用户名: 密码: 验证码:
废弃电路板环氧树脂真空热裂解实验及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的高速发展,电子产品的数量飞速增长并且使用寿命不断缩短,大量的电子废弃物给生态环境带来巨大的压力。越来越严格的法律法规对电子废弃物的处理与处置提出了更高的要求。印刷电路板是电子产品不可或缺的组成部分,废弃电路板目前多采用机械破碎分离金属,再将剩余物进行填埋或焚烧的方法处理,不仅浪费资源并且对环境造成极大的污染。真空热裂解作为一种较新的废弃电路板处理技术不仅将废弃电路板中的有机组分转化为化工原料和能源,而且能有效分离废弃电路板中的金属材料和非金属材料,并最终实现废弃电路板资源化、无害化回收处理目的。为了获得真空热解废弃电路板的基础数据,本文选用了典型的废弃印刷电路板(FR4板)作为实验对象,开展了如下工作:
     利用TG、TG/DSC,考察了废弃电路板环氧树脂分别在氮气、氩气、空气气氛下和真空条件下的热裂解特性,对热失重率、热解温度、最大热解速率温度等重要参数进行了分析,并通过多种数据处理方法得到了热解动力学参数。研究表明:电路板环氧树脂真空热裂解的活化能低于常压惰性气氛条件下热裂解反应的活化能;氮气氛围和真空两种条件下裂解反应主反应阶段遵循共同的机理模型。
     课题组自行设计并搭建了固定床真空热裂解实验装置,对废弃电路板真空热裂解液体、固体、气体产物进行了收集和分析,并研究了废弃电路板热解的规律及热解终温、升温速率、体系压力及保温时间等因素对真空热裂解产物产率的影响。发现热解温度对液体产物产率影响最为明显,其他条件相同时,冷凝温度降低可明显提高热解液体产物的产率。综合分析,以提高热解液体产物产率为目标的热解工艺条件为:热解终温500。C、升温速率30℃/min、体系压力15kPa、保温时间30min及冷凝温度-25℃。
     采用气相色谱-质谱联用仪(GC-MS)、傅立叶转换红外光谱仪(FTIR)、扫描电镜-能谱联用仪(SEM-EDS)等多种分析测试手段研究了废弃电路板热解产物的组成和分布规律,并结合TG-FTIR数据探讨了电路板环氧树脂可能的热解机理。热解油主要成分为苯酚、异丙基苯酚、双酚A及苯酚的取代物;气体产物主要为C02、CO、H2、CH4,可以作为燃气回收;真空热解废弃电路板(光板)所得固体产物主要由热解炭和玻璃纤维组成,热解炭与玻璃纤维很容易分离;固体残渣中含有碳、氧、硅、铝、钙等元素;相比氮气气氛下的常压热裂解,真空热裂解固体产物中产生的热解炭较少;真空条件下的热解对电路板中玻璃纤维破坏很小,可重新回收利用。
     考察了9种添加物对废弃电路板真空热解的影响,通过SEM,EDS检测并结合热力学分析发现,金属铁及铜铁的金属氧化物对溴的脱除能力较强,金属铁的脱溴反应进行得最完全,HBr的平衡分压非常低;反应生成的金属溴化物对热裂解反应存在一定的催化作用。
With the rapid development of science and technology, the number of the electronics is on the increase, meanwhile, their service life becomes shorter, which has produced a large amount of waste electrical and electronic equipment (WEEE),and have brought enormous pressure on the ecological environment. As the severer laws and regulations are enforced, higher requirements for electronic waste disposal and recycling are needed. Printed circuit board (PCB) is an indispensable component of electrical and electronic equipment. WEEE is generally crushed mechanically to separate the metal, and then the residues are buried or burned. This processing method is resource-wasting as well as harmful to environment. As an environment-friendly technology of disposing waste PCB, vacuum pyrolysis can not only change the organic components in the PCBs into industrial chemicals and energy, but also separate the metal and nonmetal components effectively. Aiming at these questions, the typical kind of PCB named FR4was chosen as experimental materials and the involved studies are as follows:
     The pyrolysis characteristics of waste printed circuit boards were investigated by a thermogravimetric analyzer at different atmosphere and vacuum condition. The kinetics parameters were obtained by different kinetic data processing methods from the basic kinetics parameters such as thermogravimetric loss, initial and final pyrolysis temperature, the temperature at the maximum pyrolysis rate, and so on. The results showed that the pyrolysis under vacuum can significantly reduce the activation energy compared with decomposition under inert atmospheres. The pyrolysis actions under nitrogen and vacuum both belong to the same mechanism.
