,这些都使得当烟气中添加SO2时,丙酸钙基本再燃以及先进再燃的脱硝效率有所提高。
Sulfur dioxide (SO2) and nitric oxide (NO), which are relased from coal fired power plants, have brought about serious environmental problems and it is urgent to explore economical technologies to reduce SO2 and NO simultaneously. Previous studies proved that the calcium based carboxylic materials could be used to abate these two pollutant gases together. However, the mechanisms for thermal decomposition, desulfurization and denitrification of calcium based organic compounds have not been well acknowledged.
     The calcium propionate (CP), modified calcium hydroxide by propionic acid (MCP) and modified calcium hydroxide and magnesium oxide by propionic acid (MCMP) are mainly mentioned in this study and their reaction characteristics and mechanisms on SO2 and NO dual reduction are investigated from experiments, kinetic calculations and mechanism analysis.
     Thermal decomposition characteristics are investigated through thermogravimetric (TG) and the kinetic parameters are calculated through model-free and model-fitting approach. Different from calcium carbonate (CC), there are two mass loss segments, which are the release of the organic gas and carbon dioxide (CO2), during the thermal decomposition process of CP, MCP and MCMP. Enriching oxygen concentration or reducing temperature heating rate, thermal events of the calcium based organic compounds are prompted towards lower temperature zone. At the same time, O2/CO2 atmosphere, which is compared with O2/N2 atmosphre, leads the CO2 release segment moving higher temperature zone. The released organic gas favors reburning for NO reduction and the solid residual product could capture SO2. Meanwhile, the scanning electron microscrope analysis shows that the grain diameter of CP and MCMP is obviously smaller than the one of CaCO3 after calcinations at 1173K. Also, the whole structure of these two calcium based organic compounds is more dispersed and the pole is more magnified.
     The values of apparent activation energy, which are calculated through model-free approach of Ozawa-Flynn-Wall method and Vyazovkin method, are close to each other. The values for MCP are 146-735kJ/mol and 138-761 kJ/mol and for MCMP are 370-474kJ/mol and 375-490kJ/mol. The reaction orders, calculated through Avrami theory, are 0.050-0.386 and 0.090-0.649, respectively, for MCP and MCMP. Based on Ozawa-Flynn-Wall method, values of apparent activation energy for CP and CC under O2/N2 atmosphere are 83-346kJ/mol and 193-202kJ/mol and their reaction orders are 0.061-0.608 and 1.647-2.084 from Avrami theory. Kinetic calculations through model-fitting approach of Coats-Redfern method show that reaction model of the fourth order of chemical reaction (C4) properly describes the reaction mechanism of the second mass loss segment for both CP and MCP under either O2/N2 or O2/CO2 atmosphere and for the third mass loss segment of CP and MCP, one-way transport of diffusion mechanism (D1) and Ginstling-Brounshtein equation of diffusion mechanism (D4) are fit for the O2/N2 atmosphere and O2/CO2 atmosphere, respectively. At the same time, the apparent activation energy values achieved under O2/CO2 atmosphere are much higher than the ones achieved under O2/N2 atmosphere.
     Performances of CP, MCP and MCMP on desulfurization during coal combustion are labeled through the fast intelligent sulfur fixing experimental system. At 1323K, the desulfurization efficiency of 69.80% and 57.08% for brown coal (BC) could be achieved by CP at Ca/S equaling to 1 and 1.5, respectively. At 1223K and 1323K, desulfurization efficiency of 73.46% and 65.40% could be achieved for lean coal (LC) if MCP is added at Ca/S of 2. At the same time, the inorganic compound of CC behaves poorly and at 1323K, the desulfurization efficiency of only 34.08% and 40.07% could be achieved, respectively, for BC and LC, if CC is added at Ca/S equaling to 2.
     Characteristics of calcium based organic compounds on sulfur fixing are investigated through analyzing the CaO conversion of CP and MCP on thermogravimetric analyzer. At 1323K, the values are 44.32% and 54.95% for CP and MCP, which are 5.49 times and 6.80 times of CC. The modified grain model is applied to deal with the data of both the surface reaction segment of Gfp(χ)~t and the product layer diffusion reaction segment of Pfp(χ)~t and the satisfying linear relationship is achieved through the linear regression process. In higher temperature zone, the slope of the regression line is increased and the sulfation progress gets strength.
     Investigations on NO reduction through CP, MCP and MCMP reburning are conducted on the drop tube experimental system. At 1323K, NO reduction efficiency of 79.65%,76.36% and 72.65% could be achieved through basic reburning (BR) of CP, MCP and MCMP, respectively. These values are comparable with the ones of biomass and obviously higher than the ones of coal powder. At the same time, for satisfying outcome, the reburnign fuel fraction should be kept about 25%, oxygen concentration is normally lower than 4% and the residence time of 0.65s is acquired. There is a distinct "temperature window" for both ammonia based and urea based selective non-catalytic reduction (SNCR). At 1273K, ammonia performs best and the NO reduction efficiency is 85.34% and 79.32%, respectively, at mole ratio of N-reducing agent to NO of 1.75 and 1.25. At 1223K, urea achieves the best performances and the efficiency is 78.89% and 70.19%, respectively, at mole ratio of N-reducing agent to NO of 2 and 1.5. Taking NO reduction efficiency and ammonia reagent utilization into consideration, mole ratio of N-reducing agent to NO is normally 1.5-2. Increaing O2 concentration, the NO reduction is weakened for both ammonia and urea. Also, residence time is required about 0.60s. NO reduction achieved during CP and MCMP advanced reburning (AR) is obviously high than the one in SNCR and BR. At reburning fuel fraction of 19.83% and mole ratio of N-reducing agent to NO of 0.8, CP and MCMP achieve the best performances at 1273K and their values are 93.37% and 91.74%, respectively. The "temperature window" is obviously broadened and as oxygen concentration is increased from 2% to 6% in AR, NO reduction gets a lower depression compared with BR. At the same time, quantity of ammonia reagent injection, which is required at mole ratio of N-reducing agent to NO of 0.8 in AR, could show satisfying outcome.
     Characteristics of CP, MCP and MCMP on SO2 and NO dual reduction during BC and LC combustion process are investigated on fixed bed experimental system. From 1073K to 1373K, CP, MCP and MCMP perform well on desulfurization. At mole ratio of calcium compounds to sulfur of 2. CP acquires the highest SO2 reduction efficiency of 66.01% and 71.12%. The values for MCP are 67.20% and 69.85% and for MCMP are 70.72% and 67.06%. And all these values are higher than the ones of CaO. NO reduction of calcium based organic compounds exists in temperature zone higher than 1173K. At mole ratio of calcium compounds to sulfur of 2.5, the highest efficiency of CP for BC and LC is 49.38% and 50.15%. The values of MCP are 47.57% and 56.44% and of MCMP are 46.19% and 56.67%. With addition calcium based organic compound, the ignition temperature, the maximum mass loss rate temperature and the conversion curve are shifted towards lower temperature zone. Also, the maximum mass loss rate is reduced and the half peak width is broadened. Kinetic calculations through model-fitting approach shows that calcium based organic compounds decrease the apparent activation energy to make the coal combustion more easily occur.
     Performances of CP on SO2 and NO dual reduction in post combustion flue gas are conducted on the drop tube furnace experimental system. Under the effect of 1500×10-6 of SO2, the CP basic reburning performance is improved. Calcium sulfuration needs oxygen participation and as oxygen concentration is increased from 2% to 6%, desulfurization of CP is continuously reinforced. Like basic reburning, SO2 intensifies NO reduction of advanced reburning. As AR itself could gain high efficiency, promotion of 1500×10-6 SO2 on NO reduction at 1273K is only 1.96% and 2.03%, respectively, for oxygen concentration of 4% and 6%. However, addition of ammonia makes little sense on SO2 reduction. At 1273K, improvement of SO2 reduction during advanced reburning over basic reburning is just 1.19%,0.67% and 0.53% for oxygen concentration of 2%, 4% and 6%, respectively.
