用户名: 密码: 验证码:
燃煤固硫及灰渣利用过程中多相反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国最主要的能源,煤燃烧除向大气排放大量的气态污染物外,还生成许多难以处理的固体废弃物-灰渣,造成严重的大气和水土污染。本文将燃烧、污染物形成和控制以及无机成分的高效利用有机关联起来,借鉴燃烧学、矿物学、硅酸盐物理化学、环境科学、材料科学等相关交叉学科知识,采用先进的测试方法对不同复合添加剂在燃煤脱硫过程中的化学反应过程尤其是无机成分的迁移和化学反应机理进行了系统和深入的研究。重点考察了煤中掺入添加剂前后硫氧化物的排放特性及固体产物的矿物组成和利用价值,探讨了不同复合添加剂的固硫机理及固硫产物的分解转化规律,特别是对煤中掺入添加剂后无机组分的多相反应机理以及反应的热、动力学特征进行了深入的研究。
     在无机组分的多相反应机理方面,利用高温反应器、沉降炉、单火嘴燃烧试验台等试验设备对煤粉、煤灰、添加剂以及模拟纯矿物试剂分别进行混合燃(煅)烧,并采用XRD、FESEM对不同条件下燃(煅)烧后得到的固体产物的矿物组成、微观形貌进行测定,分析了添加剂的组成和加入量、温度、颗粒细度、时间、燃烧方式及接触程度、CaO含量以及矿化剂等因素对煤与添加剂体系中无机组分的多相反应过程及反应产物组成的影响规律。在试验研究的基础上,根据多相平衡原理建立了复杂矿物质体系CaO-SiO2-Al2O3-Fe2O3-CaSO4的产物组成计算模型并进行了模拟计算,探讨了煤中无机组分与复合添加剂的多相反应机理,预测了不同条件下煤中掺入添加剂后灰渣的矿物组成,并根据矿物的种类、含量及水化特性分析了改性灰渣的活性和可利用性。
     在燃煤固硫与固硫灰渣的物相表征方面,利用高温电阻炉、滴管炉对高硫煤中掺入不同添加剂后在800~1400℃的温度范围内进行燃烧试验,采用自动定硫仪、综合烟气分析仪对不同燃烧工况下的固硫效率、硫氧化物的释放特性进行测试分析,并采用XRD、FESEM对固硫灰渣进行微观物化分析,探讨了温度、Ca/S、添加剂组成、停留时间、细度等因素对固硫效率和固硫灰渣矿物组成的影响,揭示了不同添加剂的固硫机理以及固硫灰渣中无机组分彼此间、无机组分与含硫物相之间反应产物的生成与分解规律。
     在固硫物相的形成、分解和转化方面,采用TG-DTG-DSC-FTIR联用的方法研究了CaO、SiO2、Al2O3、Fe2O3、BaCO3与CaSO4的相互作用规律,并采用高温反应器、XRD以及SEM等试验设备和测试方法对不同矿物质与CaSO4混合煅烧后的产物组成及微观形貌进行分析表征,结合多相平衡、热分析动力学以及硅酸盐固相反应动力学原理,探讨了不同矿物质对固硫产物CaSO4稳定性的影响,建立了不同矿物质体系中CaSO4分解的动力学模型,揭示了不同矿物质体系中各种含硫物相的形成、分解和转化规律。
     在研究脱硫与灰渣利用的同时还考察了燃烧与结渣行为。采用热重分析和单火嘴燃烧试验台对煤中掺入不同比例的添加剂后的燃烧特性进行试验研究,探讨了添加剂的加入对煤粉着火、稳燃、燃尽以及放热特性的影响,并在热力学模拟计算的基础上分析了加入复合添加剂后混合灰样熔融温度的变化特性,从宏观上考察了添加剂加入后对煤粉燃烧和结渣的影响。
     通过本文大量的试验研究和理论分析,揭示了复杂矿物质体系中的多相反应机理,得到了燃煤固硫与灰渣资源化利用的优化条件,为实现燃煤污染物的有效控制、燃烧副产物的高效利用进而实现能源-资源-环境一体化奠定了理论基础。
Coal is the most abundant and widely used fossil energy resource in china. During coal combustion, large amounts of solid residues (coal combustion by-products: CCBs) are generated besides gaseous pollutants, which may cause serious environmental pollution and need well disposal. In this paper, coal combustion, pollutants formation and control as well as high efficiency utilization of the inorganic constituents have been systematicly integrated, and the chemical reaction process of different compound additives during coal combustion and desulfurization, especially the transformation and reaction mechanisms of the inorganic fractions were well investigated in the presence of many advanced testing methods, based on the knowledge of combustion science, mineralogy, physical chemistry of silicate, environment science, material science etc. SOx emission as well as mineral composition and usability of solid resiudes were maily studied before and after additives added into coal, simultaneously the desulfurization mechanisms of different additives with the rule of desulfurization products decomposition and transformation were discussed, furthermore, the heterogeneous reaction mechanisms as well as thermodynamics and kinetics of reactions in inorganic fractions were carefully analyzed when injecting compound additives into coal.
     To investigate the heterogeneous reaction mechanisms of inorganic constituents, combustion (calcination) experiments of pulverized coal, coal ash, additives and pure mineral reagent as well as the mixture blended with each others were conducted on testing facilities such as high temperature reactor, drop tube furnace and single burner furnace respectively. The mineral composition and micro appearance of the combustion (calcination) solid products were analyzed by XRD and FESEM, then the influences of additive composition and quantity, temperature, particle size, residence time, combustion style and contacting extent, CaO content, and mineralizer on heterogeneous reaction process and products composition of inorganic fractions in the coal-additive system were studied. Based on experimental results, according to heterogeneous equilibrium principles, calculation model of the products about complex mineral system CaO-SiO2-Al2O3-Fe2O3-CaSO4 was established and the equilibrium product compositions under different conditions were simulated, in order to investigate the heterogeneous reaction mechanisms between additives and the inorganic components in coal. The solid products were predicted when coal mixing with additives, moreover, the activation and potential utilization of modified ash were discussed according to the mineral species, concentration and hydration capacity.
     Researches on desulfurization and the phase characterization of desulfurization residues were conducted on high-temperature electric resistance furnace and drop tube furnace. High sulfur coals mixed with different additives were combusted at the temperature of 800~1400℃, with automated sulfur determinator and integrated flue gas analyzer to determine the sulfur retention efficiency and the emission characteristics of SOx under different combustion conditions, also the mineral composition and microstructure of desulfurization residues were dectected by XRD and FESEM. The effects of temperature, Ca/S ratio, composition of additives, residence time, and particle size on desulfurization efficiency and desulfurization residues composition were investigated to discover the desulfurization mechanisms of different additives and the formation and decomposition fundamentals of the products resulted from the reactions among inorganic constituents as well as reations between inorganic fractions and the sulfur-contained species.