     After a self-designed fixed-bed pyrolysis experimental device was set up and pyrolysis liquid, solid, gas products of waste PCBs were collected, a series of experiments were carried out to study the pyrolysis law of waste PCB, and the effect of process parameters such as pyrolysis temperature, heating rate, condensing temperature, vacuum degree and heat preservation time on the vacuum pyrolysis procedure was detected. The results showed that the most effect of the pyrolysis oil yield is pyrolysis temperature, next is condensing temperature. Based on an overall consideration of factors, the optimum process condition for the liquid yield is as follows:the pyrolysis temperature is500℃, the system pressure at15kPa, the heat preservation time at30min, the heating rate at30℃/min and the condensing temperature at-25℃.
     The pyrolysis products were analyzed by GC-MS, FT-IR and SEM-EDS. The formation and distribution of brominated organic component during the thermal pyrolysis process was analyzed by combining the results of TG and FTIR, and the possible decomposition mechanism of epoxide resin in the PCB was studied. The main gaseous product is CO2, CO, H2and CH4, which can be recycled as combustible gas. The most considerable product in the liquid product was phenol followed by4-isopropylphenol,4,4'-(promane-2,2-diyl) diphenol and their substituent. The pyrolysis residues mainly consist of glass-fiber and carbon, and they can be separated and recycled easily. The residues contain several elements such as carbon, oxygen, silicon, aluminum, calcium, etc. Comparing with the pyrolysis at atmosphere, the solid product from vacuum pyrolysis contains less carbon, and the glass-fiber is barely destroyed after pyrolysis and can be reused.
     Nine kinds of additives were used to study the influence of additive on the vacuum pyrolysis of WPCB. According to the results of SEM, EDS and thermodynamic analysis, metallic iron, copper oxide and iron oxide have better debromination ability, among which the debromination reaction of iron is completest with quite low equilibrium HBr pressure. It was found that the produced metal bromide has some catalytic on the pyrolysis reaction.
引文
[1]祝大同.亚洲印刷电路板的现状和发展.电子工艺技术,1997,(9):175-178.
    [2]Dirk B. Electronic scrap:a growing resource. Precious Metals,2001, (7):21-24.
    [3]Danielle O. Japanese recycling law takes effect. Waste Age,2001,32 (6):25-26.
    [4]吴峰.国外电子废弃物的环境管理技术初探.中国环境管理,2001,(3):24-26.
    [5]朱经发.电子废物现状评述和资源化初探.土壤与环境,2002,(3):307-310.
    [6]杨宏强,王洪.亚洲PCB产业现状.印制电路信息,2005,(7):15-17.
    [7]Linton J. Electronic products at their end-of-life:options and obstacles. Journal of Electronics Manufacturing,1999,9 (1):29-40.
    [8]Legarth J. Environmental decision making for recycling options. Resources, conservation and recycling,1997,19(2):109-135.
    [9]Goosey M., Kellner R. Recycling technologies for the treatment of end of life printed circuit boards (PCBs). Circuit World,2003,29 (3):33-35.
    [10]甘舸,陈烈强,彭绍洪,蔡明招,吴耀森.废旧电子电气设备回收处理的研究进展.四川环境,2005,24(3):89-93.
    [11]Landry S.电气和电子设备中所使用的阻燃HIPS树脂的报废处理选择方案.电机电器技术,2002,(6):9-11.
    [12]Veit H., Diehl T., Salami A., et al. Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap. Waste Management,2005,25 (1):67-74.
    [13]林康.解决电子垃圾污染的几点建议.能源与环境,2007,(6):25-28.
    [14]王勇,高秋梅,卢逊艳.电子垃圾污染的防治对策.电子产品可靠性与环境试验,2006,24(6):62-65.
    [15]王景伟,施德汉,陈须连.美国电子废弃物资源化产业现状分析.上海环境科学,2003,22(12):1034-1037.
