用户名: 密码: 验证码:
肝素酶1对前列腺癌细胞增殖、侵袭及骨破坏作用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌是欧美男性病死率第二位恶性肿瘤,在我国其发病率也逐年升高。超过80%的晚期前列腺癌患者会发生骨转移。骨转移会严重影响前列腺癌患者的生活质量并且是前列腺癌患者死亡的主要原因。骨性转移可引起疼痛、病理性骨折、高钙血症、脊髓及其它神经受压等并发症,而这些并发症都是由于骨质破坏造成的。抑制骨质破坏的特异性治疗可以明显提高患者的生活质量并延长患者的生存时间。
     肝素酶1(HPSE1)是一种能切开乙酰肝素链的内切糖苷酶,而乙酰肝素链可以和许多生物活性分子结合,发挥生物调节功能。以往研究发现肝素酶1在多种肿瘤组织中高表达,而且与肿瘤的预后密切相关。另外肝素酶1在肿瘤细胞中过表达可以促进肿瘤的增殖、新生血管生成和向远处转移并且能抑制肿瘤细胞凋亡。最近的研究发现肝素酶1还与骨形成和骨折愈合相关,并且能促进骨髓瘤细胞向骨组织转移。但有关肝素酶1与前列腺癌及与前列腺癌骨转移所导致的骨破坏间的关系尚不清楚。
     研究目的:
     本实验拟建立肝素酶1过表达的前列腺癌细胞,并观察肝素酶1对前列腺癌细胞在体内外增殖、侵袭及对骨组织破坏作用的影响。
     研究方法:
     1.将插入人肝素酶1基因cDNA序列的真核表达载体pIRES2 -EGFP-HPSE1采用脂质体转染前列腺癌细胞系PC-3,并用G418稳定筛选得到过表达肝素酶1的细胞克隆,命名为PC-3-HPSE1。同时将pIRES2-EGFP空载体转染PC-3细胞并稳定筛选作为对照,命名为PC-3-EGFP。采用实时定量PCR、Western-blot和间接免疫荧光检测肝素酶1 mRNA和蛋白在两组细胞内的表达,并用ELISA法检测两组细胞内肝素酶1的酶活性。
     2.采用MTT法检测两组细胞在体外增殖情况,并用Transwell小室实验检测两组细胞在体外的侵袭力。建立裸鼠皮下移植瘤模型,定期观测肿瘤生长情况。6周后HE染色观察肿瘤组织形态及了解其它脏器的转移情况。采用免疫组化法检测肿瘤组织内肝素酶1的表达情况。
     3.采用胫骨内注射法建立裸鼠前列腺癌骨转移模型,定期观察裸鼠肿瘤生长、活动能力和肿瘤大小。4周后X线平片观察胫骨骨质破坏情况。取胫骨标本,肿瘤组织HE染色观察肿瘤形态,骨组织经脱钙后,HE染色观察肿瘤细胞在骨组织内生长情况及骨组织破坏程度。采用图形分析软件测量胫骨骨皮质面积,比较骨组织破坏程度。耐酒石酸酸性磷酸酶(TRAP)染色检测破骨细胞,比较两组破骨细胞的活性。
     研究结果:
     1.成功建立了稳定表达肝素酶1的PC-3细胞,实时定量PCR结果显示实验组PC-3-HPSE1细胞内肝素酶1的mRNA表达水平比对照组PC-3-EGFP细胞高8倍。Western-blot检测结果显示PC-3-HPSE1细胞内可检测到明显的条带,大小约为50kDa,与活性肝素酶1蛋白大小一致,而PC-3-EGFP细胞则检测不到。间接免疫荧光结果显示PC-3-HPSE1细胞内可见较强的红色荧光,而PC-3-EGFP细胞仅能观测到很弱的荧光。ELISA法检测细胞内肝素酶1活性结果显示PC-3-HPSE1细胞内肝素酶酶活性明显高于PC-3-EGFP细胞。
     2. MTT法检测细胞体外增殖能力,结果显示两组细胞体外增殖能力无显著差异。Transwell小室实验结果显示PC-3-HPSE1细胞穿膜细胞数明显多于PC-3-EGFP细胞。成功建立了两组细胞的裸鼠皮下移植瘤模型,结果显示PC-3-HPSE1细胞从接种细胞到可于皮下触及肿瘤包块所需时间明显短于PC-3-EGFP细胞,在多个时间点PC-3-HPSE1细胞形成的肿瘤体积明显大于PC-3-EGFP细胞组。PC-3-HPSE1细胞组发现肺转移6例,而PC-3-EGFP细胞组仅发现2例肺转移。免疫组化染色显示PC-3-HPSE1细胞组肿瘤组织肝素酶1表达水平较高,而PC-3-EGFP细胞组肿瘤组织肝素酶1表达水平很低。
     3.成功采用胫骨内注射法建立了裸鼠前列腺癌骨转移模型,每只裸鼠都在注射肿瘤的左后肢形成肉眼可见的肿瘤。X线平片显示所有的动物模型均发生了溶骨性骨破坏,且PC-3-HPSE1组骨破坏程度高于PC-3-EGFP组。PC-3-HPSE1组有3例发生病理性骨折,而PC-3-EGFP组没有发生病理性骨折。HE染色显示骨皮质发生了不同程度的破坏,骨组织内可见少量肿瘤细胞,在骨破坏区可见大量破骨细胞。用图像分析软件分析裸鼠胫骨骨皮质面积,结果显示PC-3-EGFP组骨皮质面积明显小于PC-3-EGFP组。抗酒石酸酸性磷酸酶(TRAP)染色结果显示PC-3-HPSE1组破骨细胞活性明显强于PC-3-EGFP组。
     结论:
     1.通过Real-Time PCR、Western-blot和间接免疫荧光检测,证实成功建立了过表达肝素酶1的前列腺癌细胞PC-3-HPSE1,PC-3-HPSE1细胞外源性表达的肝素酶1蛋白具有肝素酶酶活性。并且PC-3-HPSE1细胞在裸鼠体内生长时也能稳定表达肝素酶1。
     2.虽然肝素酶1过表达不能促进PC-3细胞在体外的增殖能力,但能明显促进PC-3细胞在体内的增殖能力。并能明显提高PC-3细胞在体内外的侵袭及发生转移的能力。
     3.肝素酶1过表达可以促进PC-3细胞在骨组织内的生长,同时也可以提高PC-3细胞诱导破骨细胞形成的能力,增加破骨细胞的活性,从而促进PC-3细胞对骨组织的破坏作用。因此肝素酶1可能是前列腺癌骨转移治疗的一个潜在靶点。
Prostate cancer is the second leading cause of death in America and is becoming more common in China. Over 80% of advanced prostate cancer patients suffer from bone metastasis. Bone metastasis significantly decreases the patients’quality of life, and is the most common cause of death for prostate cancer patients. Complications of metastatic bone disease include pathological fractures, pain, cranial nerve palsies, spinal cord compression, and bone marrow suppression, most of which are caused by bone destruction. Treatment of bone metastasis includes chemotherapy, radiotherapy and bone specific therapy aimed to prevent bone destruction, which can prolong the patients’life span and improve quality of life. Based on this hypothesis, anti-osteoclast agents such as bisphosphonates are used to prevent bone lesions in many different cancers including prostate cancer.
