用户名: 密码: 验证码:
LF合成精炼渣优化与深脱硫工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LF钢包炉作为一种高效钢的二次精炼手段,借助电弧加热、造还原渣和底吹氩气搅拌等手段,以达到快速脱氧、脱硫、均匀钢水成分、温度以及有效去除钢中夹杂物的目的,在纯净钢冶炼方面发挥了巨大作用。探讨合理的精炼渣成分和底吹氩制度对于提高LF作业效率,降低深脱硫时间,优化转炉、精炼炉和连铸之间的工艺衔接和加快生产节奏均具有十分重要的意义。
     本论文在鞍钢二炼钢LF合成精炼渣成分基础上,建立二次回归正交设计模型优化了鞍钢现场精炼渣成分,并考察了FeO含量和渣量对合成精炼渣脱硫效果的影响。以优化后的合成精炼渣成分为基准,通过实验室坩埚实验研究了工业原料和铝灰基脱硫剂对脱硫的影响,并借助感应炉装置比较了不同配方合成精炼渣的脱硫效果。结果表明,当渣中FeO、MgO含量不变时,随w(CaO)/w(SiO_2)增加,脱硫率均先增大后减小。在不同碱度条件下,Al_2O_3和CaF_2含量对脱硫效果的影响程度不同,当精炼渣中Al_2O_3、CaF_2含量过高时,增加上述任一组元含量,脱硫率均明显降低;LF冶炼低硫钢时,精炼渣中FeO含量应控制在0.5%以下,且渣量适宜,一般不大于20kg·t~(-1)钢;本实验条件下优化的最佳精炼渣组成为w(CaO)/w(SiO_2)9~11,Al_2O_3 27%~29%,MgO 9%,CaF_2 8%~10%,FeO小于0.5%;比较几种工业脱硫剂配方的脱硫效果,按照脱硫率从大到小的顺序依次为无氟电解铝灰,优化渣,预熔电解铝次,电解铝灰,预熔熔铸铝灰,熔铸铝灰。
     针对鞍钢第二炼钢厂北区180吨LF精炼炉脱硫工艺,建立数学模型预测了底吹氩搅拌过程中钢水循环流动和混合行为。结果表明,采用数学模型方法和数值计算可以较好地预报吹气搅拌钢包体系中钢水湍流流动和混合现象;鞍钢二炼钢厂北区LF精炼钢包采用的弱偏心喷吹,在吹氩方式上是比较合理的,钢水同时存在明显的上下运动和水平运动;在目前采取的吹氩工艺制度下,钢水95%混匀时间在160s~317s之间,熔池中的钢水循环流量为103t·min~(-1)~175t·min~(-1)、熔池液面最大钢水流速为0.35m·s~(-1)~0.6m·s~(-1)以及熔池体系最大有效粘度在44kg·m~(-1)·s~(-1)~72kg·m~(-1)·s~(-1)范围,这些均表明钢包内搅拌强度处于
Being considered as one of high- efficiency methods of second refining, LF was in virtue some measures of heating up by the electric arc, reductive slag and argon blowing to achieve the aims of rapid deoxidation, desulphurization, mixing the temperature and components of liquid steel and removing the inclusion from the liquid steel availably, which played a very important role in pure steel development. It was very important to find out the optimum composition of refining slag and argon bottom blowing routine, which will offer a great significance on reducing the time of desulphurization, harmonizing the LD, LF and continuous casting and accelerating the production rhythm.
    Base on the composition of refining slag for No.2 steel plant in Anshan Steel, a model of quadratic regressive perpendicular design was developed to optimize the composition of a new-type refining slag in the paper firstly, and the effect of FeO content and slag amount on desulphurization capacity was carried out accordingly. Then, considering the optimum slag composition as the base, effect of industrial materials and Al ash-bearing refining slag on the desulphurization capacity was performed in the laboratory experiment, and comparison of desulphurization capacity of all kind of agents with different industrials materials was carried out in an intermediate frequency faradic furnace. The results showed that, In the case of FeO and MgO content being a constant, the desulphurization ratio increased firstly then decreased with w (CaO)/w (SiO_2) increasing. Under the condition of different slag basicity, the influence degree of Al_2O_3 and CaF_2 on desulphurization capacity was dissimilar. When the content of Al_2O_3 and CaF_2 accounted for much ratio in the refining slag, whether any element content increased continuously or not, the desulphurization ratio will decrease. In the process of production of ultra-low-sulphur steel, FeO content