     For exploring the formation, decomposition and transformation of desulfurization products, integrated TG-DTG-DSC-FTIR was used to study the interactions of CaO、SiO2、Al2O3、Fe2O3、BaCO3 and CaSO4. With the facilities and methods such as high temperature reactor, XRD and SEM, the composition and micro appearance of products generated from calcinations experiments of different minerals blended with CaSO4 were analyzed. Combined with the theories of multiphase equilibrium, thermoanalysis dynamics and silicate solid reaction kinetics, the influences of minerals species on the stability of desulfurization product CaSO4 were studied, and the CaSO4 decomposition kinetic model in different mineral systems was developed to disclosure the formation, decomposition and transformation behaviors of sulfur-contained species in various mineral systems.
     Combustion and fusion behavior were also investigated with the research of desulfurization and ash utilization. Combustion test of coals doped with different ratio of additives was finished using TG analysis and single burner furnace, and the influences of additives on coal ignition, stable combustion, burn-off as well as exothermic were discussed. Basing on thermodynamic calculation, the change of ash fusion temperature after coal doped with additives was analyzed. The influences of additives on coal combustion and ash fusion were exposed from macroscopic view.
     Through detail experimental research and theoretic analysis, heterogeneous reaction mechanism in complicated mineral system was explored, and the optimal conditions were obtained to realize coal desulfurization and ash utilization. The whole research work provided scientific basis for effective pollution control and byproducts utilization during coal combustion, as well as harmonious development of energy-resource-environment.
引文
[1] U.S.DOE. Energy Information Administration. International Energy Annual 2001. 2003.
    [2] 国家统计局. 中国统计年鉴2000-2004. 北京:中国统计出版社, 2000,2002,2003.
    [3] BP P.L.C. BP Statistical Review of World Energy, 2004.
    [4] 郑楚光主编. 洁净煤技术. 武汉:华中理工大学出版社,1996.
    [5] United Nations. United Nations Framework Convention on Climate Change, Art 4 (2) (b), 1992.
    [6] United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change. UNEP.IUC/99/10. Chatlelaine, Switzerland: United Nations Environment Programme’s Information Unit for Conventions, for the Climate Change Secretariat; 1997.
    [7] Marland,G.; Boden,T.A. and Andres,R.J.; National CO2 Emissions In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. 2003. http://cdiac.esd.ornl.gov/
    [8] 国家环境保护总局.中国环境状况公报(2000-2004). http://www.zhb.gov.cn/
    [9] Davidson, Barry. Clean coal technologies for electricity generation. Power Engineering Journal, 1993,7(6): 257-26.
    [10] Beer, J.M. Combustion technology developments in power generation in response to environmental challenges. Progress in Energy and Combustion Science, 2000, 26(4-6): 301-327.
    [11] Martinot,Eric. World bank energy projects in China: influences on environmental protection. Energy Policy, 2001,29(8): 581-594.
    [12] 毛健雄,毛健全,赵树民.煤的洁净燃烧.北京:科学出版社,1998.
    [13] Wang,Wuyin; Bjerle, Ingemar. Modeling of high-temperature desulfurization by Ca-based sorbents. Chemical Engineering Science, 1998, 53(11):1973-1989.
    [14] 姚洪,周建平,范耀国,徐涛,徐明厚,袁建伟,曾汉才. 炉内喷钙脱硫实验研究. 热能动力工程,1997,12(6):424-428.
    [15] Damle, Ashok S. Modeling a furnace sorbent slurry injection process. Journal of the Air & Waste Management Association, 1994, 44(1):21-30.
    [16] Ye, Zhicheng; Wang, Wuyin; Zhong, Qin; Bjerle, Ingemar. High temperaturedesulfurization using fine sorbent particles under boiler injection conditions. Fuel, 1995, 74(5):743-750.
    [17] Ball, M.E.;Smith, D.W.;Koskinen, J.J.; Enwald, T.A. LIFAC:Economical solution to SO2 control. CIM Bulletin, 1993,86(968):122-125.
    [18] Lachapelle, David.G. EPA’s LIMB Technology development program. Chemical Engineering Progress, 1985, 81(5):56-62.
    [19] 郝吉明,王书肖,陆永琪编著.燃煤二氧化硫污染控制技术手册.北京:化学工业出版社,2001.
    [20] 国家重点基础研究发展计划网.http://www.973.gov.cn/
    [21] Lafferty, Christopher J.; Mitchell, Stuart C.; Garcia, Roberto; Snape, Colin E. Investigation of organic sulphur forms in coals by high pressure temperature-programmed reduction. Fuel,1993,72(11):367-371.
    [22] Kelemen, S.R.; Vaughn, S.N.; Gorbaty, M.L.; Kwiatek, P.J. Transformation kinetics of organic sulphur forms in Argonne Premium coals during pyrolysis. Fuel, 1993, 72(5): 645-653.
    [23] Uemiya, S.; Kobayashi, T.; Kojima, T. Desulfurization behavior of Ca-based absorbents under periodically changing condition between reducing and oxidizing atmosphere. Energy Conversion and Management,2001,42(15):2029-2041.
    [24] Zhang,Lian; Sato,Atsushi; Ninomiya Yoshihiko.CCSEM analysis of ash from combustion of coal added with limestone.Fuel, 2002, 81(11):1499-1508.
    [25] Cheng, Jun; Zhou, Junhu; Liu, Jianzhong; Zhou, Zhijun; Huang, Zhenyu; Cao, Xinyu; Zhao, Xiang; Cen, Kefa. Sulfur removal at high temperature during coal combustion in furnaces: A review.Progress in Energy and Combustion Science, 2003,29(5):381-405.
    [26] Hsia,C.;Pierre,G.R.S. Diffusion Through CaSO4 formed during the reaction of CaO with SO2 and O2. AIChE.J.1993,39(4):698-675.
    [27] Borgwardt,R.H.,Bruce,K.R. An investigation of product-layer diffusivity for CaO sulfation. Ind.Eng.Chem.Res,1987,26(10):199-318.
    [28] Prasannan,P.C.A. Model for gas-solid reactions with structure changers in the presence of inert solid. Chem.Eng.Sci,1985,40:116-125.
    [29] 程军.炉内高温燃烧两段脱硫的机理研究.浙江大学博士学位论文,2002.
    [30] 武增华,姚绍军,郭锋,杨海波,邱新平.氧化物添加剂对 CaSO4 高温稳定性的影响. 煤炭转化,2002,25(22):71-73.