     Heparanase is an endoglycosidase that cleaves heparin sulfate, which binds many different bioactive molecules. This enzyme has an important role in both normal and pathologic processes, especially in angiogenesis and metastasis of tumors. Previous studies revealed elevated heparanase expression in human breast, bladder, pancreas, prostate tumors, which correlated with advanced tumor progression and metastasis. Overexpression of heparanase in breast cancer cells accelerates cell proliferation and survival in vitro and promotes angiogenesis and invasion in vivo. In contrast, reducing heparanase levels in lymphoma cells with anti-heparanase ribozyme or siRNA-mediated gene-silencing vectors alters tumorigenic properties of the cells.
     Recent studies indicate that myeloma cells overexpressing heparanase can promote spontaneous metastasis to bone. Another study proved that heparanase was involved in the process of bone formation. However, it is unknown what role heparanase plays in bone destruction in prostate cancer patients. Objective:
     To established heparanase over-expressing PC-3 cells and evaluate the effects of elevated heparanase expression on bone destruction and invasiveness of prostate cancer cells.
     Methods:
     1. The pIRES2-EGFP/HPSE1 plasmid containing heparanase cDNA (HPSE1) and the empty pIRES2-EGFP vector as a control, were transfected into PC-3 human prostate cancer cells using the Lipofectin reagent. Cells stably expressing the plasmid were selected with G418. These two groups of cells are referred to as PC-3-HPSE1 and PC-3-EGFP. Transfected cells were maintained routinely in the selection medium to avoid overgrowth of non-transfected cells. Expression of heparanase1 was detected by REAL-TIME PCR, Western-blot and indirect Immunofluorescence Assay. Heparanase activity was measured by Heparan Deagrading Enzyme Assay.
     2. In vitro cell growth was investigated by MTT assay and in vitro cell invasiveness was investigated by Transwell assay. Tumorigenicity assay was performed in nude mice model to assess the malignant behavior of cells. Tumor diameter was recorded using caliper regularly. H&E staining was used for histological verification of tumor growth and metastasis. To determine if heparanase expression was maintained in vivo, immunohistochemistry of the tumors were performed using rabbit anti-human heparanase polyclonal antibody.
     3. Animal model of bone metastasis was established using direct tibia injection. Twenty-eight days after injection, the animals were anesthetized and a flat plate radiograph was taken. After sacrifice, the tumor-bearing leg was harvested, and the hindlimb tumor diameter was recorded using caliper. H&E staining was used for histological verification of tumor growth and bone destruction. The area of cortical bone present in each specimen was calculated using image analysis software. To detect osteoclasts, tartrate-resistant acid phosphatase (TRAP) staining was performed on sections of bone.
     Results:
     1. To investigate the role of heparanase in bone metastasis of prostate cancer, we successfully established human prostate cancer PC-3 cells over-expressing heparanase, referred to hereafter as PC-3-HPSE1 cells. PC-3 cells transfected with empty vector, PC-3-EGFP cells, were used as the negative control. Real time RT-PCR revealed an 8 fold increase in relative expression of heparanase mRNA in PC-3-HPSE1 cells compared to the PC-3-EGFP cells. Western blot analysis revealed no detectable heparanase protein in PC-3-EGFP cells, whereas there was a distinct heparanase protein band in the PC-3-HPSE1 cells. Indirect immunofluorescence labeling showed a very weak signal of heparanase in PC-3-EGFP cells, whereas there was much stronger staining in PC-3-HPSE1 cells. Heparan Deagrading Enzyme Assay showed higher heparanase activity in PC-3-EGFP cells than in PC-3-EGFP cells.