was suggested to be less than 0.5%, and slag amount not more than 20 kg·t~(-1). In the condition of those experiments, the optimum composition of refining slag was w (CaO)/w (SiO_2) 9-11, Al-2O_3 content 27%~29%, MgO content 9%, CaF_2 content 8-10% and FeO content less than 0.5% respectively. For the desulphurization capacity comparison of types of Al ash-bearing refining slag, the desulphurization ratio was list in term of value as followings, electrolytic Al ash without fluorine, optimum refining slag, electrolytic Al ash being
引文
1.赵沛,成国光,沈绠,等炉外精炼与铁水预处理技术手册[M],冶金工业出版社,1996:3-10
    2.张鉴.炉外精炼的理论与实践[M],北京:冶金工业出版社,1993,321-324
    3.余志祥,郑万,汪晓川,等.洁净钢的生产实践[J],炼钢,2000,16(3):11-15
    4.朱立光,唐国章.纯净钢及纯净铸坯的生产技术[J],河北理工学院学报,2002,22(3):6-11
    5.刘中柱,蔡开科.纯净钢生产技术[J],钢铁,2000,35(2):64-69
    6.知水,王平,侯树庭.特殊钢炉外精炼[M],北京:原子能出版社,1996:102-110
    7.刘浏,曾加庆.纯净钢及其生产工艺的发展[J],钢铁,2000,35(3):68-102
    8.前田雅之,芥屋敬二,段上孝良,等.转炉-RH连铸高纯度化技术[J],CAMP-ISIJ,1993,6(1):146-148
    9.于定孚.低硫钢的进展[J],钢铁,1987,22(11):52-54
    10. Akihiko Takahashi, Hiroyuki Ogawa. Influence of micro-hardness and inclusion on stress oriented hydrogen induced cracking of line pipe steels[J], ISIJ International, 1996, 36(3): 334-336
    11.徐匡迪.油气管线用钢的性能要求与工艺技术进展[J],上海金属,1986,8(4):1-11
    12. Gladman T. Developments in inclusions and their effects on steel properties[J], Ironmaking and Steelmaking, 1992, 19(6): 457-463
    13.梁连科,车荫昌,杨怀,等.冶金热力学及动力学[M],沈阳:东北工学院出版社,1990,202
    14.黄希钴.钢铁冶金原理(第三版)[M],北京:冶金工业出版社,2002,168
    15. Sosinsky D J, Sommerille I D. The composition and temperature dependence of the sulfide capacity of metallurgical slag[J], Metallurgical Transactions B, 1986, 17B(2): 331-337
    16. Duffy J A. Optical basicity of fluoride containing slag[J], Ironmaking and Steelmaking, 1990, 17(6): 410
    17. Young R W, Duffy J A, Hassall G J, et al. Use of optical basicity concept for determining phosphorus and sulphur slag metal partitions[J], Ironmaking and Steelmaking, 1992, 119(3): 201-219
    18.孙中强,姜茂发,梁连科,等.LF精炼过程中顶渣硫容量、分配比和脱硫??率的确定[J],钢铁研究学报,2004,16(3):23-26
    19. Drakaliysky E, Du S, Seetharaman S. An experimental study of the sulphide capacities in the system Al_2O_3-CaO-SiO_2[J], Canadian Met Qarterly, 1997, 36(2): 115-120
    20.王展宏.钢包炉(LF)精炼渣的作用及特性分析[J],钢铁研究,1996,15(3):11-16
    21.赵保国,毛福来,汤潜,等.LF精炼造渣工艺研究[J],包钢科技,2003,29(6):24-27
    22.赵和明,谢兵.LF炉精炼渣冶金性能的研究现状[J],钢铁钒钛,2002,23(4):53-58
    23.张奚东,孙炯.LF钢包脱硫试验[J],上海金属,1997,19(3):5-9
    24. Hino M. Sulfur capacities of CaO-Al_2O_3-MgO and CaO-Al_2O_3-SiO_2 slag[J], ISIJ International, 1993, 33(1): 36-39
    25. Ichise E, Moro-oka A. Sulphide capacity of slag and the lattice of the component oxides[J], ISIJ International, 1990, 30(11): 971-973
    26.吴铿,梁志钢.包钢LF精炼过程脱硫工业实验研究[J],钢铁,2001,36(8):16-19
    27.战东平.CaO-Al_2O_3-CaF_2-MgO-SiO_2预熔渣系钢水深脱硫实验研究[J],炼钢,2002,18(6):33-36
    28.廖建云,王平.LF钢包脱硫工艺分析[J],四川冶金,1994,(2):19-25
    29.吕同军,倪友来,张雪松,等.50t钢包炉(LF)用精炼渣的研制[J],特殊钢,2002,23(5):41-42
    30.蒋武锋,郭华,魏小珍,等.CaO-SiO_2-Al_2O_3-MgO渣系脱硫研究[J],河北理工学院学报,2000,22(3):5-10