    [16]王景伟,徐金球.欧盟电子废弃物管理法立法简介.中国环保产业,2004,(10):42-43.
    [17]钟韵江.电脑变成垃圾何去何从?大众电脑,2002,(5):9-10.
    [18]郭廷杰.日本《家电再生法》实施状况简介.再生资源研究,2002,(3):7-9.
    [19]徐滨士,刘世参,李仁涵,等.废旧机电产品资源化的基本途径及发展前景研究.中国表面工程,2004,17(2):1-6.
    [20]郭晓娟.热裂解技术处理废弃印刷线路板的实验研究:[博士学位论文].天津:天津大学,2008:
    [21]毛玉如,李兴.电子废弃物现状与回收处理探讨.再生资源研究,2004,(2):11-14.
    [22]董锁成,范振军.中国电子废弃物循环利用产业化问题及其对策.资源科学,2005,27(1):39-45.
    [23]幸红.电子废弃物回收利用相关法律问题探讨.法律适用,2007,(8):83-86.
    [24]李丹.电子废弃物管理立法研究.再生资源研究,2006,(4):21-26.
    [25]龙来寿,孙水裕,钟胜,等.废旧印刷电路板资源化技术及无害化对策评述,2009,28(6):61-63.
    [26]魏金秀.废弃印刷线路板中金回收的试验研究:[硕士论文].上海:东华大学,2005:
    [27]Li J., Shrivastava P., Gao Z., et al. Printed circuit board recycling:a state-of-the-art survey. IEEE transactions on electronics packaging manufacturing,2004,27 (1):33-42.
    [28]杨继平,向东,高鹏,等.印制电路板拆解技术与拆解工艺综述.机械工程学报,2009,45(9):126-135.
    [29]Zhibin Guan, P. M. Cotts, E. F. McCord. A New Strategy to Control Polymer Topology. Science Magazine.1999,26(3):2059-2062.
    [30]Zhou Y., Qiu K. A new technology for recycling materials from waste printed circuit boards. Journal of Hazardous Materials,2010,175 (1-3):823-828.
    [31]Yokoyama S., Ikuta Y, Iji M. Recycling system for printed wiring boards with mounted parts. Nec Res Dev,1999,32(2):814-817.
    [32]Schl gl M. Recycling von Elektro-und Elektronikschrott. Physik in unserer Zeit,2006,28 (1):31-34.
    [33]Melchiorre M., Jakob R. Electronic scrap recycling. Microelectronics Journal, IEEE,1996, (28):8-10.
    [34]赵跃民,王全强,焦红光,等.废弃电路板选择性破碎基础研究.中国矿业大学学报,2005,34(6):683-687.
    [35]段晨龙,何亚群,赵跃民,等.脉动气流分选装置处理电子废弃物的基础研究.环境工程,2005,23(4):53-55.
    [36]沈志刚.废印刷电路板回收处理技术进展.新材料产业,2006,(10):43-46.
    [37]胡天觉,曾光明.从家用电器废物中回收贵金属.中国资源综合利用,2001,(7):12-15.
    [38]NA R.V. Recycling of Electronic Scrap at Umicore Precious Metals Refining. Acta Metallurgica Slovaca,2006, (12):111-120.
    [39]Bernardes A., Bohlinger I., Milbrandt H., et al. Reclamation of scrap printed circuit boards. Galvanotechnik,1996,87 (8):2696-2704.
    [40]祝大同.日本在废弃PCB回收,再利用方面的研究新进展.家电科技,2005,(10):65-67.
    [41]周全法,尚通明.废电脑及配件与材料的回收利用.北京:化学工业出版社,2003:51- 55.
    [42]钟非文,李登新,魏金秀.从废弃电子印刷线路板中回收金德试验.有色金属再生与利用,2006,6(6):25-27.
    [43]张潇尹,陈亮,陈东辉.硫氰酸盐法浸出废印刷线路板中的金.贵金属,2008,29(1):11-14.
    [44]朱萍,古国榜.从印刷电路板废料中回收金和铜的研究.稀有金属,2002,26(3):214-216.
    [45]白庆中,王晖,韩洁等.世界废弃印刷电路板的机械处理技术现在.环境污染治理技术与设备,2001,2(1):84-89.
    [46]Brandl H., Bosshard R., Wegmann M. Computer-munching microbes:metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy,2001,59 (2-3):319-326.