     2. Overexpressing heparanase did not alter the growth of the cells in vitro even after 72 hours. The invasion assay showed that more PC-3-HPSE1 cells traveled through the filter than in either of the control groups. Six weeks after the injection, each mouse formed a visible tumor. The mean tumor diameter of the PC-3-EGFP group was significantly smaller than that of the PC-3-HPSE1 group, which indicated that cells with higher heparanase level proliferated more quickly in vivo. Six cases of lung metastasis were found in the PC-3-HPSE1 group, while only two cases were found in the PC-3-EGFP group. Immunohistochemistry of tumors demonstrated that tumors of PC-3-EGFP cells were weakly positive for heparanase expression, while tumors of PC-3-HPSE1 cells are strongly positive for heparanase.
     3. Four weeks after the injection, radiographs of the mice showed that all animals in both groups formed osteolytic lesions characterized by obliteration of the partial proximal tibia. each mouse formed a visible tumor in the hindlimb which was injected with tumor cells. No pathologic fracture was found in the PC-3-EGFP group, while there were three cases of pathologic fracture in the PC-3-HPSE1 group. H&E staining of histological sections from the tibias in both groups revealed there was eradication of the proximal tibia in both groups, but in the PC-3-EGFP group, the cortical structure of the tibias was better preserved. Histomorphometric analysis revealed significantly less cortical bone destruction in the PC-3-EGFP group than that in the PC-3-HPSE1 group. TRAP staining showed fewer TRAP-positive cells in the PC-3-EGFP group than in the PC-3-HPSE1 group.
     Conclusions:
     1. PC-3-HPSE1 cells could express high level of heparanase both in vitro and in vivo.
     2. Although heparnase could not promote proliferation of tumor cells in vitro, it can promote cell proliferation and invasiveness in vivo.
     3. Heparanase could promote tumor cell growth in bone tissue and bone destruction caused by prostate cancer cells. Targeting heparanase in tumors may be an effective means of controlling bone metastasis in prostate cancer patients.
引文
1 Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987;55:61-6.
    2 Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584-93.
    3 Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27:165-76.
    4 Coleman RE, Seaman JJ. The role of zoledronic acid in cancer: clinical studies in the treatment and prevention of bone metastases. Semin Oncol. 2001;28:Suppl:11-6.
    5 Charhon SA, Chapuy MC, Delvin EE, Valentin-Opran A, Edouard CM, Meunier PJ. Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma special reference to osteomalacia. Cancer. 1983;51: 918-24.
    6 Oades GM, Coxon J, Colston KW. The potential role of bisphosphonates in prostate cancer. Prostate Cancer Prostatic Dis. 2002;5:264-72.
    7 Kahn D, Weiner GJ, Ben-Haim S, Ponto LL, Madsen MT, Bushnell DL, Watkins GL, Argenyi EA, Hichwa RD. Positron emission tomographic measurement of bone marrow blood flow to the pelvis and lumbar vertebrae in young normal adults. Blood. 1994;83:958-63.
    8 van der Pluijm G, Sijmons B, Vloedgraven H, Deckers M, Papapoulos S, Lowik C. Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. J Bone Miner Res. 2001;16:1077-91.
    9 Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M. Growth factors in bone matrix: isolation of multiple types by affinitychromatography on heparin-Sepharose. J Biol Chem. 1986;261:12665-74.
    10 Pfeilschifter J, Mundy GR. Modulation of type b transforming growth factor activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci U S A. 1987;84:2024-8.
    11 Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;1:571-3.
    12 Roodman GD. Cell biology of the osteoclast. Exp Hematol. 1999;27:1229- 41.
    13 Kodama H, Nose M, Niida S, Yamasaki A. Essential role of macrophage colonystimulating factor in the osteoclast differentiation supported by stromal cells. J Exp Med. 1991;173:1291-4.
    14 Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165-76.
    15 Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95: 3597-602.
    16 Hofbauer LC, Heufelder AE. Osteoprotegerin and its cognate ligand: a new paradigm of osteoclastogenesis. Eur J Endocrinol. 1998;139:152-4.
    17 Tsukii K, Shima N, Mochizuki S, Yamaguchi K, Kinosaki M, Yano K, Shibata O, Udagawa N, Yasuda H, Suda T, Higashio K. Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha,25-dihydroxyvitamin D3, prostaglandin E2, orparathyroid hormone in the microenvironment of bone. Biochem Biophys Res Commun. 1998;246:337-41.
    18 Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13:2412-24.
    19 Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89: 309-19.
    20 Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, Van G, Kaufman S, Kostenuik PJ, Lacey DL, Boyle WJ, Simonet WS. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med. 2000;192:463-74.
    21 Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/ osteoprotegerin. Biochem Biophys Res Commun. 1998;247:610-5.
    22 Blair HC, Teitelbaum SL, Ghiselli R, Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989;245:855-7.
    23 Horton MA, Dorey EL, Nesbitt SA, Samanen J, Ali FE, Stadel JM, Nichols A, Greig R, Helfrich MH. Modulation of vitronectin receptor-mediated osteoclast adhesion by Arg-Gly-Asppeptide analogs: a structure-function analysis. J Bone Miner Res. 1993;8:239-47.
    24 Aubin JE. Bone stem cells. J Cell Biochem Suppl. 1998;30-31:73-82.
    25 Yang X, Karsenty G. Transcription factors in bone: developmental and pathological aspects. Trends Mol Med. 2002;8:340-5.