     With the combination of 3-pentanone combustion model, small molecule hydrocarbon compounds combustion model and reaction model between hydrocarbon compounds and NO, the kinetic model, which includes 453 elementary reactions and 110 species, is established to describe the NO reduction reaction mechanism by propionic acid based compounds reburning.
     Elementary reaction H+O2=O+OH makes the greatest contribution to NO reduction and it could supply plenty of active radical OH through chain reaction. As a result, the NO reductions through HCO, CH3, CH2, CH2CO, CH2O, CH2OH, CH3O, HOCHO get strength. The key parameter for NO reduction of the chain branching ratio is 0.29 in this investigation and this value could guarantee the process self-sustaining. At the same time, elementary reactions of NH2+NO=NNH+OH and NH2+NO=N2+H2O play the most important role in NO reduction. Under the combined effect of reburning fuel and ammonia, sensitivity coefficient of elementary reaction H+O2=O+OH gains the largest value. Also, NH2+NO=NNH+OH and NH2+NO=N2+H2O make a greater contribution to NO in comparison with SNCR. Meanwhile, C1 hydrocarbon compounds show a stronger ability in NO reduction than C2 hydrocarbon compounds.
     Under the effect of SO2, not only the existent elementary reactions of H+O2=O+OH and C2H2+O=HCCO+H get strength, but also new elementary reactions of H+SO2=HOSO are generated. More active radical, like OH and O, are produced and the NO reduction is subsequently intensified. At the same time, the sulfur-containing intermediate products are participated in NO reduction, triggering a series of new reactions, like, SN+NO=N2+SO, and CH2 (S)+NO=HCN+OH. All of these factors make contributions to improvement in NO reduction with SO2 addition during basic reburning and advanced reburning.
引文
[1]郭金瑞,许华明.世界一次能源消费分析[J].资源与产业,2010,12(1):28-32.
    [2]汪莉丽,王安建,王高尚.全球能源消费碳排放分析[J].资源与产业,2009,11(4):6-15.
    [3]Yuan C Q, Liu S F, Xie N M. The impact on Chinese economic growth and energy consumption of the Global Financial Crisis:An input-output analysis[J]. Energy,2010,35(4):1805-1812.
    [4]Li Y J, Zhao C S, Chen H C, Liang C, Duan L B, Zhou W. Modified CaO-based sorbent looping cycle for CO2 mitigation[J]. Fuel,2009,88(4):697-704.
    [5]Soytas U, Sari R. Energy consumption and income in G-7 countries[J]. Journal of Policy Modeling,2006,28(7):739-750.
    [6]李英杰,赵长遂.碳酸钙循环煅烧-碳酸化吸收CO2的热力学分析[J].热能动力工程,2008,23(3):306-310.
    [7]Li F, Dong S C, Liang Q X, Yang W Z. Energy consumption-economic growth relationship and carbon dioxide emissions in China[J]. Energy Policy,2011,39(2):568-574.
    [8]Yuan C Q, Liu S F, Wu JL. The relationship among energy prices and energy consumption in China[J]. Energy Policy,2010,38(1):197-207.
    [9]吴晓蔚,朱法华,杨金田,周道斌,燕丽,腾农,易玉萍.火力发电行业温室气体排放因子测算[J].环境科学研究,2010,23(2):170-176.
    [10]Franco A, R.Diaz A. The future challenges for "clean coal technologies":Joining efficiency increase and pollutant emission control[J]. Energy,2009,34(3):348-354.
    [11]朱成章.关于我国电力与一次能源的比例关系[J].电力技术经济,2003,15(5):15-17.
    [12]You C F, Xu X C. Coal combustion and its pollution control in China[J]. Energy, 2010,35(11):4467-4472.
    [13]刘孜,易斌,高晓晶,井鹏,岳涛,庄德安.我国火电行业氮氧化物排放现状及减排建议[J].环境保护,2008,(16):7-10.
    [14]Li Y J, Zhao C S, Chen H C, Duan L B, Chen X P. CO2 capture behavior of shell during calcinations/carbonation cycles[J]. Chemical Engineering Technology,2009,32(8):1176-1182.
    [15]刘慧亮,张晶,郑利霞.我国燃煤电厂氮氧化物控制现状及建议[J].内蒙古环境科学,2009,21(5):67-69.
    [16]王淑娜,孙根年.中国1991年至2007年火力发电-燃煤消耗-SO2排放关系的分析[J].资源科学,2010,32(7):1230-1235.
    [17]Li Y J, Zhao C S, Duan L B, Liang C, Li Q Z, Zhou W. Chen H C. Cyclic calcinations/carbonation looping of dolomite modified with acetic for CO2 capture[J]. Fuel Processing Technology,2008,89(12):1461-1469.
    [18]董文彬.中国火电行业氮氧化物中长期控制方案和技术经济研究[D].南京:南京信息工程大学,2008.
    [19]van Thriel C, Schaper M, Kleinbeck S, Kiesswetter E, Blaszkewicz M, Golka K, Nies E, Raulf-Heimsoth M, Bruning T. Sensory and pulmonary effects of acute exposure to sulfur dioxide (SO2)[J]. Toxicology Letters,2010,196(1):42-50.
    [20]Lewtas J. Air pollution combustion emissions:Characterization of causative agents and mechanism associated with cancer, reproductive and cardiovascular effects[J]. Review in Mutation Research,2007,636(1-3):95-133.
    [21]樊兆燕.工业废弃物用于湿法脱硫的试验研究[D].济南:山东大学,2008.
    [22]王智化.燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D].杭州:浙江大学,2005.
    [23]肖翠微.工业锅炉中氮氧化物的生成与控制[J].洁净煤技术,2010,16(5):76-79.
    [24]杨冬,徐鸿,陈海平.燃煤循环流化床锅炉N2O排放影响因素分析[J].洁净煤技术,2010,15(6):63-67,102.
    [25]崔志刚,韩向新,刘建国,姜秀民.油页岩循环流化床N2O排放量的灰色关联[J].煤炭转化,2008,31(3):19-22.
    [26]Zhong Y, Gao X, Huo W, Luo Z Y, Ni M J, Cen K F.A model for performance optimization of wet flue gas desulfurization systems of power plants[J]. Fuel Processing Technology,2008, 89(11):1025-1032.
    [27]马英,周洪光.无旁路烟道的湿法脱硫系统运行研究[J].热力发电,2010,39(8):96-97.
    [28]Kallinikos L E, Farsari E I, Spartinos D N, Papayannakos N G. Simulation of the operation of and industrial wet flue gas desulfurization system[J]. Fuel Processing Technology,2010, 91 (12):1794-1802.
    [29]杨爱勇,韦飞,祝业青,惠润堂,颜俭.影响湿法脱硫烟气系统电耗的因素[J].节能与环保,2010,(3):41-42.
    [30]惠润堂,胡宇峰.湿法脱硫系统设计与运行过程中的节能提效措施[J].电力科技与环保,2010,26(4):48-49.
    [31]Steven A B, Jason D L, Charlene R C, John H P. SCR catalyst performance in flue gases derived from subbituminous and lignite coals[J]. Fuel Processing Technology,2005,25(5):577-613.