    [47]Bosecker K. Microbial recycling of mineral waste products. Acta Biotechnologica,2004,7 (6):487-497.
    [48]曹亦俊,赵跃民,温雪峰.废弃电子设备的资源化研究发展现状.环境污染与防治,2003,25(5):289-292.
    [49]Iji M. Recycling of epoxy resin compounds for moulding electronic components. Journal of Materials Science,1998,33 (1):45-53.
    [50]吴倩.废弃电路板用环氧树脂真空热解及热解油成分分析的试验研究:[硕士学位论文].长沙:中南大学,2009:
    [51]Williams P.T., Brindle A.J. Fluidised bed catalytic pyrolysis of scrap tyres:Influence of catalyst:tyre ratio and catalyst temperature. Waste Management & Research,2002,20 (6): 546-555.
    [52]Li A., Li X., Li S., et al. Pyrolysis of solid waste in a rotary kiln:influence of final pyrolysis temperature on the pyrolysis products. Journal of Analytical and Applied Pyrolysis,1999,50 (2): 149-162.
    [53]Barontini F., Marsanich K., Petarca L., et al. Thermal degradation and decomposition products of electronic boards containing BFRs. Industrial & Engineering Chemistry Research, 2005,44 (12):4186-4199.
    [54]Chen K., Yeh R. Pyrolysis kinetics of epoxy resin in a nitrogen atmosphere. Journal of Hazardous Materials,1996,49 (2-3):105-113.
    [55]Chen K.S., Chen H.C., Wu C.H., et al. Kinetics of thermal and oxidative decomposition of printed circuit boards. Journal of Environmental Engineering-Asce,1999,125 (3):277-283.
    [56]孙路石,陆继东,王世杰,等.印刷线路板废弃物热解实验研究.化工学报,2003,54(3):408-412.
    [57]Luda M., Balabanovich A., Camino G. Thermal decomposition of fire retardant brominated epoxy resins. Journal of Analytical and Applied Pyrolysis,2002,65 (1):25-40.
    [58]Tange L., Drohmann D. Waste electrical and electronic equipment plastics with brominated flame retardants-from legislation to separate treatment-thermal processes. Polymer Degradation and Stability,2005,88 (1):35-40.
    [59]孙路石,陆继东,王世杰,等.溴化环氧树脂印刷线路板热解产物的分析.华中科技大学学报:自然科学版,2003,31(8):50-52.
    [60]Chien Y.C., Wang H.P., Lin K.S., et al. Fate of bromine in pyrolysis of printed circuit board wastes. Chemosphere,2000,40 (4):383-387.
    [61]彭科,奚波,姚强.印刷电路板基材的热解实验研究.环境污染治理技术与设备,2004,5(5):34-37.
    [62]孙路石,陆继东,王世杰,等.印刷线路板废弃物的热解及其产物分析.燃料化学学报,2002,30(3):285-288.
    [63]Bhaskar T., Kaneko J., Muto A., et al. Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products. Journal of Analytical and Applied Pyrolysis,2004,72 (1):27-33.
    [64]Saotome Y., Nakazawa Y., Yamada Y. Disassembling and materials recovering process of alkaline manganese dry batteries by vacuum-aided recycling systems technology (VARS Tech.). Vacuum,1999,53 (1-2):101-104.
    [65]Wiaux J., Waefler J. Recycling zinc batteries:an economical challenge in consumer waste management. Journal of Power Sources,1995,57 (1-2):61-65.
    [66]周益辉.真空热裂解和离心分离技术实现废弃电路板中有机树脂和焊锡的资源化研究:[硕士学位论文].长沙:中南大学,2009:
    [67]杨强.微波技术在环境保护中的应用.环境保护,2001,(1):41-43.
    [68]Jianjun H., Jiabiao S., Yuedong M., et al. DC Arc Plasma Disposal of Printed Circuit Board. Plasma Science and Technology,2004, (6):2423.
    [69]Jirang Cui N.D.-O., G. Durand, G. Tersac. Glycolysis of epoxide-amine hardened nework. Ⅰ. Diglyeidylether/aliphaic amines model network. Polymer,2003,44 (14):3795-3801.