    26 Stein GS, Lian JB. Molecular mechanisms mediating proliferation/ differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev. 1993;14:424-42.
    27 Wozney JM. Overview of bone morphogenetic proteins. Spine. 2002;27: Suppl 1:S2-S8.
    28 Mundy GR, Chen D, Zhao M, Dallas S, Xu C, Harris S. Growth regulatory factors and bone. Rev Endocr Metab Disord. 2001;2:105-15.
    29 Taube T, Elomaa I, Blomqvist C, Beneton MNC, Kanis JA. Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone. 1994;15:161-66.
    30 Boyde A, Maconnachie E, Reid SA, Delling G, Mundy GR. Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc. 1986;4:1537-54.
    31 Bataille R, Chappard D, Basle M. Excessive bone resorption in human plasmacytomas: direct induction by tumour cells in vivo. Br J Haematol. 1995;90:721-4.
    32 Taube T, Beneton MN, McCloskey EV, Rogers S, Greaves M, Kanis JA. Abnormal bone remodelling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol. 1992;49:192-8.
    33 Roodman GD. Biology of osteoclast activation in cancer. J Clin Oncol. 2001;19:3562-71.
    34 Pfeilschifter J, Chenu C, Bird A, Mundy GR, Roodman GD. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J Bone Miner Res. 1989;4:113-8.
    35 Lust JA, Donovan KA. The role of interleukin-1 beta in the pathogenesis ofmultiple myeloma. Hematol Oncol Clin North Am. 1999;13:1117-25.
    36 Sati HI, Greaves M, Apperley JF, Russell RG, Croucher PI. Expression of interleukin-1beta and tumour necrosis factor-alpha in plasma cells from patients with multiple myeloma. Br J Haematol. 1999;104:350-7.
    37 Cheung WC, Van Ness B. Distinct IL-6 signal transduction leads to growth arrest and death in B cells or growth promotion and cell survival in myeloma cells. Leukemia. 2002;16:1182-8.
    38 Bataille R, Chappard D, Klein B. Mechanisms of bone lesions in multiple myeloma. Hematol Oncol Clin North Am. 1992;6:285-95.
    39 Kurihara N, Bertolini D, Suda T, Akiyama Y, Roodman GD. IL-6 stimulates osteoclast-like multinucleated cell formation in long term human marrow cultures by inducing IL-1 release. J Immunol. 1990;144: 4226-30.
    40 de la Mata J, Uy HL, Guise TA, Story B, Boyce BF, Mundy GR, Roodman GD. Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. J Clin Invest. 1995;95: 2846-52.
    41 Iwasaki T, Hamano T, Ogata A, Kakishita E. Clinical significance of interleukin-6 gene expression in the bone marrow of patients with multiple myeloma. Int J Hematol. 1999;70:163-8.
    42 Teoh G, Anderson KC. Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma. Hematol Oncol Clin North Am. 1997;11:27-42.
    43 Sezer O, Heider U, Jakob C, Eucker J, Possinger K. Human bone marrow myeloma cells express RANKL. J Clin Oncol. 2002;20:353-4.
    44 Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N, Michaeli J, Epstein J, Choi Y. Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to stimulate bone destruction and promote tumor progression. Proc Natl Acad Sci U S A. 2001;98:11581-6.
    45 Oyajobi BO, Mundy GR. Receptor activator of NF-kappaB ligand, macrophage inflammatory protein-1alpha, and the proteasome:novel therapeutic targets in myeloma. Cancer. 2003;97:Suppl:813-7.
    46 Croucher PI, Shipman CM, Lippitt J, Perry M, Asosingh K, Hijzen A, Brabbs AC, van Beek EJ, Holen I, Skerry TM, Dunstan CR, Russell GR, Van Camp B, Vanderkerken K. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood. 2001;98:3534-40.
    47 Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD. Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood. 2001; 97:3349-53.
    48 Choi SJ, Cruz JC, Craig F, Chung H, Devlin RD, Roodman GD, Alsina M. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood. 2000;96:671-5.
    49 Choi SJ, Oba Y, Gazitt Y, Alsina M, Cruz J, Anderson J, Roodman GD. Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest. 2001; 108:1833-41.
    50 Oyajobi BO, Franchin G, Williams PJ, Pulkrabek D, Gupta A, Munoz S, Grubbs B, Zhao M, Chen D, Sherry B, Mundy GR. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood. 2003;102: 311-9.
    51 Leonard RC, Owen JP, Proctor SJ, Hamilton PJ. Multiple myeloma: radiology or bone scanning? Clin Radiol. 1981;32:291-5.
    52 Pavalko FM, Gerard RL, Ponik SM, Gallagher PJ, Jin Y, Norvell SM. Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3. J Cell Physiol. 2003;194:194-205.
    53 Barille S, Collette M, Bataille R, Amiot M. Myeloma cells upregulate interleukin-6 secretion in osteoblastic cells through cellto-cell contact but downregulate osteocalcin. Blood. 1995;86:3151-9.
    54 Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr. The role of the Wnt/b-catenin signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483-94.
    55 Chirgwin JM, Guise TA. Molecularmechanisms of tumor-bone interactions in osteolytic metastases. Crit Rev Eukaryot Gene Expr. 2000;10:159-78.
    56 Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis.J Clin Invest. 1996; 98:1544-9.