    [31] Liu,H. Sulfation behavior of limestone under high CO2 concentration in O2/CO2 coal combustion. Fuel, 2000, 79(8): 945-953.
    [32] Kimura, N.; Omata, K.; Kiga, T.; Takano, S.; Shikisima, S. Characteristics ofpulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Conversion and Management, 1995, 36(6-9): 805-808.
    [33] Liu, H.; Katagiri, S.; Okazaki, K. Drastic SOx removal and influences of various factors in O2/CO2 pulverized coal combustion system. Energy and Fuels, 2001,15(2):403-412.
    [34] Liu, Hao;Okazaki, Ken .Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation. Fuel, 2003, 82(11):1427-1436.
    [35] Liu, Hao; Katagiri, Shiro; Okazaki, Ken. Decomposition behavior and mechanism of calcium sulfate under the condition of O2/CO2 pulverized coal combustion. Chemical Engineering Communications, 2001,187:199-214.
    [36] Xiaoping Zhang, Jianrong Qiu, Xuewen Dong, Hong Wang, Hao Liu. Experimental study on SO2 removal in O2/CO2 coal combustion, Fuel Chemistry Divisions, ACS meeting, New Orleans, 2003,p88-89.
    [37] Qiu J.R., Zhang L.Z., Feng B., Wu J. and Wang Q.H. The effects of CO2 concentration on limestone desulfurization during O2/CO2 combustion, Proceedings: Symposium on Energy Engineering in the 21st Century. Hong Kong.2000.Vol.4:1560-1565.
    [38] Liu, Yanfeng; Yu, Yan; Yan, Weiping; Zhao, Zeguang; Gao, Zhengyang. Experimental studies on NO emissions from O2/CO2 coal combustion. Proceedings of the 5th International Symposium on Coal Combustion, 2003,p559-561.
    [39] Mao, Yuru; Fang, Mengxiang; Wang, Qinghui; Shi, Zhenglun; Luo, Zhongyang; Cen, Kefa. Experimental study and analysis of coal combustion on a CFB test-facility in O2/CO2 and O2/N2 mixtures. Proceedings of the 5th International Symposium on Coal Combustion, 2003,p493-496.
    [40] Mattisson,T.,Lyngfelt,A.The reaction between limestone and SO2 under periodically changing oxidizing and reducing conditions-effect of temperature and limestone type. Thermochimica Acta, 1999, 325:59-67.
    [41] Mattisson,T.,Lyngfelt,A. The reaction between sulfur dioxide and limestone under periodically changing oxidizing and reducing conditions-the effect of reducing conditions. Journal of the Institute of Energy,1998,71:190-196.
    [42] Fuertes,A.B.;Velasco,G.; Fuente,E.; Alvarez, T. Study of the direct sulfation of limestone particles at high CO2 partial pressures. Fuel Processing Technology, 1994,38(3):181-192.
    [43] 杨剑锋,刘豪,谢峻林,邱建荣,王泉海.煤洁净燃烧高效钙基复合固硫剂的研究进展,煤炭转化,2003,26(4):10-15.
    [44] Han, Kuihua; Lu, Chunmei; Cheng, Shiqing; Zhao, Gaiju; Wang, Yongzheng; Zhao, Jianli. Effect of characteristics of calcium-based sorbents on the sulfation kinetics. Fuel, 2005,84(14-15):1933-1939.
    [45] Bi,Jianzhong;Lu, Chunmei; Zhao, Jianli; Cheng, Shiqing. Experimental study on high temperature sulfation characteristics of shells. Energy and the Environment-Proceedings of the International Conference on Energy and the Environment, 2003,p1220-1224.
    [46] Yang,R.T,Shen,M.S. Fluidized-bed combustion of coal with lime additive: catalytic sulfation of lime with iron compounds and coal ash. American Chemical Society, 1978,12(8):915-918.
    [47] Desal,N.J,Yang,R.T. Catalytic fluidized-bed combustion, enhancement of sulfation of calcium oxide by iron oxide, Industrial & Engineering Chemistry Process Design and Development,1983,22(2):119-123.
    [48] 陈亚非,高翔,骆仲泱.金属氧化物对 Ca(OH)2 脱硫影响的研究.工程热物理学报 1997,18(4):517-520.
    [49] 张良全,成思危,严瑞.Fe2O3 对型煤固硫作用的机理探讨.环境科学,1997,18(1): 65-68.
    [50] Qiu xinping, Liu Jingquan,Wu Zenghua, Simulation and calculation on the kinetics of CaO desulfurization catalytic effects of alkali salts. Computers and Applied Chemistry, 2002,19(5): 535-539.
    [51] 宋慧英,撒应禄.层燃型煤固硫模型.东南大学学报,1991,21(1):112-116.
    [52] Frazier, George C.; Mason, Carol; Stickle, Douglas; Badin, Elmer J. Effectiveness of SO2 sorbents by Thermogravimetry combustion with coal. Fuel, 1982, 61(12): 1225-1229.
    [53] Tsuchiai,H,Ishizuka,T.Highly active absorbent for SO2 Removal Prepared from Coal Fly Ash.Ind Eng Chem Res,1995,34:1404-1410.
    [54] Tsuchiai,H.; Ishizuka,T.;Nakamura,H.;Ueno,T.;Hattori,H..Study of flue gas desul- furization absorbent Prepared from coal fly ash: Effects of the composition of the absorbent on the activity. Ind. Eng. Chem. Res. 1996, 35(7): 2322-2326.
    [55] 许玲.添加剂对 CaO 固硫的促进作用及机理研究.清华大学硕士学位论文,1999.
    [56] Paolo,D.Gennaro,D.M,Pado,G. An investigation of the influence of sodium chloride on the desulphurization properties of limestone. Fuel, 1992,71(7): 831-834.
    [57] Stouffer,M.R,Heeyoung,Y. An investigation of CaO sulfation mechanisms in boiler sorbent injection.AIChE.J,1989,35(8):1253-1262.
    [58] David,A, Jozewicz,W. Structural changes in surfactant-modified sorbents during furnace injection. AIChE.J,1989,35(3):500-506.
    [59] Eiji Sasaoka,Uddin,Norimasa Sada.Novel preparation method of macroporous lime from limestone for high-temperature desulfurization. Industrial & Engineering Chemistry Research, 1997,36(9):3639-3646.
    [60] 周俊虎,范浩杰,姚强,曹欣玉,许小明,赵翔,吴晓蓉,余兆南,岑可法.氧化钙燃烧固硫添加剂的研究.环境科学学报.1997,17(3):284-288.
    [61] 傅勇,林国珍,庄亚辉.型煤燃烧固硫的钠离子效应.环境化学,1994,12(4):492-496.