    [70]Luda M., Camino'Alexander G., Balabanovich A. Scavenging of halogen in recycling of halogen-based polymer materials. Macronol Symp,2002, (180)141-151.
    [71]Blazso M., Czegeny Z., Csoma C. Pyrolysis and debromination of flame retarded polymers of electronic scrap studied by analytical pyrolysis. Journal of Analytical and Applied Pyrolysis, 2002,64 (2):249-261.
    [72]彭绍洪,陈烈强,蔡明招.废旧电路板热解过程中溴化氢的生成及脱除.华南理工大 学学报:自然科学版,2006,34(10):15-19.
    [73]Luda M.P., Euringer N., Moratti U., et al. WEEE recycling:Pyrolysis of fire retardant model polymers. Waste Management,2005,25 (2):203-208.
    [74]Uddin M., Sakata Y., Shiraga Y., et al. Dechlorination of chlorine compounds in poly (vinyl chloride) mixed plastics derived oil by solid sorbents. Industrial and Engineering Chemistry Research,1999,38:1406-1410.
    [75]Hornung A., Donner S., Balabanovich A., et al. Polypropylene as a reductive agent for dehalogenation of brominated organic compounds. Journal of Cleaner Production,2005,13 (5): 525-530.
    [76]Vasile C., Brebu M., Karayildirim T., et al. Feedstock recycling from plastics and thermosets fractions of used computers. II. Pyrolysis oil upgrading. Fuel,2007,86 (4):477-485.
    [77]Shiraga Y, Uddin M., Muto A., et al. Boiling-point distributions and dechlorination of organic chlorine compounds in oil obtained from the degradation of PVC mixed plastic. Energy Fuels,1999,13 (2):428-432.
    [78]Lingaiah N., Uddin A. Catalytic dechlorination of chloroorganic compounds from PVC-containing mixed plastic-derived oil. Applied Catalysis A:General,2001,207 (1-2):79-84.
    [79]Bhaskar T., Murai K., Brebu M., et al. Thermal degradation of ABS-Br mixed with PP and catalytic debromination by iron oxide carbon composite catalyst (Fe-C). Green Chemistry,2002, 4 (6):603-606.
    [80]Bhaskar T., Matsui T., Nitta K., et al. Laboratory evaluation of calcium-, iron-, and potassium-based carbon composite sorbents for capture of hydrogen chloride gas. Energy Fuels, 2002,16(6):1533-1539.
    [81]Bhaskar T., Uddin M., Kaneko J., et al. Liquefaction of mixed plastics containing PVC and dechlorination by calcium-based sorbent. Energy and Fuels,2003,17 (1):75-80.
    [82]Uddin M. Dehydrohalogenation during pyrolysis of brominated flame retardant containing high impact polystyrene (HIPS-Br) mixed with polyvinylchloride (PVC)* 1. Fuel,2002,81 (14): 1819-1825.
    [83]Bhaskar T., Matsui T., Kaneko J., et al. Novel calcium based sorbent (Ca-C) for the dehalogenation (Br, Cl) process during halogenated mixed plastic (PP/PE/PS/PVC and HIPS-Br) pyrolysis. Green Chemistry,2002,4 (4):372-375.
    [84]Sakata Y, Bhaskar T., Uddin M., et al. Development of a catalytic dehalogenation (Cl, Br) process for municipal waste plastic-derived oil. Journal of Material Cycles and Waste Management,2003,5 (2):113-124.
    [85]Wang H., Hirahara M., Goto M., et al. Extraction of flame retardants from electronic printed circuit board by supercritical carbon dioxide. The Journal of Supercritical Fluids,2004,29 (3): 251-256.
    [86]Altwaiq A., Wolf M., van Eldik R. Extraction of brominated flame retardants from polymeric waste material using different solvents and supercritical carbon dioxide. Analytica Chimica Acta,2003,491 (1):111-123.
    [87]李余增.热分析.北京:清华大学出版社,1987:8-26.
    [88]Hall W., Williams P. Separation and recovery of materials from scrap printed circuit boards. Resources, Conservation & Recycling,2007,51 (3):691-709.
    [89]Grause G., Furusawa M., Okuwaki A., et al. Pyrolysis of tetrabromobisphenol-A containing paper laminated printed circuit boards. Chemosphere,2008,71 (5):872-878.