    [32]张强,许世森,王志强.选择性催化还原烟气脱硝技术进展及工程应用[J].热力发电,2004,33(4):1-6.
    [33]Joshua R S, Christopher J Z, Bruce C F, Donald P M. Bench-scale study of interactions between flue gas and cofired ash in an SCR[J]. Fuel,2006,85(17-18):2439-2444.
    [34]Gregrio M, Raquel A, Antonio B F. Low-temperature SCR of NOx with NH3 over activated carbon fiber composite-supported metal oxides[J]. Applied Catalysis B:Environmental,2003, 41(3):323-338.
    [35]邹斯诣.选择性催化还原(SCR)脱硝技术应用问题及对策[J].节能技术,2009,27(6):510-512.
    [36]Nimmo W, Patsias A A, Hall W J, Williams P T. Characterization of a Process for the In-Furnace Reduction of NOx, SO2 and HCl by Carboxylic Salts of Calcium[J]. Industrial and Engineering Chemistry Research,2005,44(12):4484-4494.
    [37]肖海平,周俊虎,刘建忠.醋酸钙镁高温脱硫脱硝实验研究[J].中国电机工程学报,2007,27(35):24-27.
    [38]胡满银,赵雪姣,刘忠,王亚慧.天然气再燃添加有机酸盐同时降低SO2及NOx的机理研究[J].电力环境保护,2007,23(2):14-17.
    [39]Adanez J, de Diego L F, Garcia-Labiano F. Calcination of calcium acetate and calcium magnesium acetate:effect of the reacting atmosphere[J]. Fuel,1999,78(5):583-592.
    [40]牛胜利,路春美,韩奎华.O2/N2与O2/CO2气氛下煤燃烧NO析出特性[C].2008年中国工程热物理学会学术会议论文,2008,137.
    [41]王永征.电力用煤燃烧污染物协同析出与排放特性研究[D].济南:山东大学,2007.
    [42]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社,2000.44-47.
    [43]Bonnie C, Yiannis A L. A laboratory study on the NO, NO2, SO2, CO and CO2 emissions from the combustion of pulverized coal, municipal waste plastics and tires[J]. Fuel,1998,77(3):183-196.
    [44]刘新玲.2000-2005年山东省大气污染变化特征分析[D].济南:山东大学,2008.
    [45]Hu Y, Naito S, Kobayashi N, Hasatani M. CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases[J]. Fuel,2000,79(5):1925-1932.
    [46]路春美,王永征.煤燃烧理论与技术[M].北京:地震出版社,2001.167-189.
    [47]鲍江,刘尔康,关瑞.煤中可燃硫直接测定法初步探讨[J].煤质技术,2007,(2):11-12.
    [48]郑艳琳,李福利.燃煤二氧化硫排放量的回归测算模型[J].能源环境保护,2009,23(3):47-50.
    [49]党民团,刘娟.煤中可燃硫的快速测定[J].理化检验-化学分册,2005,41(8):602-603.
    [50]汤株宁,文新宇.煤中全硫测定的不确定度分析[J].仪器仪表与分析监测,2008,(2):42-44.
    [51]路春美,程世庆,王永征,韩奎华,赵建立.循环流化床锅炉设备与运行(第二版)[M].北京:中国电力出版社,2008.126-131.
    [52]韩奎华.山东电力用煤燃烧硫析出规律的试验研究[D].济南:山东大学,2004.
    [53]李英杰.黄台电厂贫煤以燃用混煤硫释放特性试验研究[D].济南:山东大学,2005.
    [54]段玉亲.煤中形态硫在热解过程中的转化和迁移规律[D].太原:太原理工大学,2010.
    [55]刘全润.煤的热解转化和脱硫研究[D].大连:大连理工大学,2005.
    [56]朱启军.煤炭洗选技术应用探析[J].科技与生活,2010,(21):129.
    [57]郭有.动力煤洗煤经济效益分析[J].选煤技术,2010,(4):61-64.
    [58]赵勇,王艾青.浅谈煤转化技术的发展现状和应用前景[J].洁净煤技术,2008,(5):43-47.
    [59]王秋颖,顾璠.等离子体技术转化煤的应用[J].节能,2009,28(11):8-12,39.
    [60]Shi L M, Liu G S, Higgins B S, Benson L. Computational modeling of furnace sorbent injection for SO2 removal from coal-fired utility boilers[J]. Fuel Processing Technology,2011,92(3):372-378.
    [61]刘岩,王卫兵,李鹏.基于DCS的循环流化床炉内喷钙脱硫控制系统的设计与实现[J].哈尔滨理工大学学报,2009,14(5):56-59.
    [62]Cheng J, Zhou J H, Liu J Z, Zhou Z J, Huang Z Y, Cao X Y, Zhao X, Cen K F. Sulfur removal at high temperature during coal combustion in furnace:a review[J]. Progress in Energy and Combustion Science,2003,29(5):381-405.
    [63]李英杰,韩奎华,路春美,赵建立,赵改菊.流化床锅炉温度条件下钙基工业废弃物的固硫反应性能[J].化工学报,2010,61(3):712-719.
    [64]Adanez J, Fierro V, Garcia-Labiano F, Palacios J M. Study of modified calcium hydroxides for enhancing SO2 removal during sorbent injection in pulverized coal boilers[J]. Fuel,1997, 76(3):257-265.
    [65]刘雪松.层燃炉炉内高温燃烧喷钙脱硫的试验研究[D].杭州:浙江大学,2002.
    [66]Kallinikos L E, Farsari E I, Spartinos D N, Papayannakos N G. Simulation of the operation of an industrial wet flue gas desulfurzation system[J]. Fuel Processing Technology,2010, 91(12):1794-1802.
    [67]张兴法,阮翔.湿法烟气脱硫系统脱硫效率影响因素分析[J].能源环境保护,2010,24(3):41-44.
    [68]Zhou Y G, Peng J, Zhu X, Zhang M C. Hydrodynamics of gas-solid flow in the circulating fluidized bed reactor for dry flue gas desulfurization[J]. Powder Technology,2011, 205(1-3):208-216.
    [69]王雪芹,吕宝航,刘江玲.干法烟气脱硫技术研究现状及进展[J].天津化工,2008,22(6):4-6.
    [70]Zhou Y G, Zhu X, Peng J, Liu Y B, Zhang D W, Zhang M C. The effect of hydrogen peroxide solution on SO2 removal in the semidry flue gas desulfurization process[J]. Journal of Hazardous Materials,2009,170(1):436-442.
    [71]李振文.半干法烟气脱硫控制系统设计研究[D].济南:山东大学,2008.
    [72]Jones J M, Patterson P M, Pourkashanianand M, Williams A. Approaches to modeling heterogeneous char NO formation/destruction during pulverized coal combustion[J]. Carbon,1999, 37(10):1545-1552.
    [73]牛志刚.煤、水煤浆燃料氮析出特性和燃料型NOx生成特性研究[D].杭州:浙江大学,2004.
    [74]Liu Y H, Che D F. Release of NO and its precursors from coal combustion in a fixed bed[J]. Fuel Processing Technology,2006,87(4):355-362.
    [75]Pershing D W, Wendt J O L. Pulverized coal combustion:The influence of flame temperature and coal composition on thermal and fuel NOx[J]. Symposium (International) on Combustion,1977. 16(1):389-399.
    [76]谭松.煤粉燃烧过程中NOx排放的数值模拟[D].上海:上海交通大学,2005.
    [77]周永刚,邹平国,赵虹.燃煤特性影响燃料N转化率试验研究[J].中国电机工程学报,2006,26(15):63-67.