    31.乐可襄,王世俊.CaO-SiO_2-MgO-Al_2O_3精炼渣的脱硫性能[J],特殊钢,1998,19(3):15-17
    32.副岛利行,斉藤忠,松本洋,等.RH槽内合成添加溶钢脱硫[J],铁钢,1984,70(4):979-981
    33.山口公治,加藤嘉英,等.RH耭能拡大高纯度鋼溶裂开発[J],CAMP-ISIJ,1993,6(1):142-145
    34.川本正辛.高速连铸用特性设计[J],铁鋼,1994,80(3):219-224
    35.万真雅,郭上型.LF(钢包炉)固体合成渣脱硫工业性试验研究[J],钢铁,1995,30(9):14-18
    36.沢村信幸,大西泰,石光国男,Ca法溶鋼处理技术[J],铁钢,1978,64(4):116-120
    37.刘浏.超低硫钢生产工艺技术[J],特殊钢,2000,21(5):29-33
    38.战东平,姜周华,梁连科,等.150tEAF-LF预熔精炼渣脱硫试验研究[J],炼钢,2003,19f2):48-5139. Rachev I P. Solubility of BaS in BaO-BaF_2 slag and the influence of FeO_x, SiO_2, Cr_2O_3, BaCl_2, CaO and MgO on the sulfide capacities of this system[J], Metallurgical Transactions B, 1992, 23B (4): 175-178
    40.郭宝志.还原条件下脱硫渣系实验研究[D],沈阳:东北大学,1999
    41. Oguchi S, Robertson D G C. Kinetic model for refining by submerged power injection: part 1 transitory and permanent contact reactions[J], Ironmaking and Steelmaking, 1984, 11: 262-265
    42. Ishida J, Yamaguchi K, Saito Y. Ladle furnace process and plasma melting and refining process[A],中日钢铁学术会议第一界炼钢学术会议[C],北京:中国金属学会,1981,128-140
    43.王书桓,唐国章,李福民,等.12CaO·Al_2O_3型精炼合成渣物性与脱硫试验[J],河北理工学院学报,2001,23(3):9-13
    44.周宏.硫在CaO-Al_2O_3熔渣与钢液间的分配率[J],钢铁,1995,30(6):14-17
    45.周世祥,许诚信,屠宝洪,等.铝渣灰脱硫剂对提高LF炉脱硫效果的影响[J],北京科技大学学报,1997,19(4):338-341
    46.黄宗泽,顾文兵,罗建江,等.LF的精炼埋弧工艺技术研究[J],宝钢技术,1998,19(6):23-26
    47.徐国华.100t LF用固体合成精炼渣[J],包头钢铁学院学报,2001,20(4):113-115
    48.成国光,宋波,陆钢,等.钢液深脱硫精炼工艺的研究[J],钢铁,2001,36(3):21-23
    49. Hassall G J, Jackaman D P, Hawkins R J. Phosphorus and sulphur removal from liquid steel in ladle steelmaking processes[J], Ironmaking and Steelmaking, 1991, 18(5): 359-369
    50. Ushiyama H, Yoasa G, Yajima T. Ladle-furnace process in Japan[J], Ironmaking and Steelmaking, 1978, 5(3): 121-134
    51. Yuasa G, Yajima T, Ukai A, et al. Refining practice and application of the ladle furnace (LF) process in Japan[J], Trans, ISIJ, 1984, 24(4): 412-418
    52. Kishida T, Yajima T, Ukai A. Recent developments of ladle furnace (LF) process in Japan[A], Proc. 7th ICVM[C], Tokyo, 1982, 1148-1162
    53.村井刚,松野英寿,櫻井栄司,.溶鋼脱硫反応機搆[J],CAMP-ISIJ,1996,9:84
    54.成田貴一,冨田昭津,松本洋,Ca法[J],铁钢,1978,64(4):117-120
    55.赵增武,王新华,常国威.[S]对低合金洁净钢强度与冲击韧性的影响[J],钢铁钒钛,2004,25(2):62-65
    56. Lauri E K, Holappa. Clean steel-theoretical considerations and practical approaches[A]. Proceedings of the Sixth International Iron and Steel Congress[C]. Nagoya: ISIJ, 1990, 494-50357. Kissling R. Clean steel-a debatable concept[A]. Clean Steel[C]. Balatonfured, Hungary: the Metal Society, 1981, 58
    58.李代钟.钢中的非金属夹杂物[M],上海科学技术出版社,1983,15-17
    59.董履仁,刘新华.钢中大型非金属夹杂物[M],北京:冶金工业出版社,1991,51-59
    60. Anderson A T. Application of the sulphide capacity concept on high-basicity ladle slag used in bearing-steel production[J], ISIJ International, 1999, 39(11): 1140-1142
    61.李具中,黄成红,陈清泉.定氧技术在含铝钢生产中的应用[J],炼钢,2004,20(4):1-4
    62.于广石,许晓东,郭家林,等.首钢LF埋弧精炼技术的应用[J],钢铁研究,2000,(4):115-117
    63.汤曙光.LF-VD精炼渣组成对冶金效果的影响[J],炼钢,2001,17(4):29-31
    64.上海师范大学数学系,概率统计教研组.回归分析及其试验设计[M],上海:上海教育出版社,1978,89-91