    [90]Pyle D., Zaror C. Heat transfer and kinetics in the low temperature pyrolysis of solids. Chemical Engineering Science,1984,39 (1):147-158.
    [91]Uden A., Berruti F., Scott D. A kinetic model for the production of liquids from the flash pyrolysis of biomass. Chemical engineering communications,1988,65 (1):207-221.
    [92]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985:85-95.
    [93]Wanjun T., Cunxin W., Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polymer Degradation and Stability,2005,87 (3):389-394.
    [94]Chiang H., Lin K., Lai M., et al. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures. Journal of Hazardous Materials,2007,149 (1):151-159.
    [95]V lker S., Rieckmann T. Thermokinetic investigation of cellulose pyrolysis--impact of initial and final mass on kinetic results. Journal of Analytical and Applied Pyrolysis,2002,62 (2): 165-177.
    [96]孙路石,陆继东.印刷线路板热分解动力学特性.华中科技大学学报:自然科学版,2001,29(12):40-42.
    [97]彭绍洪,陈烈强,甘舸,等.废旧电路板真空热解.化工学报,2006,57(11):2720-2726.
    [98]William J. Removal of organobromine compounds from the pyrolysis oils of flame retarded plastics using zeolite catalysts. Journal of Analytical & Applied Pyrolysis,2008,81 (2):139-147.
    [99]Molto J., Font R., Galez A., et al. Pyrolysis and combustion of electronic wastes. Journal of Analytical and Applied Pyrolysis,2009,84 (1):68-78.
    [100]阳富强,吴超,石英.热重与差示扫描量热分析法联用研究硫化矿石的热性质.科技导报,2009,(22):66-71.
    [101]胡荣祖,史启帧.热分析动力学.北京:科学技术出版社,2001:2-4.
    [102]Hu S., Jess A., Xu M. Kinetic study of Chinese biomass slow pyrolysis:comparison of different kinetic models. Fuel,2007,86 (17-18):2778-2788.
    [103]杨素文.生物质真空热解液化制生物油及真空化学活化制活性炭研究:[博士论文].长沙:中南大学,2009:
    [104]李峰,何静.α-磷酸锆的轩及热分解非等温动力学研究.无机化学学报,1999,15(1):55-60.
    [105]黄小芳,吴玉龙,杨明德,等.水氯镁石的热解机理及动力学.过程工程学报,2006,6(5):729-733.
    [106]Miranda R., Yang J., Roy C., et al. Vacuum pyrolysis of commingled plastics containing PVC I. Kinetic study. Polymer Degradation and Stability,2001,72 (3):469-491.
    [107]丘克强,吴倩,湛志华.废弃电路板真空热解产物特性分析.功能材料,2009,40(3):515-518.
    [108]罗凌江,王能.印制电路板的热设计.兵工自动化,2006,25(12):80-81.
    [109]管美章.印制电路板的热设计及其实施.印制电路信息,2008,(4):27-30.
    [110]王清,王绪科.从电路板废料中回收苯酚及异丙基苯酚.山东科学,2000,13(3):57-60.
    [111]于世林李寅蔚.波谱分析法.重庆:重庆大学出版社,2003:34-41.
    [112]Duan Ji-an C.G.-h., Shuai Ci-jun. The relationship between IR characteristic peak and microstructure of the glass used as optical fiber. J.Cent.South Univ. Technol.,2006,13 (3): 238-241.
    [113]彭绍洪.废旧电路板的热裂解及热解油制备酚醛树脂的工艺研究:[博士学位论文].广州:华南理工大学,2006:
    [114]Cullis C, Hirschler M. The combustion of organic polymers. New York:Clarendon Press, 2002:306-362.
    [115]徐克勋.精细有机化工原料及中间体手册.北京:化学工业出版社,1998:121-130.
    [116]张于峰,郭晓娟,魏莉莉,等.溴化环氧树脂印刷线路板的中温热解实验.天津大学学报,2008,41(11):1372-1376.
    [117]李强,罗瑞盈,程永宏.热解炭的化学气相沉积机理和组织形貌.炭素技术,2003,(4):1-6.
    [118]杨听,陈惠芳.化学气相沉积热解炭机理及其化学动力学.炭素,2002,(2):7-10.