    [78]Hill S C, Smoot D. Modeling of nitrogen oxides formation and destruction in combustion systems[J]. Progress in Energy and Combustion Science,2000,26(4-6):417-458.
    [79]van der Lans R P, Glarborg P, Dam-Johansen K. Influence of process parameters on nitrogen oxide formation in pulverized coal burners[J]. Progress in Energy and Combustion Science,1997, 23(4):349-377.
    [80]李振中,冯兆兴,王阳,李成之,黄其励.煤粉双垂直浓淡燃烧降低NOx排放及稳燃技术的研究[J].中国电机工程学报,2003,23(11):184-188.
    [81]Diez L I, Cortes C, Pallares J. Numerical investigation of NOx emissions from a tangential ly-fired utility boiler under conventional and overfire air[J]. Fuel,2008, 87(7):1259-1269.
    [82]张成毅,李帆,荣庆兴.天然气燃烧低NOx排放研究现状和趋势[J].上海煤气,2005,(4):31-34.
    [83]游小清,郑楚光,郑瑛.SO2对氮氧化物生成的影响[J].煤炭转化,2002,25(4):45-49.
    [84]姜涌,夏明明,覃绍亮.热力型NOx的抑制[J].电站系统工程,2005,21(2):25-26.
    [85]马保国,李相国,胡贞武,蹇守卫,张平均.煤燃烧过程中NOx的形成及控制技术[J].武汉理工大学学报,2004,26(4):33-35,41.
    [86]刘明君,董增寿,张凤春,王云.高温低氧燃烧火焰中氮氧化物的估计[J].计算机与数字工程,2008,36(5):147-149.
    [87]张瑞峰.燃气高温低氧燃烧温度场及NOx排放特性的研究[D].南京:南京理工大学,2009.
    [88]钟水库,马宪国,赵无非,眭向荣.高温低氧燃烧过程中NOx排放规律研究[D].热能动力工程,2004,19(5):483-486.
    [89]Spliethoff H, Greul U, Rudiger H, Hein K RG. Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility[J]. Fuel,1996,75(5):560-564.
    [90]佐双吉.空气分级燃烧降低NOx排放技术的研究[D].保定:华北电力大学,2006.
    [91]张海燕.空气分级燃烧降低煤粉燃烧过程中氮氧化物的研究[D].上海:上海交通大学,2003.
    [92]Smoot L D, Hill S C, Xu H. NOx control through reburning[J]. Progress in Energy and Combustion Science,1998,24(5):385-408.
    [93]Su Y X, Gathitu B B, Chen W Y. Efficient and cost effective reburning using common wastes as fuel and additives[J]. Fuel,2010,89(9):2569-2582.
    [94]Su S, Xiang J, Sun L S, Hu S F, Zhang Z X, Zhu J M. Application of gaseous fuel reburning for controlling nitric oxide emissions in boiler[J]. Fuel Processing Technology,2009,90(3):396-402.
    [95]巩志强.生物质直接再燃脱硝特性试验研究[D].济南:山东大学,2008.
    [96]Ballester J, Ichaso R, Pina A, Gonzalez M A, Jimenez S. Experimental evaluation and detailed characterisation of biomass reburning[J]. Biomass and Bioenergy,2008,32(10):959-970.
    [97]Casaca C, Costa M. NOx control through reburning using biomass in a laboratory furnace: Effect of particle size[J]. Proceeding of the Combustion Institute,2009,32(2):2641-2648.
    [98]徐向乾.生物质掺煤混烧氮析出规律及再燃脱硝特性试验研究[D].济南:山东大学,2008.
    [99]Zhong B J, Shi W W, Fu W B. Effects of fuel characteristics on the NO reduction during the reburning with coals[J]. Fuel Processing Technology,2002,79(2):93-106.
    [100]Chen W Y, Gathitu B B. Design of mixed fuel for heterogeneous reburning[J]. Fuel, 2006,85(12-13):1781-1793.
    [101]韩奎华,刘志超,高攀,路春美,程中杰,丁立新.生物质再燃脱硝特性的试验研究[J].煤炭学报,2008,33(5):570-574.
    [102]Zarnitz R, V.Pisupait S. Evaluation of the use of coal volatiles as reburning fuel for NOx reduction[J]. Fuel,2007,86(4):554-559.
    [103]Adams B R, Harding N S. Reburning using biomass for NOx control[J]. Fuel Processing Technology,1998,54(1-3):249-263.
    [104]高攀,路春美,阮磊,刘志超.生物质再燃脱硝特性研究[J].热能动力工程,2008,23(4):429-433.
    [105]Cances J, Commandre J M, Salvador S. Dagaut P. NO reduction capacity of four major solid fuels in reburning conditions-Experiments and modeling[J].2008.87(3):274-289.
    [106]牛胜利,路春美,赵建立,郭鲁阳,刘志超.O2/CO2气氛下煤粉的燃烧规律与动力学特性[J].动力工程,2008,28(5):769-773.
    [107]李英杰,赵长遂,段伦博.O2/CO2气氛下煤燃烧产物的热力学分析[J].热能动力工程,2007,22(3):332-335.
    [108]Niu S L, Lu C M, Han K H, Zhao J L. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere[J]. Journal of Thermal Analysis and Calorimetry,2009,98(1):267-274.
    [109]牛海峰.径向浓淡旋流煤粉燃烧器高温耐磨部件的研究[D].哈尔滨:哈尔滨工业大学,2002.
    [110]Jing J P, Li Z Q, Zhu Q Y, Chen Z C, Ren F. Influence of primary air ratio on flow and combustion characteristics and NOx emissions of a new swirl coal burner[J]. Energy, 2011.36(2):1206-1213.
    [111]Li Z Q, Zeng L Y, Zhao G B, Shen S P, Zhang F H. Particle sticking behavior near the throat of a low-NOx axial-swirl coal burner[J]. Applied Energy,2011,88(3):650-658.
    [112]Nimmo W, Patsias A A, Hampartsoumian E, Gibbs BM, Williams PT. Simultaneous reduction of NOx and SO2 emissions from coal combustion by calcium magnesium acetate[J]. Fuel, 2004,83(2):149-155.
    [113]杨卫娟,周俊虎,杨亮,刘建忠,黄镇宇,岑可法.醋酸镁在NO生成过程中的还原作用机理[J].浙江大学学报(工学版),2007,41(2):342-346.
    [114]Adnez J, Garca-Labiano F, de Diego L F, Fierro V. Utilization of Calcium Acetate and Calcium Magnesium Acetate for H2S Removal in Coal Gas Cleaning at High Temperatures[J]. Energy and Fuels,1999,13(2):440-448.
    [115]沈伯雄,郭宾彬,史展亮,吴春飞,梁材.CeO2/ACF的低温SCR烟气脱硝性能研究[J].燃料化学学报,2007.35(1):125-128.
    [116]Boudali L K, Ghorbel A, Grange P. Characterization and reactivity of WO3-V2O5 supported on sulfated titanium pillared clay catalysts for the SCR-NO reaction[J]. Comptes Rendus Chimie,2009, 12(6-7):779-786.
    [117]张秋林,邱春天,徐海迪,林涛,龚茂初,陈耀强.整体式Cu-ZSM-5催化剂上NH3选择性催化还原NO活性[J].催化学报,2010,31(11):1411-1416.
    [118]Rota R, Zanoelo E F, Antos D, Morbidelli M, Carra S. Analysis of the thermal DeNOx process at high partial pressure of reactant[J]. Chemical Engineering Science,2000,55(6):1041-1051.
    [119]王智化,周吴,周俊虎,樊建人,岑可法.不同温度下炉内喷射氨水脱除NOx的模拟与试验研究[J].燃料化学学报,2004,32(1):48-53.