    57 Karaplis AC, Goltzman D. PTH and PTHrP effects on the skeleton. Rev Endocr Metab Disord. 2000;1:331-41.
    58 Powell GJ, Southby J, Danks JA, Stillwell RG, Hayman JA, Henderson MA, Bennett RC, Martin TJ. Localization of parathyroid hormonerelated protein in breast cancer metastases:increased incidence in bone compared with other sites. Cancer Res. 1991;51:3059-61.
    59 Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massagué J, Mundy GR, Guise TA. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999;103:197-206.
    60 Buchs N, Manen D, Bonjour JP, Rizzoli R. Calcium stimulates parathyroid hormone-related protein production in Leydig tumor cells through a putative cation-sensing mechanism. Eur J Endocrinol 2000;142:500-5.
    61 Grano M, Mori G, Minielli V, Cantatore FP, Colucci S, Zallone AZ. Breast cancer cell line MDA-231 stimulates osteoclastogenesis and bone resorption in human osteoclasts. Biochem Biophys Res Commun. 2000;270:1097-100.
    62 Wani MR, Fuller K, Kim NS, Choi Y, Chambers T. Prostaglandin E2 cooperates with TRANCE in osteoclast induction from hemopoietic precursors: synergistic activation of differentiation, cell spreading, and fusion. Endocrinology. 1999;140:1927-35.
    63 Gordon S, Helfrich MH, Sati HI, Greaves M, Ralston SH, Culligan DJ, Soutar RL, Rogers MJ. Pamidronate causes apoptosis of plasma cells in vivo in patients with multiple myeloma. Br J Haematol. 2002;119:475-83.
    64 Powles T, Paterson S, Kanis JA, McCloskey E, Ashley S, Tidy A, Rosenqvist K, Smith I, Ottestad L, Legault S, Pajunen M, Nevantaus A, M?nnist? E, Suovuori A, Atula S, Nevalainen J, Pylkk?nen L. Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J Clin Oncol. 2002;20:3219-24.
    65 Guise TA, Yin JJ, Mohammad KS. Role of endothelin-1 in osteoblastic bone metastases. Cancer. 2003;97:Suppl:779-84.
    66 Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA, Simons JW. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med. 1995;1:944-9.
    67 Yi B, Williams PJ, Niewolna M, Wang Y, Yoneda T. Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res. 2002;62: 917-23.
    68 Achbarou A, Kaiser S, Tremblay G, Ste-Marie LG, Brodt P, Goltzman D, Rabbani SA. Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res. 1994;54:2372-7.
    69 Rabbani SA, Desjardins J, Bell AW, Banville D, Mazar A, Henkin J, Goltzman D. An amino-terminal fragment of urokinase isolated from a prostate cancer cell line (PC-3) is mitogenic for osteoclast-like cells. Biochem Biophys Res Commun. 1990;173:1058-64.
    70 Cramer SD, Chen Z, Peehl DM. Prostate specific antigen cleaves parathyroid hormone-related protein in the PTH-like domain: inactivation of PTHrP-stimulated cAMP accumulation in mouse osteoblasts. J Urol. 1996;156: 526-31.
    71 Roudier MP, Vesselle H, True LD, Higano CS, Ott SM, King SH, Vessella RL. Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results. Clin Exp Metastasis. 2003;20:171-80.
    72 Costa L, Demers LM, Gouveia-Oliveira A, Schaller J, Costa EB, de Moura MC, Lipton A. Prospective evaluation of the peptide-bound collagen type I cross-links N-telopeptide and C-telopeptide in predicting bone metastases status. J Clin Oncol. 2002;20:850-6.
    73 Tamada T, Sone T, Tomomitsu T, Jo Y, Tanaka H, Fukunaga M. Biochemical markers for the detection of bone metastasis in patients with prostate cancer: diagnostic efficacy and the effect of hormonal therapy. J Bone Miner Metab. 2001;19:45-51.
    74 Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics 2001, CA-Cancer J. Clin. 2001;51: 15-36.
    75 Tofe AJ, Francis MD, Harvey WJ. Correlation of neoplasms with incidence and localization of skeletal metastases: An analysis of 1,355 diphosphonate bone scans. J Nucl Med. 1975;16:986-9.
    76 Bagi CM. Skeletal implications of prostate cancer. J Musculoskelet Neuronal Interact. 2003;3:112-7.
    77 Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg. 1940;112:138-49.
    78 Soloway MS, Hardeman SW, Hickey D, Raymond J, Todd B, Soloway S, Moinuddin M. Stratification of patients with metastatic prostate cancer based on extent of disease on initial bone scans. Cancer. 1988;61:195-202.
    79 Pollen JJ, Gerber K, Ashburn WL, Schmidt JD. Nuclear bone imaging in metastatic cancer of the prostate. Cancer. 1981;47:2585-94.
    80 Coleman RE, Mashiter G, Fogelman I, Whitaker KD, Caleffi M, Moss DW, Rubens RD. Osteocalcin: a potential marker of metastatic bone disease and response to treatment. Eur J Cancer Clin Oncol. 1988;24:1211-7.
    81 Killian CS, Emrich LJ, Vargas FP, Yang N, Wang MC, Priore RL, Murphy GP, Chu TM. Relative reliability of five serially measured markers for prognosis of progression in prostate cancer. J Natl Cancer Inst. 1986;76: 179-85.
    82 Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, Yarnold J, Horwich A. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet. 1999;353:267-72.