    [119]de Marco I., Legarreta J., Laresgoiti M., et al. Recycling of the products obtained in the pyrolysis of fibre-glass polyester SMC. Journal of Chemical Technology & Biotechnology,1999, 69(2):187-192.
    [120]Cunliffe A., Williams P. Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis* 1. Fuel,2003,82 (18):2223-2230.
    [121]唐黎明,庹新林.高分子化学.北京:清华大学出版社,2009:373.
    [122]张邦华,朱常英,郭天瑛.近代高分子科学.北京:化学工业出版社,2006:280.
    [123]彭浩,金军,王英,等.四溴双酚-A及其环境问题.环境与健康杂志,2006,23(6):571-573.
    [124]孙路石.废旧印刷线路板的热解机理及产物回收利用的试验研究:[博士学位论文].武汉:华中科技大学,2004:
    [125]欧育湘,陈宇,王筱梅.阻燃高分子材料.北京:国防工业出版社,2001:95-96.
    [126]王伟.环氧树脂固化技术及其固化剂研究进展.热固性树脂,2001,16(3):29-33.
    [127]Zhu H.M., Jiang X.G., Yan J.H., et al. TG-FTIR analysis of PVC thermal degradation and HCI removal. Journal of Analytical and Applied Pyrolysis,2008,82 (1):1-9.
    [128]de Marco I., Caballero B.M., Chomon M.J., et al. Pyrolysis of electrical and electronic wastes. Journal of Analytical and Applied Pyrolysis,2008,82 (2):179-183.
    [129]Nakao M., Nishioka T., Shimizu M., et al. Degradation of brominated epoxy resin and effects on integrated-circuit-device wirebonds. Polymeric materials for electronics packaging and interconnection,1989, (407):421-428.
    [130]李杰.有机人名反应及机理.上海:华东理工大学出版社,2003:201-250.
    [131]Hornung A., Balabanovich A., Donner S., et al. Detoxification of brominated pyrolysis oils. Journal of Analytical and Applied Pyrolysis,2003,70 (2):723-733.
    [132]Luda M., Balabanovich A., Hornung A., et al. Thermal degradation of a brominated bisphenol a derivative. Polymers for Advanced Technologies,2004,14 (11-12):741-748.
    [133]Wang C., Lin Y., Fritz D. m-Bromophenolic epoxy resins for electronic packaging. Die Angewandte Makromolekulare Chemie,2003,198 (1):51-60.
    [134]Hall W., Williams P. Pyrolysis of brominated feedstock plastic in a fluidised bed reactor. Journal of Analytical and Applied Pyrolysis,2006,77 (1):75-82.
    [135]Bhaskar T., Hall W.J., Mitan N.M.M., et al. Controlled pyrolysis of polyethylene/polypropylene/polystyrene mixed plastics with high impact polystyrene containing flame retardant:Effect of decabromo diphenylethane (DDE). Polymer Degradation and Stability, 2007,92 (2):211-221.
    [136]Norbert M, Hall W., Angyal A., et al. Production of oil with low organobromine content from the pyrolysis of flame retarded HIPS and ABS plastics. Journal of Analytical & Applied Pyrolysis,2008,83 (1):115-123.
    [137]Brebu M., Bhaskar T, Murai K., et al. Removal of nitrogen, bromine, and chlorine from PP/PE/PS/PVC/ABS-Br pyrolysis liquid products using Fe-and Ca-based catalysts. Polymer Degradation and Stability,2005,87 (2):225-230.
    [138]王宇菲,常燕,万翠凤,等.海泡石制备MCM-41和AIMCM-41介孔分子筛研究. 非金属矿,2007,30(1):37-39.
    [139]常燕,金胜明,关豪元,等.AIMCM-41的水热合成及其孔结构表征.中南大学学报:自然科学版,2008,39(2):262-267.
    [140]Blazs M., Czy Z. Catalytic destruction of brominated aromatic compounds studied in a catalyst microbed coupled to gas chromatography/mass spectrometry. Journal of Chromatography A,2006,1130 (1):91-96.
    [141]Hall W.J., Williams P.T. Removal of organobromine compounds from the pyrolysis oils of flame retarded plastics using zeolite catalysts. Journal of Analytical and Applied Pyrolysis,2008, 81 (2):139-147.
    [142]叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002:10-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700