用户名: 密码: 验证码:
Al_2O_3-CaO基预熔精炼渣冶金物化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝钙渣系是近年发展起来的新型合成精炼渣,主要用于LF炉钢水脱硫、去除夹杂物,以达到净化钢液的目的。预熔型精炼渣是目前国内外冶金工作者研究的重要对象之一,而根据不同的钢种选择合适的精炼渣剂及配方就成了目前研究精炼渣的突出问题。本研究的目的在于探索7Al_2O_3·12CaO型合成渣系的熔化特性、吸收夹杂能力、脱硫能力等物化性能,为实际应用及生产预熔型CaO-Al_2O_3渣提供理论依据。
     本文对预熔型铝钙渣的发展历史和研究现状作了简要的概述,分析了预熔型铝钙渣在还原条件下精炼脱硫和去除Al_2O_3夹杂的原理、热力学及动力学条件。运用二次正交回归方法设计出以CaO-Al_2O_3为基体,MgO、CaF_2、SrO为辅料的预熔铝钙型精炼渣,其中各组分的范围为:Al_2O_3/CaO=0.8~1.2,CaF_2=3%~9%,MgO=4%~10%,SrO=0~10%。
     本课题首次研究了SrO在精炼渣中的作用;开发研制出Al_2O_3圆柱体在渣中旋转动力学实验研究的控制设备,并测定了Al_2O_3在1#和8#渣中的溶解速度方程和溶解速度常数;应用炉渣的共存理论首次建立了CaO-Al_2O_3-MgO-SrO-CaF_2-SiO_2六元渣系作用浓度模型,将17组渣代入模型进行计算的结果与实验数据存在一致性,该模型可用于预测渣的脱硫性能;通过测定渣高温物理性能和进行脱硫实验,对比分析了预熔渣与混合渣的熔化温度差异性,回归出组分与粘度、熔化温度和硫分配比之间的数学模型,讨论了组分对精炼渣高温性能和硫分配比的影响;采用光学碱度理论计算每组渣样的硫容量,经实验验证,计算结果可用于比较渣的脱硫性能优劣;利用正交直观分析法研究和优化组分含量,得到诸因素影响熔化温度、粘度和表面张力的主次关系;利用矿相显微镜观察了预熔渣的熔化均匀性。
     研究中得出的精炼渣中组分重量百分比与硫分配比、熔化温度和粘度之间的数学模型具有很高的置信度,实验数据与所采用的二次回归模型是比较符合的。对脱硫性能而言:Al_2O_3/CaO值越大,则渣的硫容量越低,硫分配比越小;SrO与MgO可使渣的硫分配比提高,但提高幅度有限;对熔化温度和粘度而言:MgO含量为5%时,精炼渣的粘度存在一个最低值,MgO对渣的熔化温度影响不大;Al_2O_3/CaO对渣高温性能的影响呈抛物线形状;CaF_2能增加渣的粘度,但对降低渣的熔点作用不大;熔点与SrO含量近似成线性关系,SrO含量为6%时粘度出现波谷值。综合考虑各种因素,得出本研究条件下各组分的最佳含量为:7%MgO、5%SrO、6%CaF_2、Al_2O_3/CaO=0.8。
     动力学研究得出,在渣组分含量的范围内,当Al_2O_3/CaO=0.7~0.9时,精炼渣吸收Al_2O_3夹杂的能力很强,渣中初始Al_2O_3含量影响不大;
    
    重庆大学硕士学位论文
    当A12o3/cao二0.9一1.2时,降低熔渣粘度和减少渣中初始A1203含量,以及减少熔
    渣与A1203夹杂之间的界面张力均有利于改善熔渣吸收A1203夹杂的能力。
In recent years, 7Al2O3·12CaO refining slag is being used to purify molten steel, desulfurize and remove inclusions in the processing of LF. Pre-molten refining slag is one of main research objects concerned by metallurgist currently, and the focused problem is how to choose proper refining slag in accordance to different steel grade. In order to understand the CaO-Al2O3 refining slag deeply, and establish theory base for application and production of the refining slag , the physicochemical properties such as melting temperature, viscosity and desulfurization capacity of the slag were studied in this paper.