    83 Lewington VJ. Targeted radionuclide therapy for bone metastases. Eur J Nucl Med. 1993;20:66-74.
    84 Hortobagyi GN, Theriault RL, Porter L, Blayney D, Lipton A, Sinoff C, Wheeler H, Simeone JF, Seaman J, Knight RD. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med. 1996;335:1785-91.
    85 Conte PF, Latreille J, Mauriac L, Calabresi F, Santos R, Campos D, Bonneterre J, Francini G, Ford JM. Delay in progression of bone metastases in breast cancer patients treated with intravenous pamidronate: results from a multinational randomized controlled trial. The Aredia Multinational Cooperative Group. J Clin Oncol. 1996;14:2552-9.
    86 Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, Frith JC. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000;88:2961-78.
    87 Body JJ. Clinical research update: zoledronate. Cancer. 1997;80:1699-701.
    88 Mundy GR, Yoneda T. Bisphosphonates as anticancer drug. N Engl J Med. 1998;339:398-400.
    89 Jensen EV, Suzuki T, Kawashima T, Stumpf WE, Jungblut PW, DeSombre ER. A two-step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci U S A. 1968;59:632-8.
    90 Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1:34-45.
    91 Jordan VC, Prestwich G. Binding of [3H]tamoxifen in rat uterine cytosols: a comparison of swinging bucket and vertical tube rotor sucrose density gradient analysis. Mol Cell Endocrinol. 1977;8:179-88.
    92 Cole MP, Jones CT, Todd ID. A new anti-oestrogenic agent in late breast cancer. An early clinical appraisal of ICI46474. Br J Cancer. 1971;25: 270-5.
    93 Buzdar AU, Marcus C, Holmes F, Hug V, Hortobagyi G. Phase II evaluation of Ly156758 in metastatic breast cancer. Oncology. 1988;45: 344-5.
    94 Suh N, Glasebrook AL, Palkowitz AD, Bryant HU, Burris LL, Starling JJ, Pearce HL, Williams C, Peer C, Wang Y, Sporn MB. Arzoxifene, a new selective estrogen receptor modulator for chemoprevention of experimental breast cancer. Cancer Res. 2001 Dec 1;61(23):8412-5.
    95 Connor CE, Norris JD, Broadwater G, Willson TM, Gottardis MM, Dewhirst MW, McDonnell DP. Circumventing tamoxifen resistance in breast cancers using antiestrogens that induce unique conformational changes in the estrogen receptor. Cancer Res. 2001;61:2917-22.
    96 Denis LJ, Carnelro de Moura JL, Bono A, Sylvester R, Whelan P, Newling D, Depauw M. Goserelin acetate and flutamide versus bilateral orchiectomy: a phase III EORTC trial (30853). EORTC GU Group and EORTC Data Center. Urology. 1993;42:119-30.
    97 Lara PN Jr, Kung HJ, Gumerlock PH, Meyers FJ. Molecular biology ofprostate carcinogenesis. Crit Rev Oncol Hematol. 1999;32:197-208.
    98 Bacci G, Picci P, Ferrari S, Ruggieri P, Casadei R, Tienghi A, Brach del Prever A, Gherlinzoni F, Mercuri M, Monti C. Primary chemotherapy and delayed surgery for nonmetastatic osteosarcoma of the extremities. Results in 164 patients preoperatively treated with high doses of methotrexate followed by cisplatin and doxorubicin. Cancer. 1993;72:3227-38.
    99 Simons JW, Mikhak B, Chang JF, DeMarzo AM, Carducci MA, Lim M, Weber CE, Baccala AA, Goemann MA, Clift SM, Ando DG, Levitsky HI, Cohen LK, Sanda MG, Mulligan RC, Partin AW, Carter HB, Piantadosi S, Marshall FF, Nelson WG. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 1999;59: 5160-8.
    100 Herman JR, Adler HL, Aguilar-Cordova E, Rojas-Martinez A, Woo S, Timme TL, Wheeler TM, Thompson TC, Scardino PT. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther. 1999;10:1239-49.
    101 Dong J, Kukula AK, Toyoshima M, Nakajima M. Genomic organization and chromosome localization of the newly identified human heparanase gene. Gene. 2000;253:171-8.
    102 Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med. 1999;5:803-9.
    103 Kussie PH, Hulmes JD, Ludwig DL, Patel S, Navarro EC, Seddon AP, Giorgio NA, Bohlen P. Cloning and functional expression of a human heparanase gene. Biochem Biophys Res Commun. 1999;261:183-7.
    104 Toyoshima M, Nakajima M. Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem. 1999;274:24153- 60.
    105 Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai- Michaeli R, Bitan M, Pappo O, Peretz T, Michal I, Spector L, Pecker I. Mammalian heparanase: Gene cloning, expression and function in tumor progression and metastasis. Nat Med. 1999;5:793-802.
    106 Goldshmidt O, Zcharia E, Aingorn H, Guatta-Rangini Z, Atzmon R, Michal I, Pecker I, Mitrani E, Vlodavsky I. Expression pattern and secretion of human and chicken heparanase are determined by their signal peptide sequence. J Biol Chem. 2001;276:29178-87.
    107 Parish CR, Freeman C, Hulett MD. Heparanase: A key enzyme involved in cell invasion. Biochim Biophys Acta. 2001;1471:M99-108.
    108 Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 1999;59:3433-41.
    109 Fairbanks MB, Mildner AM, Leone JW, Cavey GS, Mathews WR, Drong RF, Slightom JL, Bienkowski MJ, Smith CW, Bannow CA, Heinrikson RL. Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J Biol Chem. 1999;274:29587-90.