    [120]韩奎华,路春美,王永征,牛胜利,刘志超,郝卫东.选择性非催化还原脱硝特性试验研究[J].中国电机工程学报,2008,28(14):80-87.
    [121]Brouwer J, Heap M P, Pershing D W, Smith P J. A model for prediction of selective noncatalytic reduction of nitrogen oxides by ammonia, urea and cyanuric acid with mixing limitations in the presence of CO[J]. Symposium (International) on Combustion,1996, 26(2):2117-2124.
    [122]Javed M T, Irfan N, Gibbs B M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction[J]. Journal of Environmental Management,2007,83(3):251-289.
    [123]Cremer M A, Montgomery C J, Wang D H, Heap M P, Chen J Y. Development and implementation of reduced chemistry for computional fluid dynamics modeling of selective non-catalytic reduction[J]. Proceedings of the Combustion Institute,2000,28(2):2427-2434.
    [124]Javed M T, Nimmo W, Mahmood A, Irfan N. Effect of oxygenated liquid additives on the urea based SNCR process[J]. Journal of Environmental Management,2009,90(11):3429-3435.
    [125]Yang W J, Zhou J H, Zhou Z J, Chen Z C, Liu J Z, Cen K F. Action of oxygen and sodium carbonate in the urea-SNCR process[J]. Combustion and Flame,2009,156(9):1785-1790.
    [126]Niu S L, Han K H, Lu C M. Experimental study on the effect of urea and additive injection for controlling nitrogen oxides emissions[J]. Environmental Engineering Science,2010,27(1):47-53.
    [127]高攀,路春美,甄天雷,刘磊.高级再燃气体脱硝特性的研究[J].燃料化学学报,2007,35(5):633-636.
    [128]Han K H, Niu S L, Lu C M. Experimental study on biomass advanced reburning for nitrogen oxides reduction[J]. Process Safety and Environmental Protection,2010,88(6):425-430.
    [129]韩奎华,路春美.先进再燃脱硝机理与添加剂增效机理[J].煤炭转化,2007,30(1):89-95.
    [130]Hampartsoumian E, Folayan O O, Nimmo W. Gibbs B M. Optimisation of NOx reduction in advanced coal reburning system and the effect of coal type[J]. Fuel.2003,82(4):373-384.
    [131]高攀,路春美,韩奎华,甄天雷,丁立新.天然气/液化气先进再燃脱硝特性研究[J].煤炭学报,2007,32(2):1191-1195.
    [132]Tree D R, Clark A W. Advanced reburning measurements of temperature and species in a pulverized coal flame[J]. Fuel,2000,79(13):1687-1695.
    [133]韩奎华.先进再燃脱硝优化试验与机理研究[D].济南:山东大学,2007.
    [134]Lissianski V V, Zamansky V M, Maly P M, Sheldon M S. Optimization of advanced reburning via modeling[J]. Proceedings of the Combustion Institute,2000,28(2):2475-2481.
    [135]程中杰.生物质再燃/先进再燃脱硝试验研究[D].济南:山东大学,2007.
    [136]沈伯雄,孙幸福.天然气先进再燃区脱硝效率影响因素的实验与模拟研究[J].中国电机工程学报,2005,25(5):146-149,163.
    [137]Han D, Mungal M G, Zamansky V M, Tyson T J. Prediction of NOx control by basic and advanced gas reburning using the Two-Stage Lagrangian model[J]. Combustion and Flame,1999, 119(4):483-493.
    [138]甄天雷.天然气再燃/先进再燃脱硝的化学动力学模拟与实验研究[D].济南:山东大学,2009.
    [139]Han X H, Wei X L, Schnell U, Hein K R G. Detailed modeling of hybrid reburn/SNCR processes for NOx reduction in coal-fired furnaces[J]. Combustion and Flame,2003, 132(3):374-386.
    [140]高攀.先进再燃及选择性非催化脱硝优化实验与机理研究[D].济南:山东大学,2008.
    [141]白云峰,李永旺,吴树志,刘鹏程,高翔,骆仲泱,岑可法KMnO4/CaCO3协同脱硫脱硝实验研究[J].煤炭学报,2008,33(5):575-578.
    [142]Liu Y X, Zhang J, Sheng C D, Zhang Y C, Zhao L. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chemical Engineering Journal, 2010,162(3):1006-1011.
    [143]王智化,周俊虎,魏林生,温正城,岑可法.用臭氧氧化技术同时脱除锅炉烟气中NOx 及SO2的试验研究[J].中国电机工程学报,2007,27(11):1-5.
    [144]Dahlan I, Lee K T, Kamaruddin A H, Mohamed A R. Sorption of SO2 and NO from simulated flue gas over rice husk ash (RHA)/CaO/CeO2 sorbent:Evaluation of deactivation kinetic parameters[J]. Journal of Hazardous Materials,2011,185(2-3):1609-1613.
    [145]谢国勇,刘振宇,刘有智,郭向云.用CuO/γ-Al2O3催化剂同时脱除烟气中SO2和NO[J].催化学报,2004,25(1):33-38.
    [146]Tang Q, Zhang Z G, Zhu W P, Cao Z D. SO2 and NO selective adsorption properties of coal-based activated carbons[J]. Fuel,2005,84(4):461-465.
    [147]周春琼,邓先和,徐伟,马进.乙二胺合钴/尿素湿法同时吸收SO2和NO[J].化工学报,2006,57(3):645-649.
    [148]Guo Y X, Liu Z Y, Li Y M, Liu Q Y. NH3 regeneration of SO2-captured V2O5/AC catalyst-sorbent for simultaneous SO2 and NO removal[J]. Journal of Fuel Chemistry and Technology,2007,35(2):344-348.
    [149]许绿丝,岑泽文,曾汉才,王欣.活性炭纤维吸附NO和SO2的试验研究[J].华中科技大学学报(自然科学版),2006,34(2):105-107.
    [150]宋蔷,定方正毅,越光男.利用链式反应同步氧化烟气中NO和SO2的研究[J].工程热物理学报,2004,25(2):351-353.
    [151]Patsias A A, Nimmo W, Gibbs B M, Williams P T. Calcium-based sorbents for simultaneous NOx/SOx reduction in a down-fired furnace[J]. Fuel,2005,84(14-15):1864-1873.
    [152]Nimmo W, Patsias A A, Hampartsoumian E, Gibbs B M, Fairweather M, Williams P T. Calcium magnesium acetate and urea advanced reburning for NO control with simultaneous SO2 reduction[J]. Fuel,2004,83(9):1143-1150.
    [153]Shuckerow J I, Steciak J A, Wise D L, Levendis Y A, Simons G A, Gresser J D, Gutoff E B, Livengood C D. Control of air toxin particulate and vapor emissions after coal combustion utilizing calcium magnesium acetate[J]. Resource, Conservation and Recycling,1996,16(1-4):15-69.
    [154]Atal A, Steciak J, Levendis Y A. Combustion and SO2-NOx emissions of bituminous coal particles treated with calcium magnesium acetate[J]. Fuel,1995,74(4):495-506.
    [155]Nimmo W, Aqnew J, Hampartsoumian E, Jones J M. Removal of H2S by spray-calcined calcium acetate[J]. Industrial and Engineering Chemistry Research,1999,38(8):2954-2962.
    [156]Shemwell B, Atal A, Levendis Y A, Simons G A. A laboratory investigation on combined in-furnace sorbent injection and hot flue-gas filtration to simultaneously capture SO, NO, HCl and particulate emissions[J]. Environmental Science and Technology,2000,34(22):4855-4866.