    [62] 肖佩林 , 李书年 . 铁硅系添加剂对型煤燃烧时硫行为的影响 . 环境科学学报.1996,16(1):97-102.
    [63] 常丽萍, 朱素渝.Fe2O3-SiO2 对燃煤过程中石灰石固硫特性的影响. 环境化学,1998,17(6):532-536.
    [64] 李宁,刘维屏,周俊虎,岑可法.新型钡基高温燃烧固硫剂的研究与应用. 化工学报, 2002,53(11):1198-1201.
    [65] 赵三银.高温下无水硫铝酸钡矿物 3CA·BaSO4 稳定性的探讨. 韶关大学学报(自然科学版),1999,20(2):21-25.
    [66] 谢峻林,赵改菊,罗金平,梁乃峰,邱建荣.水泥生料的燃烧固硫特性及其微观反应机理研究.燃料化学学报.2004,32(5):622-626.
    [67] Xie, Juniin; Qiu, Jianrong; Zhao, Gaiju; Qiu, Xiaobo; Pan, Gaofeng.Desulfurization efficiency of Barium and the crystallization action of sulfur retention. Energy and the Environment-Proceedings of the International Conference on Energy and the Environment, 2003,p1167-1171.
    [68] Yang, Tianhua; Zhou, Junhu; Ma, Yi; Shi, Jin; Cao, Xinyu; Cen, Kefa.Study of high-temperature stable phase sulphoaluminate for desulfuration.Proceedings of the 5th International Symposium on Coal Combustion, 2003,p444-447.
    [69] Torres-Ordonez,R.J. Sulfur retention as CaS during coal combustion: a modeling study to define mechanism and possible technologies. Fuel, 1993,72(5):633-638.
    [70] Freund,H.;Lyon,R.K. The sulfur retention of calcium-containing coal during fuel-rich combustion. Combustion & flame, 1982,45(2):191-197.
    [71] 杨天华.煤燃烧脱硫过程中高温物相固硫基础研究.浙江大学博士学位论文. 2004.
    [72] Guan, Rengui; Li, Wen; Li, Baoqing. Effects of ca-based additives on desulfurization during coal pyrolysis.Fuel,2003,82(15-17):1961-1966.
    [73] Qiu, K.; Anthony, E.J.; Jia, L. Oxidation of sulfided limestone under the conditions of pressurized fluidized bed combustion. Fuel, 2001,80(4):549-558.
    [74] Wager, R.; Muhlan,H.J. Effect of a catalyst on combustion of char and anthracite. Fuel, 1989,68(2):251-255.
    [75] Wu, Zhenghua; Xu, Ling; Wang, Zhongzhi; Zhang, Zengrui. Catalytic effects on the ignition temperature of coal. Fuel, 1998,77(8):891-893.
    [76] Badin,E.J.coal combustion chemistry-correlation aspects. Elsevier science publishers, B.V.1984.
    [77] Xie, Junlin; He, Feng; Yuan, Ruenzhang. Study on coal ignition temperature of cement plant. Proceedings of the International Conference on Energy Conversion and Application (ICECA'2001), 2001,p841-844.
    [78] 袁中山,吴迪镛,王树东.采用一体化燃煤添加剂的燃烧中固硫作用研究.燃料化学学报,2002,30(1):36-40.
    [79] Shearer,J.A,Johnson,J. and Turner, B.C. Effects of sodium chloride on limestone calcination and sulfationin fluidized-bed combustion.Environ.Sci.Tech, 1979,13(4): 1113-1120.
    [80] 王春波,沈湘林,陈伟鸿.EtOH 调质 CaO 粒径对其脱硫效果影响的实验研究.热能动力工程.2000,15(6): 630-633.
    [81] Daniel,C.B,Amir,A.Sulfur pollution from coal combustion. Effect of the mineral components of coal on the thermal stabitities of sulfated ash and calcium sulfate. Environment Science&Technology, 1981,15(3): 288-298.
    [82] 王军.碱性固硫剂的固硫效果分析.重庆环境科学,1991,13(4):23-25.
    [83] Querol, X.; Moreno, N.; Umana, J.C.; Alastuey, A.; Hernandez, E.; Lopez-Soler, A.; Plana, F. Synthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology, 2002,50:413-423.
    [84] 王福元,吴正严. 粉煤灰利用手册. 北京:中国电力出版社,1999.
    [85] Gomes, S.; Francois, M.; Pellissier, C.; Evrard, O. Characterization and comparative study of coal combustion residues from a primary and additional flue gas secondary desulfurization process. Cement and Concrete Research, 1998, 28(11):1605-1619.
    [86] Sahu, Sadananda; Brown, Stephen A.; Lee, Richard J. Thaumasite formation in stabilized coal combustion by-products. Cement and Concrete Composites, 2002,24(3-4):385-391.
    [87] Pattanaik, S.; Huffman, G.P.; Sahu, S.; Lee, R.J. X-ray absorption fine structure spectroscopy and X-ray diffraction study of cementitious materials derived from coal combustion by-products. Cement and Concrete Research, 2004,34(7):1243-1249.
    [88] Armesto, L.; Merino, J.L. Characterization of some coal combustion solid residues. Fuel, 1999,78(5):613-618.
    [89] Havlica, J.; Brandstetr, J.; Odler, I. Possibilities of utilizing solid residues from pressured fluidized bed coal combustion (PSBC) for the production of blendedcements. Cement and Concrete Research, 1998,28(2): 299-307.
    [90] Vuthaluru, Hari,B.; Zhang, Dong-ke; Linjewile, Temi M. Behaviour of inorganic constituents and ash characteristics during fluidized-bed combustion of several Australian low-rank coals. Fuel Processing Technology, 2000,67(3): 165-176.
    [91] Zevenhoven-Onderwater, M.; Blomquist, J.-P.; Skrifvars, B.-J.; Backman, R.; Hupa, M. Prediction of behaviour of ashes from five different solid fuels in fluidised bed combustion. Fuel, 2000, 79(11): 1353-1361.
    [92] 粉煤灰综合利用网. http://www.flyingash.com/
    [93] Jonker, A.; Potgieter, J. Herman. An evaluation of selected waste resources for utilization in ceramic materials applications. Journal of the European Ceramic Society, 2005.25(13): 3145-3149.
    [94] Iyer S.I, Scott J.A. Power station fly ash - a review of value-added utilization outside of the construction industry Resources. Conservation and Recycling,2001,31:217-228.
    [95] 陈稳,韩秀丽. 粉煤灰综合利用现状及发展趋势. 洁净煤技术,2004,10(3):59-61.
    [96] 中国煤炭工程网. http://www.coale.com.cn/
    [97] 王文龙.电厂煤粉炉直接联产高硅硫铝酸盐水泥熟料的试验研究.浙江大学博士学位论文,2004.