    110 Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N. Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun. 2003;308:885-91.
    111 Simizu S, Ishida K, Wierzba MK, Osada H. Secretion of heparanase protein is regulated by glycosylation in human tumor cell lines. J Biol Chem. 2004;279:2697-703.
    112 Hulett MD, Hornby JR, Ohms SJ, Zuegg J, Freeman C, Gready JE, Parish CR. Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry. 2000;39:15659-67.
    113 Bernfield M, G?tte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J,Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729-77.
    114 Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: Heavy hitters in the angiogenesis arena. J Clin Invest. 2001;108:349-55.
    115 Kjellén L, Lindahl U. Proteoglycans: Structures and interactions. Annu Rev Biochem. 1991;60:443-75.
    116 Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I. A heparin-binding angiogenic protein-basic fibroblast growth factor-is stored within basement membrane. Am J Pathol. 1988;130:393-400.
    117 Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M. Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci U S A. 1987;84:2292-6.
    118 Miao HQ, Ishai-Michaeli R, Atzmon R, Peretz T, Vlodavsky I. Sulfate moieties in the subendothelial extracellular matrix are involved in bFGF sequestration, dimerization and stimulation of cell proliferation. J Biol Chem. 1996;271:4879-86.
    119 Timpl R, Brown JC. Supramolecular assembly of basement membranes. Bioessays. 1996;18:123-32.
    120 Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 1993;9:541-73.
    121 Werb Z. ECM and cell surface proteolysis: Regulating cellular ecology. Cell. 1997;91:439-42.
    122 Freeman C, Parish CR. Human platelet heparanase: Purification, characterization and catalytic activity. Biochem J. 1998;330:1341-50.
    123 Vlodavsky I, Goldshmidt O. Properties and function of heparanase in cancer metastasis and angiogenesis. Haemostasis. 2001;31:60-3.
    124 Pikas DS, Li Jp, Vlodavsky I, Lindahl U. Substrate specificity ofheparanases from human hepatoma and platelets. J Biol Chem. 1998;273: 18770-7.
    125 Dempsey LA, Brunn GJ, Platt JL. Heparanase, a potential regulator of cell-matrix interactions. Trends Biochem Sci. 2000;25:349-51.
    126 McKenzie E, Tyson K, Stamps A, Smith P, Turner P, Barry R, Hircock M, Patel S, Barry E, Stubberfield C, Terrett J, Page M. Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun. 2000;276:1170-7.
    127 Edovitsky E, Lerner I, Zcharia E, Peretz T, Vlodavsky I,&Elkin M. Role of endothelial heparanase in delayed-type hypersensitivity. Blood. 2006; 107:3609-16.
    128 Levidiotis V, Freeman C, Punler M, Martinello P, Creese B, Ferro V, van der Vlag J, Berden JH, Parish CR, Power DA. A synthetic heparanase inhibitor reduces proteinuria in passive Heymann nephritis. J Am Soc Nephrol. 2004;15:2882-92.
    129 Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA. Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol. 2004;15:68-78.
    130 Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA. Heparanase inhibition reduces proteinuria in a model of accelerated anti-glomerular basement membrane antibody disease. Nephrology (Carlton). 2005;10: 167-73.
    131 Levidiotis V, Kanellis J, Ierino FL, Power DA. Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney Int. 2001;60: 1287-96.
    132 Shteper PJ, Zcharia E, Ashhab Y, Peretz T, Vlodavsky I, Ben-Yehuda D. Role of promoter methylation in regulation of the mammalian heparanase gene. Oncogene. 2003;22:7737-49.
    133 de Mestre AM, Khachigian LM, Santiago FS, Staykova MA, Hulett MD.Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. J Biol Chem. 2003;278:50377-85.
    134 de Mestre AM, Rao S, Hornby JR, Soe-Htwe T, Khachigian LM, Hulett M D. Early growth response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. J Biol Chem. 2005;280:35136-47.
    135 Abdulkadir SA, Qu Z, Garabedian E, Song SK, Peters TJ, Svaren J, Carbone JM, Naughton CK, Catalona WJ, Ackerman JJ, Gordon JI, Humphrey PA, Milbrandt J. Impaired prostate tumorigenesis in Egr1- deficient mice. Nat Med. 2001;7:101-7.
    136 Khachigian LM. Early growth response-1: Blocking angiogenesis by shooting the messenger. Cell Cycle. 2004;3:10-11.
    137 Baraz B, Haupt Y, Elkin M, Peretz T, Vlodavsky I. (Tumor suppressor p53 regulates heparanase gene expression. Oncogene. 2006;25:3939-47.
    138 Elkin M, Cohen I, Zcharia E, Orgel A, Guatta-Rangini Z, Peretz T, Vlodavsky I, Kleinman HK. Regulation of heparanase gene expression by estrogen in breast cancer. Cancer Res. 2003;63:8821-26.
    139 Bartlett MR, Underwood PA, Parish CR. Comparative analysis of the ability of leucocytes, endothelial cells and platelets to degrade the subendothelial basement membrane: Evidence for cytokine dependence and detection of a novel sulfatase. Immunol Cell Biol. 1995;73:113-24.
    140 Lider O, Baharav E, Mekori YA, Miller T, Naparstek Y, Vlodavsky I, Cohen IR. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins. J Clin Invest. 1989;83:752-6.