    [157]肖海平.有机钙盐同时脱硫脱硝的机理研究[D].杭州:浙江大学,2006.
    [158]Sanchez M E, Otero M, Gomez X, Moran A. Thermograviemtric kinetic analysis of the combustion of biowastes[J]. Renewable Energy,2009,34(6):1622-1627.
    []59]全翠,李爱民,高宁博.几种典型电子垃圾大物料量热重实验及机理研究[J].燃烧科学与技术,2010,16(1):45-50.
    [160]Syed S, Qudaih R, Talab I, Janajreh I. Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data[J]. Fuel,2011,90(4):1631-1637.
    [161]赵伟涛,陈海翔,周建军,刘乃安.森林泥炭的热解特性及热解动力学[J].物理化学学报,2009,25(9):1756-1762.
    [162]Liao Y F, Ma X Q. Thermogravimetric analysis of the co-combustion of coal and paper mill sludge[J]. Applied Energy,2010,87(11):3526-3532.
    [163]赵传文,陈晓平,赵长遂.碳酸氢钠分解的热重分析研究[J].燃烧科学与技术,2009,15(2):135-140.
    [164]Varol M, Atimtay A T, Bay B, Olgun H. Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis[J]. Thermogravimetric Acta,2010, 510(1-2):195-201.
    [165]武景丽,汪丛伟,阴秀丽,吴创之,马隆龙,周肇秋,陈汉平.基于TG-FTIR的生物油重质组分热解特性研究[J].太阳能学报,2010,31(1):113-117.
    [166]王志奇,陈勇.垃圾衍生燃料等温快速热解和燃烧反应特性[J].燃料化学学报,2004,32(4):440-445.
    [167]Ptacek P, Kubatova D, Havlica J B J, Soukal F, Opravil T. Isothermal kinetic analysis of the thermal decomposition of kaolinite:The thermogravimetric study[J]. Thermochimica Acta,2010, 501(1-2):24-29.
    [168]闫桂焕,许敏,李晓霞,关海滨,姜建国,张卫杰,孙荣峰.玉米芯半焦CO2等温气化 特性及动力学[J].农业工程学报,2010,26(11):260-264.
    [169]Manya J J, Arauzo J. An alternative kinetic approach to describe the isothermal pyrolysis of micro-particles of sugar cane bagasses[J]. Chemical Engineering Journal,2008,139(3):549-561.
    [170]孙锐,廖坚,Leungo Kelebopile,李志刚,张旻晓.等温热重分析法对煤焦反应动力学特性研究[J].煤炭转化,2010,33(2):57-63.
    [171]Burnham A K, Dinh L N. A comparison of isoconversional and modeling-fitting approach to kinetic parameters estimation and application predictions[J]. Journal of Thermal Analysis and Calorimetry,2007,89(2):479-490.
    [172]Saha B, Ghoshal A K. Model-fitting methods for evaluation of the kinetic triplet during thermal decomposition of poly (ethylene terephthalate) (PET) soft drink bottle[J]. Indutrial and Engineering Chemistry Research,2006,45(23):7752-7759.
    [173]Jankovic B, Adnadevic B, Jovanovic J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: Thermogravimetric analysis[J]. Thermochimica Acta,2007,452(2):106-115.
    [174]Arias S, Prieto M M, Ramajo B, Espina A, Garcia J R. Model-free kinetics applied to the vaporization of caprylic acid[J]. Journal of Thermal Analysis and Calorimetry,2009,98(2):457-462.
    [175]Santos A GD, Araujo A S, Caldeira V PS, Fernandes Jr. Valter J, Souza L D, Barros A K. Model-free kinetics applied to volatilization of Brazilian sunflower oil, and its respective biodiesel[J]. Thermochimica Acta,2010,506(1-2):57-61.
    [176]Ramani R, Alam S. Composition optimization of PEEK/PEI blend using blend-free kinetics analysis[J]. Thermochimica Acta,2010,511(1-2):179-188.
    [177]肖进兵,邢军,孙永正,王景昌,徐海燕.醋酸钙镁冰雪融化剂的制备及融冰效果小试[J].大连大学学报,2003,24(4):32-34.
    [178]秦炜,赵音延,戴猷元.醋酸钙镁的应用及开发[J].现代化工,2000,20(9):61-63.
    [179]Valor A, Reguera E, Torres-Garcia E, Mendoza S, Sanchez-Sinencio F. Thermal decompositio fo the calcium salts of several carboxylic acids[J]. Thermochimica Acta,2002,389(1-2):133-139.
    [180]Li Y J, Zhao C S, Chen H C, Ren Q Q, Duan L B. CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle[J]. Energy, 2011.36(3):1590-1598.
    [181]张良佺,姜华吕,李菊清,祝巨,徐晖.醋酸钙镁盐的制备新工艺及产品性能研究[J].现代化工,2007.27(z1):212-215,217.
    [182]Niu SL, Han K H, Lu C M, Sun R Y. Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate[J]. Applied Energy, 2010,87(7):2237-2242.
    [183]Niu S L, Han K H, Zhou F, Lu C M. Thermogravimetric analysis of the decomposition characteristics of two kinds of calcium based organic compounds[J]. Powder Technology,2011, 209(1-3):46-52.
    [184]Agnew J, Hampartsoumian E, Jones J M, Nimmo W. The simultaneous calcinations and sintering of calcium based sorbents under a combustion atmosphere[J]. Fuel,2000, 79(12):1515-1529.
    [185]Han D H, Sohn H Y. Calcined calcium magnesium acetate as a superior SO2 sorbent:Ⅰ. Thermal decomposition[J]. AIChE Journal,2002,48(12):2971-2977.
    [186]Xiao H M, Ma X Q, Liu K. Co-combustion kinetics of sewage sludge with coal and coal gangue under different atmospheres[J]. Energy Conversion and Management,2010,51(10): 1976-1980.
    [187]Otero M, Gomez X, Garcia A I, Moran A. Effects of sewage sludge blending on the coal combustion:A thermogravimetric assessment J]. Chemosphere,2007,69(11):1740-1750.
    [188]Barkia H, Belkbir L, Jayaweera S A A. Non-isothermal kinetics of gasification by CO2 of residual carbon from timahdit and tarfay oil shale kerogens[J]. Journal of Thermal Analysis Calorimetry,2004,76(2):623-632.
    [189]Yagmur S, Durusoy T. Kinetics of the pyrolysis and combustion of Goynuk oil shale[J]. Journal of Thermal Analysis Calorimetry,2006,86(2):479-482.
    [190]Ozbas K E, Kok M V, Hicyilmaz C. Comparative kinetic analysis of raw and cleaned coals[J]. Journal of Thermal Analysis Calorimetry,2002,69(2):541-549.
    [191]Calvo L F, Otero M, Jenkins B M, Moran A, Garcia A I. Heating process characteristics and kinetics of the rice straw in different atmospheres[J]. Fuel Processing Technology,2004, 85(4):279-291.
    [192]Otero M, Calvo L F, Gil M V. Gacia A I, Moran A. Co-combustion of different sewage sludge and coal:A non-isothermal thermogravimetric kinetic analysis[J]. Bioresource Technology,2008, 99(14):6311-6319.
    [193]Simon P, Thomas P S, Okuliar J, Ray A S. An incremental integral isoconversional method: Determination of activation parameters[J]. Journal of Thermal Analysis Calorimetry,2003, 72(3):867-874.
    [194]Ramajo-Escalera B, Espina A, Garcia J R, Sosa-Arnao J H, Nebra S A. Model-free kinetics applied to sugarcane bagasse combustion[J]. Thermochimica Acta,2006,448(2):111-116.