    [98] Solem-Tishmack, J.K.; McCarthy, G.J.; Docktor, B.; Eylands, K.E.; Hassett, D.J. High-calcium coal combustion by-products: engineering properties, ettringite formation, and potential application in solidification and stabilization of selenium and boron. Cement and Concrete Research, 1995, 25(3): 658-670.
    [99] James Roewer. Review of handling and use of FGD material. U.S.DOE CARRC Topical Report, No.DE-FC26-98FT40321.2003
    [100] Bigham, Jerry M.; Kost, David A.; Stehouwer, Richard C.; Beeghly, Joel H.; Fowler, Randy; Traina, Samuel J.; Wolfe, William E.; Dick, Warren A. Mineralogical and engineering characteristics of dry flue gas desulfurization products. Fuel, 2005,84(14-15): 1839-1848.
    [101] 李登新,吕俊复,郭庆杰,岳光溪. 循环流化床灰渣利用研究进展. 热能动力工程,2003, 18(1):5-9.
    [102] 李昕泠. 干法、半干法烟气脱硫技术脱硫渣的综合利用.锅炉制造.2005,4:41-42.
    [103] Wigley, F.; Williamson, J. Modelling fly ash generation for pulverised coal combustion. Progress in Energy and Combustion Science,1998, 24(4):337-343.
    [104] Yan,L.; Gupta, R.P.; Wall, T.F. A mathematical model of ash formation during pulverized coal combustion. Fuel, 2002, 81(3):337-344.
    [105] Jak,Evgueni. Prediction of coal ash fusion temperatures with the F*A*C*Tthermodynamic computer package. Fuel,2002, 81(13):1655-1668.
    [106] Qiu, J.R.; Li, F.; Zheng,Y.; Zheng, C.G.; Zhou, H.C. Influences of mineral behaviour on blended coal ash fusion characteristics. Fuel, 1999,78(8): 963-969.
    [107] Tomeczek, Jerzy; Palugniok, Henryk.Kinetics of mineral matter transformation during coal combustion.Fuel,2002,81(10):1251-1258.
    [108] Ram,L.C.;Tripathi,P.S.M.;Mishra,S.P. Mossbauer spectroscopic studies on the transformations of iron-bearing minerals during combustion of coals: correlation with fouling and slagging. Fuel Processing Technology,1995, 42(1):47-60.
    [109] Yan,L.;Gupta,R.P.;Wall,T.F. The implication of mineral coalescence behaviour on ash formation and ash deposition during pulverised coal combustion. Fuel, 2001, 80(9): 1333-1340.
    [110] Qiu,Jian-Rong; Li, Fan; Zheng, Chu-Guang. Mineral transformation during combustion of coal blends. International Journal of Energy Research, 1999, 23 (5): 453-463.
    [111] Kondratiev, A.; Jak, E.Predicting coal ash slag flow characteristics (viscosity model for the Al2O3-CaO-'FeO'-SiO2 system). Fuel, 2001, 80(14):1989-2000.
    [112] Kyi,Stella; Chadwick,Bruce,L. Screening of potential mineral additives for use as fouling preventatives in Victorian brown coal combustion.Fuel,1999,78(7):845-855.
    [113] Vuthaluru,H.B.Remediation of ash problems in pulverised coal-fired boilers. Fuel, 1999,78(15):1789-1803.
    [114] Gupta, R. P.; Wall, T. F.; Kajigaya, I.; Miyamae, S.; Tsumita, Y. Computer-controlled scanning electron microscopy of minerals in coal-implications for ash deposition. Progress in Energy and Combustion Science,1998, 24(6):523-543.
    [115] Jun Shi, Robert L. Dry chemical activation of blended cements made with lime and natural pozzolan. Cement & concrete research. 1993,23(6): 1389-1395.
    [116] Lu changguo. The research of the reactive products and mineral phase for EKJ cementitions material. 9th international congress on the chemistry of cement. New Delhi, India, 1992, 3:319-322.
    [117] Ghosh,S.N.,Sharma R.N.and Mathur V.K. Activation of Indian fly ash.Cement, 1992,2:87-90.
    [118] 徐强,樊钧.高钙粉煤灰的自凝结性.粉煤灰,1994,6:23-28.
    [119] 朱永平.小龙潭发电厂高钙粉煤灰特性. 云南建材,1998,3:29-32.
    [120] 袁润章主编.胶凝材料学.武汉:武汉工业大学出版社.1989.
    [121] 沈威,黄文熙,闵盘荣编著. 水泥工艺学. 武汉:武汉工业大学出版社,1992.
    [122] 刘预知.无机物质物理化学性质及重要反应方程式手册,成都:成都科技大学出版社,1992.
    [123] 吉木文平著,张绶庆译.非金属矿物工学.北京:科学出版社,1962.
    [124] 戴金辉,葛兆明主编. 无机非金属材料概论. 哈尔滨:哈尔滨工业大学出版社, 1999.
    [125] Iribarne, Agripanea P.; Iribarne, Julio V.; Anthony, Edward J. Reactivity of calcium sulfate from FBC systems. Fuel, 1997,76(4):321-327.
    [126] 刘光启,马连湘主编.化学化工物性数据手册,无机卷.北京:化学工业出版社, 2002.
    [127] 诸培南,翁臻培主编.无机非金属材料显微结构图册,武汉:武汉工业大学出版社,1994.
    [128] 杨南如,岳文海主编.无机非金属材料图谱手册, 武汉:武汉工业大学出版社, 2000.
    [129] Halstead,P.E, Moore,A.E. The composition and crystallography of an anhydrous calcium aluminosulphate occurring in expanding cement. J.appl.Chem. 1962, 12: 413-417.
    [130] Teoeanu,I.Muntean,M.Dragnea,I. Type 3(CaO·Al2O3)·Mx(SO4)y compouns and compatibility relations in CaO-CaO·Al2O3- Mx(SO4)y systems. Cement oil, 1986, 83 (1): 39-46.
    [131] Cheng, Xin; Chang, Jun; Lu, Lingchao; Liu, Futian; Teng, Bing. Study of ba-bearing calcium sulphoaluminate minerals and cement. Cement and Concrete Research, 2000, 30(1):77-81.
    [132] 周广柱 , 林国珍 . 固硫型煤渣烧制水泥熟料的研究初探 . 环境科学进展 , 1999.7(3):105-109.
    [133] 冯培植,李发堂.新型贝利特水泥的研制.水泥,1999,11:4-7.
    [134] 浙江大学编.硅酸盐物理化学,北京:中国建筑工业出版社,1980.