    65.朱伟勇.最优设计理论与应用[M],沈阳:辽宁人民出版社,1981,132-134
    66.朱伟勇,胡晨江,陈惠森,等.最优设计的计算机证明与构造[M],沈阳:东北工学院出版社,1987,231-235
    67. Szekely J, Wang H. J and Kiser K. M. Flow pattern velocity and turbulence energy measurement and prediction in a water model of an argon-stirred ladle. Trans[J], Iron Steel Inst., 1976, 7B: 287-295
    68. Szekely J, Wang H. J and Kiser K. The mathematical and physical modeling of primary metals processing operations[M], New York: A Wiley Inter-science Publication, 1988
    69. Szekely J, Dilawari A. H and Metz R. The mathematical and physical modeling of turbulence recirculation flow[J], Metall, Trans., 1979, 10B: 34-41
    70. Szekely J, Lehner T and Chang C. M: Flow phenomena, mixing and mass transfer in argon-stirred ladles[J], Ironmaking and Steelmaking, 1979, 6(6): 285-293
    71.井口学,卓内博明,森田善一朗.底吹圆筒器内水空气系气泡喷流中的流场[J],铁钢,1990,5:699-706
    72. Sahai Y, Guthrie R I L. Hydrodynamics of gas stirred melt[J], Metall. Trans.,??1982, 13B: Part Ⅱ 203-211
    73. Sahai Y. Fluid dynamics in channel reactors stirred by submerged gas injection[J], Metall. Trans., 1988, 19B: 603-612
    74. Guthrie R I L, Bradshaw A V. The behavior of large bubbles rising through molten steel[J], Trans. Jpn. Inst. Met., 1980, 21 (11): 675-681
    75. Mazumdar D, Evans J. W. Macroscopic models for gas stirred ladles[J]. ISIJ International, 2004, 24(3): 447-461
    76. Mazumdar D, Seybert C, Steingart D. Transient flows in gas stirred vessels during initial and post gas injection periods[J], ISIJ International, 2003, 23(1): 132-134
    77. Hsiao T. C, Lehner T and Kjellberg B. Fluid flow in ladles-experimental results[J], Scand. J. Metallurgy, 1980, 9(3): 105-110
    78. Sano M, Mori K. Fluid flow and mixing characteristics in a gas-stirred molten metal bath[J], Trans. ISIJ, 1983, 23(2): 169-175
    79. Stapurewiz T, Themelis N J. Mixing and mass transfer phenomena in bottom-inject gas-liquid reactors[J], Can. Metall. Q., 1987, 26(4): 123-128
    80.何庆林.喷吹钢包过程数学物理模拟[D],沈阳:东北工学院博士学位论文,1984
    81. Debroy T and Majumdar A. K. Influence of turbulence model constants and boundary conditions on the computed hydrodynamic variables in gas-stirred reactors[J], Appl. Math. Modeling, 1983, 7(4): 278-281
    82. Castillejos A. H, Salcudean M and Brimacombe J. K. Fluid flow and bath temperature desertification in gas-stirred ladles[J], Metall. Trans., 1989, 20B: 603-611
    83. Oeters F, Pluschkell W, Steinmetz. Fluid flow and mixing in secondary metallurgy[J], Steel Res., 1988, 59(6): 192-201
    84. Johanson S. T and Boysan F. B. Fluid dynamics in bubble stirred ladles, Part Ⅱ. Mathematical modeling[J], Metall. Trans., 1988, 19B: 755-764
    85. Mazumdar D and Guthrie R. I. L. The physical and mathematical modeling of gas stirred system (Review)[J], ISIJ Intern., 1995, 35(1): 1~2086. Ilegbusi O. J and Szekely J. The computation of the velocity fields in mechanically agitated melts for turbulent and non-Newtonian regimes [J], Metall.Trans.,1990,21B:183-190
    