    [195]Yu G P, Liu C, Li G H, Wang J Y, Jian X Q. Thermal degradation kinetics of poly(aryl ether sulfone 1,3,5-triazine)s containing phthalazinone moieties[J]. Thermochimica Acta,2011, 514(1-2):51-57.
    [196]Schubnell M. Comparison of activation energies obtained from modulated and conventional non-modulated TG[J]. Journal of Thermal Analysis Calorimetry,2000,61(3):1005-1011.
    [197]Cai J M, Chen S Y. A new iterative linear integral isoconversional method for the determination of the activation energy vary with the conversion degree[J]. Journal of Computational Chemistry,2009,30(13):1986-1991.
    [198]Doyle C D. Kinetic analysis of thermogravimetric data[J]. Journal of Applied Polymer Science, 1961,5(15)285-292.
    [199]Jankovic B, Kolar-Anic L, Smiciklas I, Dimovic S, Arandelovic D. The non-isothermal thermogravimetric tests of animal bones combustion. Part. I. Kinetic analysis[J]. Thermochimica Acta,2009,495(1-2):129-138.
    [200]Jess A, Andresen A K. Influence of mass transfer on thermogravimetric analysis of combustion and gasification reactivity of coke[J]. Fuel,2010,89(7):1541-1548.
    [201]Thipkhunthod P, Meeyoo V, Rangsunvigit P, Kitiyanan B, Siemanond K, Risksomboon T. Pyrolytic characteristic of sewage sludge[J]. Chemosphere,2006,64(6):955-962.
    [202]Kok M V. Temperature-controlled combustion and kinetics of different rank coal samples[J]. Journal of Thermal Analysis Calorimetry,2005,79(1):175-180.
    [203]Otero M. Gomez X, Garcia A I. Moran A. Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceous materials coal and sewage sludge[J]. Journal of Thermal Analysis and Calorimetry,2008,93(2):619-626.
    [204]Ruitenberg G, Woldt E, Petford-Long A K. Comparing the Johnson-Mehl-Avrami-Kolmogorov equations for isothermal and linear heating conditions[J]. Thermochimica Acta,2001, 378(1-2):97-105.
    [205]Lu M G, Shim M J, Kim S W. Curing behavior of an unsaturated polyester system analyzed by Avrami equation[J]. Thermochimica Acta,1998,323(1-2):37-42.
    [206]Niu S L, Han K H, Lu C M. Kinetic calculations for the thermal decomposition of calcium propionate under non-isothermal conditions[J]. Chinese Science Bulletin,2011,55(12):1278-1284.
    [207]牛胜利,韩奎华,路春美.非等温条件下丙酸钙热解的动力学参数计算[J].科学通报,2010,55(23):2350-2355.
    [208]Niu S L, Han K H, Lu C M. Characteristic of coal combustion in oxygen/carbon dioxide atmosphere and nitric oxide release during this process[J]. Energy Conversion Management,2011, 52(1):532-537.
    [209]Kok M V. Influence of reservoir rock composition on the combustion kinetics of crude oil[J]. Journal of Thermal Analysis and Calorimetry.2009,97(2):397-401.
    [210]Corradini E, Teixeira E M, Paladin P D, Agnelli J A, Silva O R R F, Mattoso L H C. Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis[J]. Journal of Thermal Analysis and Calorimetry.2009,97(2):415-419.
    [211]Tonbul Y. Pyrolysis of pistachio shell as a biomass[J]. Journal of Thermal Analysis and Calorimetry.2008,91(2):641-647.
    [212]Koga N, Malek J. Accommodation of the actual solid-state process in the kinetic model function. Part 2. Applicability of the empirical kinetic model function to diffusion-controlled reactions[J]. Thermochimica Acta,1996,282/283(10):69-80.
    [213]Yorulmaz S Y, Atimtay A T. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis[J]. Fuel Processing Technology.2009, 90(7-8):939-946.
    [214]周诗建,齐庆杰,郝宇,孙清威,吴宪.煤燃烧过程中硫析出影响因素的正交实验研究[J].辽宁工程技术大学学报,2006,25(3):321-324.
    [215]翁卫国,周俊虎,程军,曹欣玉,岑可法.工业废渣在煤燃烧中固硫的影响因素分析[J].煤炭学报,2005,30(4):480-483.
    [216]韩奎华,路春美,程世庆,王永征,赵建立.热重分析法研究贝壳固硫反应动力学[J].高等学校化学学报,2006,27(2):327-331.
    [217]Han K H, Lu C M, Cheng S Q, Zhao G J, Wang Y Z, Zhao J L. Effect of characteristics of calcium-based sorbents on the sulfation kinetics[J]. Fuel,2005,84(14-15):1933-1939.
    [218]程世庆,冯玉滨,路春美.贝壳脱硫性能的动力学研究[J].中国电机工程学报,2005,25(19):80-85.
    [219]张雷,路春美,程世庆.贝壳类新型钙基脱硫剂的试验研究[J].环境科学学报,2003,23(5):647-651.
    [220]刘妮,路春美,骆仲泱,岑可法.石灰石颗粒固硫反应特性的模型研究[J].环境科学学报,2001,21(2):172-177.
    [221]韩奎华,赵建立,路春美,王永征,赵改菊,程世庆.添加剂影响CaO固硫反应活性的动力学分析[J].环境科学,2006,27(2):21-223.
    [222]武增华,寇鹏,邱新平,薛方渝,陈昌和.催化剂对CaO固硫反应动力学的影响[J].化学学报,2000,58(11):1316-1321.
    [223]郭峰,武增华,崔爱莉,王立新.复合钙硅固硫剂的固硫反应动力学研究[J].高等学校化学学报,2003,24(1):100-104.
    [224]郭汉贤,樊惠玲,李彦旭.金属氧化物脱硫/固硫反应动力学中的补偿效应[J].化学学报,2002,60(10):1806-1810.
    [225]Niu S L, Han K H, Zhao J L, Lu C M. Experimental study on nitric oxide reduction through calcium propionate reburning[J]. Energy,2011,36(2):1003-1009.
    [226]牛胜利,韩奎华,路春美.生物质先进再燃脱硝特性研究[J].燃料化学学报,2010,38(6):745-751.
    [227]牛胜利,韩奎华,路春美.生物质再燃脱硝特性的实验研究[J].电站系统工程,2010,26(6):10-12,15.
    [228]牛胜利,路春美,高攀,韩全华,耿萍,程中杰.生物质再燃降低NOx排放的实验研究[j].燃料化学学报,2008.36(5):583-587.
    [229]Niu S L, Han K H. Lu C M. An experimental study on nitric oxide reduction through coal-biomass blend reburning[C].2010 International Conference on Electrical Engineering and Automatic Control (ICEEAC 2010),5:91-94.
    [230]Niu S L, Han K H, Lu C M. An experimental study on the effect of operating parameters and sodium additive on the NOxOUT Process[J]. Process Safety and Environmental Protection,2011, 89(2):121-126.
    [231]Niu S L, Han K H, Lu C M. Release of sulfur dioxide and nitric oxide and characteristic of coal combustion under the effect of calcium based organic compounds[J]. Chemical Engineering Journal,2011,168(1):255-261.
    [232]郑斌.工业碱基废弃物固硫性能研究[D].济南:山东大学,2006.
    [233]梁建民.工业含碱固体废弃物固硫性能的试验研究[D].济南:山东大学,2005.
    [234]韩奎华,路春美,侯庆伟,刘志超,马传利,高山.煤在不同O2/CO2气氛下燃烧硫析出特性研究[J].燃料化学学报,2004,32(5):517-521.