    141 Parish CR, Hindmarsh EJ, Bartlett MR, Staykova MA, Cowden WB, Willenborg DO. Treatment of central nervous system inflammation with inhibitors of basement membrane degradation. Immunol Cell Biol. 1998;76:104-13.
    142 Naparstek Y, Cohen IR, Fuks Z, Vlodavsky I. Activated T lymphocytesproduce a matrix-degrading heparan sulphate endoglycosidase. Nature. 1984;310:241-4.
    143 Vlodavsky I, Eldor A, Haimovitz-Friedman A, Matzner Y, Ishai-Michaeli R, Lider O, Naparstek Y, Cohen IR, Fuks Z. Expression of heparanase by platelets and circulating cells of the immune system: Possible involvement in diapedesis and extravasation. Invasion Metastasis. 1992;12(2):112-27.
    144 Elkin M, Ilan N, Ishai-Michaeli R, Friedmann Y, Papo O, Pecker I, Vlodavsky I. Heparanase as mediator of angiogenesis: Mode of action. FASEB J. 2001;15:1661-3.
    145 Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I, Pappo O. Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. Am J Pathol. 2000;157:1167-75.
    146 Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D. Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev. 1996;15:177-86.
    147 Zcharia E, Zilka R, Yaar A, Yacoby-Zeevi O, Zetser A, Metzger S, Sarid R, Naggi A, Casu B, Ilan N, Vlodavsky I, Abramovitch R. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. FASEB J. 2005;19:211-21.
    148 Zcharia E, Metzger S, Chajek-Shaul T, Aingorn H, Elkin M, Friedmann Y, Weinstein T, Li JP, Lindahl U, Vlodavsky I. Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J. 2004;18:252-63.
    149 Zcharia E, Philp D, Edovitsky E, Aingorn H, Metzger S, Kleinman HK, Vlodavsky I, Elkin M. Heparanase regulates murine hair growth. Am J Pathol. 2005;166:999-1008.
    150 Goldshmidt O, Zcharia E, Cohen M, Aingorn H, Cohen I, Nadav L, Katz BZ, Geiger B, Vlodavsky I. Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J. 2003;17:1015-25.
    151 Zetser A, Bashenko Y, Edovitsky E, Levy-Adam F, Vlodavsky I, Ilan N. Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res. 2006;66: 1455-63.
    152 Sotnikov I, Hershkoviz R, Grabovsky V, Ilan N, Cahalon L, Vlodavsky I, Alon R, Lider O. Enzymatically quiescent heparanase augments T cell interactions with VCAM-1 and extracellular matrix components under versatile dynamic contexts. J Immunol. 2004;172:5185-93.
    153 Zetser A, Bashenko Y, Miao HQ, Vlodavsky I, Ilan N. Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res. 2003;63:7733-41.
    154 Gingis-Velitski S, Zetser A, Kaplan V, Ben-Zaken O, Cohen E, Levy- Adam F, Bashenko Y, Flugelman MY, Vlodavsky I, Ilan N. Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J Biol Chem. 2004;279:44084-92.
    155 Cohen I, Pappo O, Elkin M, San T, Bar-Shavit R, Hazan R, Peretz T, Vlodavsky I, Abramovitch R. Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int J Cancer. 2006;118:1609-17.
    156 Saijo M, Kitazawa R, Nakajima M, Kurosaka M, Maeda S, Kitazawa S. Heparanase mRNA expression during fracture repair in mice. Histochem Cell Biol. 2003;120:493-503.
    157 Ferro V, Hammond E, Fairweather JK. The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem. 2004;4:693-702.
    158 Ishida K, Hirai G, Murakami K, Teruya T, Simizu S, Sodeoka M, Osada H. Structure-based design of a selective heparanase inhibitor as anantimetastatic agent. Mol Cancer Ther. 2004;3:1069-77.
    159 Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA. 2001;98:3352-57.
    160 Borsig L. Selectins facilitate carcinoma metastasis and heparin can prevent them. News Physiol Sci. 2004;19:16-21.
    161 Thodiyil P, Kakkar AK. Can low-molecular-weight heparins improve outcome in patients with cancer? Cancer Treat Rev. 2002;28:151-5.
    162 Khachigian LM, Parish CR. Phosphomannopentaose sulfate (PI-88): Heparan sulfate mimetic with clinical potential in multiple vascular pathologies. Cardiovasc Drug Rev. 2004;22:1-6.
    163 Stein CA. Suram: A novel antineoplastic agent with multiple potential mechanisms of action. Cancer Res. 1993;53:2239-48.
    164 Marchetti D, Reiland J, Erwin B, Roy M. Inhibition of heparanase activity and heparanase-induced angiogenesis by suramin analogues. Int J Cancer. 2003;104:167-74.
    165 Nakajima M, DeChavigny A, Johnson CE, Hamada J, Stein CA, Nicolson GL. Suramin. A potent inhibitor of melanoma heparanase and invasion. J Biol Chem. 1991;266:9661-66.
    166 Figg WD, Cooper MR, Thibault A, Headlee D, Humphrey J, Bergan RC, Reed E, Sartor O. Acute renal toxicity associated with suramin in the treatment of prostate cancer. Cancer. 1994;74:1612-4.
    167 Ogishima T, Shiina H, Breault JE, Tabatabai L, Bassett WW, Enokida H, Li LC, Kawakami T, Urakami S, Ribeiro-Filho LA, Terashima M, Fujime M, Igawa M, Dahiya R. Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res. 2005;11: 1028-36.
    168 Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979;17:16-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700