    [135] 王燕谋,苏慕珍,张量. 硫铝酸盐水泥. 北京:北京工业大学出版社,1999.
    [136] 《建材标准汇编水泥》选编组编. 建材标准汇编-水泥.北京:中国标准出版社,1997.
    [137] 邵国有主编.硅酸盐岩相学.武汉:武汉工业大学出版社,1991.
    [138] 朱雪芳.煤净化燃烧及伴生物产品化.北京:建筑工业出版社,1999.
    [139] 卢忠远,黄文熙.快速低温烧成硅酸盐水泥的研究.四川水泥,1996,1:13-18.
    [140] 叶巧明 , 黄文熙 , 蒋友新 . 电厂锅炉生产水泥的开发研究 . 西南工学院学报.1998,13(4): 33-39.
    [141] Hara, M.; Kurumada, N.; Hashimoto, I.; Watanabe, T.; Development of fluidized bed cement kiln system by scale-up plant. 8th Conference on Coal Utilization Technology,Japan, 1998,p239-253.
    [142] Yuko,Takako; Ikabata, Tatsuo; Akiyama, Tatsushi; Yamamoto, Takanori; Kurumada, Norimitsu. New clinker formation process by the fluidized bed kiln system. Cement and Concrete Research, 2000,30(7):1113-1120.
    [143] Smart,R.M,Rog,D.M. The System CaO-A12O3-Fe2O3 With added fluourite flux. Cement and Concrete Research, 1979,9(2):267-273.
    [144] Klemm,W.A.;Jawed,I.;Holub,K.J. Effects of calcium fluoride mineralization on silicates and melt formation in portland cement clinker. Cement and Concrete Research, 1979,9(4):489-496.
    [145] Bobesic, Branko; Halle, Radovan; Mikoc, Miroslav; Matkovic, Boris; Young, J. Francis. Influence of BaSO4 on the formation and hydration properties of calcium silicates- Laboratory belite-rich clinkers. American Ceramic Society Bulletin, 1981,60(11): 1164-1167.
    [146] Metha,P.K. Investigation on energy-saving cement. World cement technology, 1980, 1(3): 166-177.
    [147] Gartner, Ellis .Industrially interesting approaches to "low-CO2" cements. Cement and Concrete Research, 2004,34(9):1489-1498.
    [148] Chatterjee, A.K.High belite cements--present status and future technological options: Part I. Cement and Concrete Research, 1996,26(8):1213-1225.
    [149] Kurdowski, W.; Duszak, S.; Trybalska, B.Belite produced by means of low-temperature synthesis.Cement and Concrete Research, 1997,27(1):51-62.
    [150] Nagaoka, Seiichi; Mizukoshi, Mutsumi; Kuroda, Tamotsu. Property of concrete using belite-rich cement and ternary blended cement. Journal of the Society of Materials Science, 1994, 43(491):936-942.
    [151] Gies, A.; Knoefel, D. Influence of sulfur on the composition of belite-rich cement clinkers and the technological properties of the resulting cements. Cement and Concrete Research, 1987,17(2):317-328.
    [152] Gies, A.; Knoefel, D. Influence of alkalies on the composition of belite-rich cement clinkers and the technological properties of the resulting cements. Cement and Concrete Research, 1986,16(3):411-422.
    [153] Sharp, J.H.; Lawrence, C.D.; Yang, R. Calcium sulfoaluminate cements- low-energy cements, special cements or what. Advances in Cement Research,1999,11(1):3-13.
    [154] Arjunan,P.; Silsbee, Michael R.; Roy, Della M. Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products. Cement and Concrete Research, 1999,29(8):305-1311.
    [155] Glasser,F.P.;Zhang,L.High-performance cement matrices based on calciumsulfoaluminate-belite compositions. Cement and Concrete Research, 2001,31(12): 1881-1886.
    [156] Gao, Qiong-ying; Hou, Hao-bo. Structural model and hydraulic activity of granulated cinder in electric factories.Cement and Concrete Research. 1991, 21(4): 471-477.
    [157] 徐奇焕.立式旋风炉附烧增钙渣的探索与实践.湖南建材,1990,5:17-19.
    [158] 侯 浩 波 . 液 态 渣 中 合 理 增 钙 量 的 研 究 . 武 汉 水 利 电 力 大 学 学报.1993,26(2):224-228.
    [159] 岑可法,池涌.煤炭洁净综合利用技术的研究与前景.煤炭转化,1994.17(3):16-22.
    [160] 高琼英,潘国耀.新型低温水泥的研究.硅酸盐学报,1993,21(4): 365-370.
    [161] 龙世宗,陈元魁.燃煤锅炉供热同时生产铝酸盐水泥/活性粉煤灰方法及产品.中国专利 ZL02115929.7. http://www.sipo.gov.cn/
    [162] 王立久,杨新朝,曹明莉. 燃煤发电与水泥生产联产技术可行性研究.世界科技研究与发展,2004,26(5):10-17.
    [163] 丁庆军,李悦,胡曙光,樊志军. 粉煤灰烧制低钙水泥的研究.粉煤灰综合利用,1998,2:29-32.
    [164] 胡志满 . 电厂锅炉掺烧改性剂生产水泥熟料技术初探 . 粉煤灰综 合利用,1998.2:21-23.
    [165] 中能电力工业燃料公司组编写. 动力用煤煤质监测与管理,北京:中国电力出版社,2000.
    [166] 周玉,武高辉编著.材料分析测试技术:材料 X 射线衍射与电子显微分析.哈尔滨:哈尔滨工业大学出版社,1998.
    [167] International Centre for Diffraction Data (ICDD). Powder diffraction file. Inorganic and organic Swarthmore, Pa.; The Centre, 1991.
    [168] ICDD. Powder diffraction file, set 41: Inorganic and Organic. Pennsylvania, 1991.
    [169] JCPDS-ICDD.PC-PDF win version 2.02, may 1999.
    [170] Ward, C.R.;Taylor, J.C.; Matulis, C.E.; Dale, L.S. Quantification of mineral matter in the Argonne Premium coals using interactive Rietveld-based x-ray diffraction. International Journal of Coal Geology. 2001.46(2-4):67-82.
    [171] 胡志强主编.无机材料科学基础教程.北京:化学工业出版社,2004.
    [172] 岑可法,樊建人,池作和著.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算,北京:科学出版社,1994.
    [173] Shah, A.D., Huffman, G.P., Huggins, F.E., Shah, N., Helble, J.J. Reactions of calcium and sodium during combustion of lignite. International Ash Utilization Symposium,Center for Applied Energy Research, University of Kentucky, Paper #69.1999.
    [174] Akin,Altun.I. Effect of CaF2 and MgO on sintering of cement clinker. Cement and Concrete Research,1999,29:1847-1850.