    87. Lehner T. Reactor models for powder injection. In: Lehner T ed. Proc. of 1st Scandinavian Intern. Conf. on Injection Metallurgy: SCANINJECT Ⅰ .Lulea, Sweden: June 9-10, 1977: Article 11
    
    88. Lehner T. Homogenization, desulphurization and deoxidation of liquid steel by powder injection. In: Proc. of Symp. On Ladle Treatment of Carbon Steel. Hamilton, Canada: 1979: Article 7
    
    89. Iguchi M, Takeuchi H, Morita Z. The flow fluid in air-water vertical bubbling jets in a cylindrical vessel [J], ISIJ, Intern., 1991,31(3):246-253
    
    90. Kozlowski M A, Wraih A E. Jet cavity at a submerged vertical lance [J], Ironmaking and Steelmaking, 1986,13(2): 190-194
    
    91. Hsiao T C. Experiment of flow velocities in gas-stirred ladles[J], Metal Report 79063, Lulea, Sweden: 1979
    
    92. Asai S, Okamato T, He J. C and Muchi I. Mixing time of refining vessels stirred by gas injection [J], Trans. Iron Steel Inst. Jpn.,1983, 23(2):43-50
    
    93. Mazumdar D and Guthrie R. I. L. Mixing models for gas stirred metallurgical reactors [J], Metall. Trans., 1986,17B:725-733
    