    [235]Ma B G, Li X G, Xu L, Wang X G. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis[J]. Thermochimica Acta,2006,445 (1):9-22.
    [236]Dagaut P, Lecomte F. Experimental and kinetic modeling study of the reduction of NO by hydrocarbons and interactions with SO2 in a JSR at 1 atm[J]. Fuel,2003,82(9):1033-1040.
    [237]Nimmo W, Hampartsoumian E, Hughes K J, Tomlin A S. Experimental and kinetic studies on the effect of sulfur-nitrogen interactions on NO formation in flames[J]. Symposium (International) on Combustion,1998,27(1):1419-1426.
    [238]Rasmussen C L, Glarborg P, Marshall P. Mechanism of radical removal by SO2[J]. Proceedings of the Combustion Institute,2007,31(1):339-347.
    [239]肖海平,周俊虎,刘建忠,孙保民,叶力平.含硫物相对NO还原过程的影响[J].燃料化学学报,2008.36(3):381-384.
    [240]李小丽,孙锐,张晓辉,吴少华.煤粉热解气还原NO的数值研究[J].中国电机工程学报,2008,28(11):30-35.
    [241]张彦文,蔡宁生,李振山.加入CH4促进SNCR过程的计算与机理分析[J].热力发电,2005,34(12):9-12,19.
    [242]赵立平,曹庆喜,吴少华.NH3选择性非催化还原NO的化学动力学计算及分析[J].电站系统工程,2008,24(1):27-29,32.
    [243]Pichon S, Black G, Chaumeix N, Yahyaoui M, Simmie J M, Curran H J, Donohue R. The combustion chemistry of a fuel tracer:Measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone[J]. Combustion and Flame,2009, 156(2):494-504.
    [244]Sato K, Hidaka Y. Shock-tube and modeling study of acetone pyrolysis and oxidation[J]. Combustion and Flame,2000,122(3):291-311.
    [245]Li Y Y, Wei L X, Tian Z Y, Yang B, Wang J, Zhang T C, Qi F. A comprehensive experimental study of low-pressure premixed C3-oxygenated hydrocarbon flames with tunable synchrotron photoionization[J]. Combustion and Flame,2008,152(3):336-359.
    [246]Alzueta MU, Serinyel Z, Simmie J M, Curran H J. Oxidation of acetone and its interaction with nitric oxide[J]. Energy and Fuels,2010,24(3):1511-1520.
    [247]Glarborg P, Alzueta M U, Kim D J. Kientic modeling of hydrocarbon/nitric oxide interactions in a flow reactor[J]. Combustion and Flame,1998,115(1-2):1-27.
    [248]Alzueta M U, Hernandez J M. Ethanol oxidation and its interaction with nitric oxide[J]. Energy and Fuels,2002,16(1):166-171.
    [249]Dagaut P, Lecomte F, Chevailler S, Cathonnet M. Experimental and detailed kinetic modeling of nitric oxide reduction by a natural gas blend in simulated reburning conditions[J]. Combustion Science and Technology,1998,139(1):329-363.
    [250]Dagaut P, Lecomte F, Chevailier S, Cathonnet M. The reduction of NO by ethylene in a jet-stirred reactor at 1 atm:Experimental and kinetic modeling[J]. Combustion and Flame,1999, 119(4):494-504.
    [251]Dagaut P, Lecomte F, Chevailler S, Cathonnet M. Experimental and kinetic modeling of nitric oxide reduction by acetylene in an atmosphere pressure jet-stirred reactor[J]. Fuel,1999, 78(11):1245-1252.
    [252]Dagaut P, Luche J. Cathonnet M. Experimental and kinetic modeling of the reduction of NO by propene at 1 atm[J]. Combustion and Flame,2000,121(4):651-661.
    [253]Dagaut P. Luche J. Cathonnet M. Experimental and kinetic modeling of the reduction of NO by isobutene in a JSR at 1 atm[J]. International Journal of Chemical Kinetics,2000,32(6):365-377.
    [254]Dagaut P, Luche J, Cathonnet M. Reduction of NO by propane in a JSR at 1 atm:Experimental and kinetic modeling[J]. Fuel,2001,80(7):979-986.
    [255]Dagaut P, Ristori A. El Bakali A, Cathonnet M. Experimental and kinetic modeling study of the oxidation of n-propylbenzene[J]. Fuel,2002,81(2):173-184.
    [256]Dayma. G, Ali K H, Dagaut P. Experimental and detailed kinetic modeling study of the high pressure oxidation of methanol sensitized by nitric oxide and nitrogen dioxide[J]. Proceedings of the Combustion Institute,2007,31 (1):411-418.
    [257]Serinyel Z, Chaumeix N, Black G, Simmie J M, Curran H J. Experimental and chemical kinetic modeling study of 3-pentanone oxidation[J]. Journal of Physical Chemistry,2010, 114(46):12176-12186.
    [258]Kazakov A, Chaos M, Zhao Z W, Dryer F L. Computatioal singular perturbation analysis of two-stage ignition of large hydrocarbons[J]. Journal of Physical Chemistry,2006, 110(21):7003-7009.
    [259]Zabetta E C, Kilpinen P T. Improved NOx submodel for in-cylinder CFD simulation of low-and medium-speed compression ignition engines[J]. Energy and Fuels,2001,15(6):1425-1433.
    [260]Zabetta E C, Kilpinen P T, Hupa M, Stahl K, Leppalahti J, Cannon M, Nieminen J. Kinetic modeling study on the potential of staged combustion in gas turbins for the reduction of nitrogen oxide emissions from biomass IGCC plants[J]. Energy and Fuels,14(4):751-761.
    [261]Miller J A, Glarborg P. Modeling the formation of N2O and NO2 in the Thermal De-NOx process[J]. Springer Series in Chemical Physics,1996,61:318-333.
    [262]Glarborg P, Kim D J, Miller J A, Kee R J, Coltrin M E. Modeling the thermal DENOx process in flow reactors. Surface effects and nitrous formation[J]. International Journal of Chemical Kinetics, 1994,26(4):421-436.
    [263]Zabetta E C, Hupa M. A detailed kinetic mechanism including methanol and mitrogen pollutants relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels[J]. Combustion and Flame,2008,152(1-2):14-27.
    [264]Li J, Zhao Z W, Kazakov A, Dryer F L. An updated comprehensive kinetic model of hydrogen combustion[J]. International Journal of Chemical Kinetics,2004,36(10):566-575.
    [265]Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Progress in Energy and Combustion Science,1989,15(4):287-338.
    [266]Skreiberg Q, Kilpinen P, Glarborg P. Ammonia chemistry below 1400K under fuel-rich conditions in a flow reactor[J]. Combustion and Flame,2004,136(4):501-518.
    [267]Glarborg P, Kristensen P G, Kim D J, Miller J A. Branching fraction of the NH2+NO reaction between 1210 and 1370K[J]. Journal of Physical Chemistry A,1997,101(10):3741-3745.
    [268]Rota R, Zanoelo E F, Antos D, Morbidelli M, Carra S. Analysis of the thermal DeNOx process at high partical pressure of reactants[J]. Chemical Engineering Science,2000,55(6):1041-1051.
    [269]Han K H, Lu C M. Kinetic model and simulation of promoted selective non-catalytic reduction by sodium carbonate[J]. Chinese Journal of Chemical Engineering,2007,15(4):512-519.
    [270]Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman C T, Hanson R K, Song S, Gardiner W C, Lissianski V V, Qin Z W. http://www.me.berkeley.edu/gri_mech/
    [271]http://garfield.chem.elte.hu/Combustion/mechanisms/LeedsSOx52.dat.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700