    [175] 湖南省建材工业学校编.硅酸盐晶体结构及相图.北京:中国建筑工业出版社,1981.
    [176] 傅勇.型煤燃烧固硫时耐热物相的形成.环境化学,1993,12(4):309-313.
    [177] El-Didamony, H.; Khalil, K.A.; El-Attar, M.S. Physicochemical characteristics of fired clay-limestone mixes. Cement and Concrete Research, 2000,30(1):7-11.
    [178] Mayoral, M.C.; Izquierdo, M.T.; Andres, J. M.; Rubio, B. Aluminosilicates transformations in combustion followed by DSC. Thermochimica Acta, 2001, 373: 173-180.
    [179] Nankervis, Jeffrey C., Furlong, Robert B. Phase changes in mineral matter of North Dakota lignites caused by heating to 1200℃. Fuel, 1980, 59(6):425-430.
    [180] Hassan Katalambula, Maria Mercedes Escallon, and Shohei Takeda. Influence of Ca-based sorbent particle size on the occurrence of solid-solid reactions during in-situ desulfurization of the coal-derived gas.Energy & Fuels,2001,15:317-323.
    [181] Lian Zhang,Atsushi Sato,Yoshihiko Ninomiya,Eiji Sasaoka. In situ desulfurization during combustion of high-sulfur coals added with sulfur capture sorbents. Fuel, 2003,82:255-266.
    [182] 杨南如主编.无机非金属材料测试方法.武汉:武汉工业大学出版社,1993.
    [183] 谢峻林.高硫煤燃烧脱硫产物晶化行为及应用前景分析,华中科技大学博士后工作报告,2004.
    [184] Puertas,F.;Blanco Varela, M.T.; Molina, S. Gimenez. Kinetics of the thermal decomposition of C4A3 S over-bar in air, Cement and Concrete Research, 1995, 25(3): 572-580.
    [185] 肖海平,周俊虎,曹欣玉,范红宇,方磊,岑可法.CaSO4在不同气氛下分解特性的实验研究.动力工程,2004.24(6):889-892.
    [186] 杨晓东,武建军,薛可轶,沈吉敏. 添加剂抑制 CaSO4高温分解的 TG-FTIR 研究(Ⅰ)氧化物系列. 煤炭转化, 2003, 26(4):69-72.
    [187] 杨晓东,武建军,薛可轶,沈吉敏. 添加剂抑制 CaSO4高温分解的 TG-FTIR 研究(Ⅱ) 碳酸盐系列. 煤炭转化, 2004, 27(1):46-48.
    [188] Reifenstein, A.P.; Kahraman, H.; Coin, C.D.A.; Calos, N.J.; Miller, G.; Uwins, P. Behaviour of selected minerals in an improved ash fusion test: Quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite. Fuel, 1999,78(12):1449-1461.
    [189] McLennan, A.R.; Bryant, G.W.;Bailey, C.W; Stanmore, B.R.; Wall, T.F. An experimental comparison of the ash formed from coals containing pyrite and siderite mineral in oxidizing and reducing conditions. Energy & Fuels,2000,14,308-315.
    [190] Lawrence E. Bool lll,Thomas W,Peterson, and Jost o.L. Wendt. The partitioning of iron during the combustion of pulverized coal. Combustion and flame, 1995, 100: 262-270.
    [191] Huffman, Gerald P.; Huggins, Frank E.; Dunmyre, George R. Investigation of the high temperature behaviour of coal ash in reducing and oxidizing atmospheres. Fuel, 1981, 60(7):585-597.
    [192] Vassilev, Stanislav V.; Kitano, Kunihiro; Takeda, Shohei; Tsurue, Takashi. Influence of mineral and chemical composition of coal ashes on their fusibility. Fuel Processing Technology, 1995,45(1):27-51.
    [193] Wang, H.; Harb, J.N.Modeling of ash deposition in large-scale combustion facilities burning pulverized coal. Progress in Energy and Combustion Science, 1997,23(3): 267-282.
    [194] 李帆.煤燃烧过程中矿物质行为特征研究.华中科技大学博士学位论文,2000.
    [195] Bryant, G.W.; Browning,G. J.; Emanuel,H.; Gupta,S.K.; Gupta, R.P.; Lucas, J.A.; Wall, T.F. The Fusibility of blended coal ash. Energy & Fuels,2000,14:316-325.
    [196] Stanton, Kenneth T.; Towler, Mark R.; Mooney, Patrick; Hill, Robert G.; Querol, Xavier.Thermal analysis of fly ashes sourced from European non-blended coals. Journal of Chemical Technology and Biotechnology, 2002,77(3):246-250.
    [197] Huggins, Frank E.; Kosmack, Deborah A.; Huffman, Gerald P. correlation between ash-fusion temperature and ternary equilibrium phase diagrams. Fuel, 1981, 60(7):577-584.
    [198] Gupta, S.K.; Gupta, R.P.; Bryant, G.W.; Wall, T.F. Effect of potassium on the fusibility of coal ashes with high silica and alumina levels.Fuel, 1998, 77(11): 1195-1201.
    [199] F*A*C*T2.1-User Manual, C.W.Bale,A.D.Pelton and W.T. Thompson, Ecole Polytechnique de Montreal/ Royal Military College, Canada, July 1996.http://www.crct.polymtl.ca
    [200] Jak.E,Hayes PC. Prediction of liquidus temperature and high temperature phase equilibria for the system SiO2-Al2O3-Fe2O3-FeO-CaO.Black coal utilization CRC (http://www.newcastle.edu.au/department/black_coal_CRC), newcastle, Australia, Final Report on Project 3.3,Stage,1995-99;1999.
    [201] Evgueni. Jak;Sergei Degterov;Peter C.Hayes;Arthur D.Pelton Thermodynamic modeling of the system Al2O3-SiO2-CaO-FeO-Fe2O3 to predict the flux requirements for coal ash slags. Fuel, 1998,77:77-84.
    [202] Evgueni Jak, Alexander Kondratiev, Shannon Christie, Igor Vladimirov and Peter C. Hayes. Thermodynamic modelling to characterise melting and flow properties of the coal ash slags. Engineering Foundation Conference on Power Production in the 21st Century: Impacts of Fuel Quality and Operations, Snowbird, UT, Oct. 28-Nov.2, 2001.
    [203] Goni, Ch.; Helle, S.; Garcia, X.; Gordon, A.; Parra, R.; Kelm, U.; Jimenez, R.; Alfaro, G. Coal blend combustion: Fusibility ranking from mineral matter composition. Fuel, 2003:82(15-17):2087-2095.