    94. Krishna Murthy G. G, Mehrotra S. P and Gosh A. Experimental investigation of mixing phenomena in a gas stirred liquid bath [J], Metall. Trans., 1988,19B:839-850
    
    95. Sinha U. P and McNallan M. J. Mixing in ladles by vertical injection of gas and gas-particle jets: A water model study [J], Metall. Trans., 1985, 16B: 850-856
    
    96. Nakanishi K, Fujii T and Szekely J. Possible relationship between energy dissipation and agitation in steel processing operations [J], Ironmaking and Steelmaking, 1975, 2(4):193-197
    
    97. Ilegbusi J, Szekely J. Melt stratification in ladles [J], Trans. ISIJ, 1987, 27(5):563-56998. Mietz J and Oters F: Model experiments on mixing characteristics in a gas stirred melts[J], Steel Res., 1988, 59(2): 52-59
    99.曲英,杨健,徐保美.熔渣下金属熔池流动现象的数学模拟[J],金属学报,1990,26(3):157-163
    100. Salcudean M, Lai K. Y. M and Guthrie R. I. L: Can. J. Chem. Eng., 63, 1985, 51-55.
    101. El-Kaddah N and Szekely J. Mathematical model for desulphurization kinetics in argon-stirred ladles[J], Ironmaking and Steelmaking, 1981, 8(6), 269-278
    102. Castillejos A. H and Brimacombe J. K. Measurement of physical characteristics of bubble in gas-liquid plumes: Part Ⅰ. A improved electro-resistivity probe technique[J], Metall. Trans., 1987, 18B: 659-658
    103.沢田郁夫,大桥彻朗.气液二相流在考虑底吹搅拌取锅内熔钢流动数值解析[J],铁钢,1987,7:669-676
    104. Guo D, Irons G A. A water model and numerical study of the spout height in a gas-stirred vessel[J], Metall. Trans., 2002, 33A: 377-384
    105. Xia J L, Ahokainen T, Holappa L. Analysis of flows in a ladle with gas-stirred melt[J], Scand. J. Metallurgy,, 2001, 30(2): 69-76
    106.李宝宽,赫冀成,陆钟武:辽宁省首届青年学术年会论文集,1992,沈阳,317-320.
    107. Han J W; Heo S H, Kam D H. Transient fluid flow phenomena in a gas stirred liquid bath with top oil layer-Approach by numerical simulation and water model experiments[J], ISIJ International, 2001, 41 (10): 1165-1173
    108. Goldschmit M B, Coppola Owen A H. Numerical modeling of gas stirred ladles[J], Ironmaking and Steelmaking, 2001, 28(4): 337-341
    109. Zhu M Y, Inomoto T, I. Sawada and T. Hsiao. Fluid flow and mixing phenomena in the ladle stirred by argon through multi-tuyere[J], ISIJ Intern., 1995, 35(5): 472-479
    110.陶文铨:数值传热学[M],西安:西安交通大学出版社,1988
    111. Patankar S. V: Numerical Heat Transfer and Fluid Flow[M], McGraw-Hill,??New York, 1980.
    112. Zhang L F. Mathematical simulation of fluid flow in gas-stirred liquid systems[J], Modeling and Simulation in Materials Science and Engineering, 2002, 8(4): 463-476
    113. Mazumdar D. A correlation for estimation of mass transfer rates of solids in gas stirred ladle systems[J], Steel Research, 1996, 67(7): 263-267
    114. Danckwarts P. V: Insights into Chemical Engineering[M], Pegamon Press, Oxford, 1981
    115.赵连刚.吹气搅拌钢包体系传输现象数学物理模拟研究[D],东北大学博士论文,沈阳,1996
    116.李正邦,薛正良,张家雯.合成渣处理对弹簧钢脱氧及夹杂物控制的影响[J],特殊钢,2000,21(3):10-13
    117.薛正良,李正邦,张家雯.钢的脱氧与夹杂物控制[J],特殊钢,2001,22(6):24-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700