    [204] Filippidis, A.; Georgakopoulos, A.; Kassoli-Fournaraki, A. Mineralogical components of some thermally decomposed lignite and lignite ash from the Ptolemais basin, Greece. International Journal of Coal Geology, 1996,30(4):303-314.
    [205] Ninomiya,Y., Sato, A. Ash melting behavior under coal gasification conditions. Energy Conversion and Management. 1997,38(10-13):1405-1412.
    [206] Kiyoshi Okada, Nagisa Watanabe, Kumar V. Jha, Yoshikazu Kameshima, Atsuo Yasumori, Kenneth J.D. MacKenzie. Effects of grinding and firing conditions on CaAl2Si2O8 phase formation by solid-state reaction of kaolinite with CaCO3. Applied Clay Science ,2003,23:329-336.
    [207] Russell, Nigel V.; Wigley, Fraser; Williamson, Jim. The roles of lime and iron oxide on the formation of ash and deposits in PF combustion.Fuel, 2002,81(5):673-681.
    [208] Karfa,Traore;Tibo,Sime,Kabre;Philippe,Blanchart. Gehlenite and anorthite crystalli- sation from kaolinite and calcite mix. Ceramics International, 2003,29:377-383.
    [209] 李成兵.范肖南.钙基固硫剂固硫产物的稳定性试验研究.选煤技术,2003,6:74-78.
    [210] 伍成波 , 邹德余 , 张力 , 许原 . 毒重石钡矿高温分解特性 . 重庆大学学报 , 2003.26(1):73-76.
    [211] 张叔良,易大年,吴天明,红外光谱分析与新技术. 北京:中国医药科技出版社,1993.
    [212] Sadtler Spectra:standard infrared grating spectra, BIORAD,1990.
    [213] 王善拔,王宁章,晶种煅烧水泥熟料机理初探.水泥,1995,12:4-7.
    [214] Wang,Quanhai;Qiu,Jianrong;Liu,Yinghui;Zheng,Chuguang. Effect of atmosphere and temperature on the speciation of mineral in coal combustion. Fuel Processing Technology, 2004, 85(12):1431-1441.
    [215] Liu,Yinghui;Zheng, Chuguang; Qiu, Jianrong. Slagging propensity prediction method based on CALPHAD. Proceedings of the International Conference on Energy Conversion and Application (ICECA'2001), 2001,p760-764.
    [216] 陆佩文主编.无机材料科学基础.武汉:武汉工业大学出版社,1996.
    [217] 胡荣祖,史启祯. 热分析动力学.北京:科学出版社, 2001.
    [218] Kok, M.V. Temperature-controlled combustion and kinetics of different rank coal samples. Journal of Thermal Analysis and Calorimetry, 2005,79(1):175-180.
    [219] Slovak,Vaclav;Susak,Petr.Pitch pyrolysis kinetics from single TG curve. Journal of Analytical and Applied Pyrolysis, 2004,72(2): 249-252.
    [220] Sima-Ella,E.;Mays, T.J. Analysis of the oxidation reactivity of carbonaceous materials using thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2005,80(1):109-113.
    [221] Elbeyli,I.Y.;Piskin,S.Thermal dehydration kinetics of gypsum and borogypsum under non-isothermal conditions. Chinese Journal of Chemical Engineering, 2004,12(2): 302-305.
    [222] 冯仰婕,陈炜.固体热分解动力学机制的研究.华东化工学院学报,1991,17(5): 591-599.
    [223] 郑瑛,陈小华,周英彪,郑楚光.CaCO3 分解机理和动力学参数的研究.华中科技大学学报(自然科学版), 2002,30(12):86-88.
    [224] Sestak,Jaroslav;Malek,Jiri. Diagnostic limits of phenomenological models of heterogeneous reactions and thermal analysis kinetics. Solid State Ionics, 1993, 63-65:245-254.
    [225] Jenkins, Robert G.; Nandi, Satyendra P.; Walker, Philip L. Jr. Reactivity of heat-treated coals in air at 500℃.Fuel, 1973,52(4):288-293.
    [226] Yan, Rong; Zheng, Chuguang; Wang, Yuming; Zeng, Yujian. Evaluation of Combustion Characteristics of Chinese High-Ash Coals.Energy and Fuels, 2003, 17(6): 1522-1527.
    [227] Spears,D.A. Role of clay minerals in UK coal combustion. Applied Clay Science, 2000,16(1-2): 87-95.
    [228] Young,B.C.;Niksa,S. combustion rates for selected low-rank coal chars. Fuel, 1988,67(2): 155-164.
    [229] 张守玉,吕俊复,黎永,岳光溪.煤中矿物质对煤焦氧化的催化性能在热处理过程中的变化.燃烧科学与技术.2005,11(2):137-142.
    [230] Chang, Hui; Li, Baoqing; Li, Wen; Chen, Haokan. The influence of mineral matters in coal on NO-char reaction in the presence of SO2.Fuel, 2004,83(6):679-683.
    [231] Zhao, Zongbin; Li, Wen; Qiu, Jieshan; Li, Baoqing.Catalytic effect of Na-Fe on NO-char reaction and NO emission during coal char combustion. Fuel, 2002,81(18): 2343-2348.
    [232] Zhao, Zongbin; Qiu, Jieshan; Li, Wen; Chen, Haokan; Li, Baoqing.Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NOduring char combustion.Fuel, 2003, 82(8):949-957.
    [233] Cheng, J.F.; Zeng, H.C.; Zhang, Z.H.; Xu, M.H.The effects of solid absorbents on the emission of trace elements, SO2, and NOx during coal combustion. International Journal of Energy Research, 2001,25 (12):1043-1052.
    [234] Hocquel, M. Unterberger, S.; Hein, K.R.G. Influence of temperature and HCl concentration on mercury speciation in the presence of calcium oxide (CaO).Chemical Engineering and Technology, 2001,24(12):1267-1272.
    [235] Galbreath, Kevin C.;Zygarlicke, Christopher J. Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 2000, 65:289-310.
    [236] Agnihotri, R.; Chauk, S.; Mahuli, S.; Fan, L.-S. Selenium removal using Ca-based sorbents: Reaction kinetics. Environmental Science and Technology,1998,32(12): 1841-1846.
    [237] Biswas, Pratim;Wu,Chang Yu .Control of toxic metal emissions from combustors using sorbents:A review. Journal of the Air & Waste Management Association. 1998, 48(2):113-127.
    [238] Bailey, Susan E.; Olin, Trudy J.; Bricka, R. Mark; Adrian, D. Dean Review of potentially low-cost sorbents for heavy metals.Water Research.1999, 33(11): 2469-2479.
    [239] 刘豪,李广建.吉林热电厂改性粉煤灰试验考察报告.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700