    Literatures about the history and research situation of pre-molten CaO- Al2O3 slag have been reviewed, the thermodynamics and kinetics of desulfurization and removal Al2O3 inclusion in the condition of reducing atmosphere have been discussed. The CaO- Al2Os base slags containing MgO, CaF2, SrO as auxiliary components are designd by quadratic orthogonal regression method. Composition range of the designed slags is Al2O3/CaO=0.8~ 1.2, CaF2=3%~9%, MgO=4%~10%, SrO=0~10%.
    Effect of SrO on properties of refining slag was innovatively studied. Control devices of kinetics study was developed, and The solution of A12O3 in refining slag (1# and 8#) was experimentally studied. In accordance with the coexistence theory of slag structure, the model of mass action concentration for slag system of CaO-Al2O3-MgO-SrO-CaF2-SiO2 is established firstly. Calculated results had good consistency with experimental data. Based on the experimental results, mathematical models between composition and properties were established, and the effects of composition on molten properties and sulfur distribution were discussed. Optimized composition was obtained by orthogonal direct-visual method. Optical basicity was used to calculate sulfur capacity. Melting uniformity of pre-molten refining slags were observed through microscope, and melting temperatures of pre-molten slag and mixing slag were compared.
    The confirming test shown that the mathematical models was highly reliable. For desulfurization, while the value of Al2O3/CaO is bigger, the sulfur capacity is lesser, sulfur distribution is also lesser; viscosity of samples has a minimum value when MgO is reached 5%, while MgO has a little influence on molten temperature of samples. The effect of Al2O3/CaO on high temperature properties of refining slag behaved as the
    
    
    feature of parabola; Viscosity of slag increases with the increasing of CaF2, but molten temperature changes slightly. There is a linear relationship between SrO and molten temperature; viscosity of slag has a minimum value when SrO is reached 6%. By comprehensive consideration of physicochemical properties of slag in the study, the optimized composition of refining slag ought to be 7%SiO2, 7%MgO, 5%SrO, 6%CaF2 and %Al2O3/%CaO=0.8.
    At the condition of the study, when %Al2O3/%CaO is between 0.7-0.9, the slag has high capacity of adsorbing Al2O3 inclusion, the original content of Al2O3 has little effect on property; when %Al2O3/%CaO is more than 0.9, that adsorption of Al2O3 in refining slag would be improved with decreasing of original Al2O3 content, enhancing of saturated concentration of Al2O3, decreasing of viscosity of slag and interface tension between slag and Al2O3 inclusion.
引文
[1] 许荣昌.轴承钢精炼合成渣研究与工艺优化.北京科技大学硕士论文,2002:4
    [2] 王书桓,唐国章等.12CaO·7Al_2O_3型精炼合成渣物性与脱硫试验.河北理工学院学报.1991,03:9-12
    [3] 吕同军,倪友来等.50吨LF炉用精炼渣的研制与生产.莱钢科技.2002.03:50~51
    [4] Inoue R, Inoue H, Suito H. ISIJ International. 1991, Vol.31, No.12:1389
    [5] 王展宏,钢包炉(LF)精炼渣的作用和特性分析.钢铁研究.1996.03:11~16
    [6] 任正德等.还原泡沫渣用发泡剂的实验研究.特殊钢.1996,06:17~21
    [7] Ito K, Fruehan R.J. Study on the foaming of CaO-SiO_2-FeO slag. Metal trans. 1989, Vol.20B, No4:509
    [8] 牛四通,张鉴,成国光.LF埋弧渣技术的开发及应用.钢铁.1997.03:21~24
    [9] 成国光 牛四通,张鉴等.还原精炼条件下炉渣的泡沫化.钢铁研究学报.1996.05:12~16
    [10] 迪林 王平.精炼渣复合发泡剂配方的实验.特殊钢.1998.06:24~26
    [11] 张鉴 牛四通 佟福生等.钢桶精炼炉埋弧渣造渣方法.中国.专利公开号CN1096823A.
    [12] 李军辉 彭勇生.精炼渣、发泡剂组成对渣发泡的影响.浙江冶金.2002.05:12~15
    [13] Zhang Y, Freuhan R.J. Effect of carbonaceous particles on slag foaming. Metal Trans. 1995, Vol.26B, No.8:813
    [14] Gudennau H.W, Wu K, Nys S, et al. Formation and Effect of Foaming in Smelting Reduction. Steel Research. 1992, Vol.63, No.12:512
    [15] 任正德.40t钢包炉泡沫渣埋弧作业.特殊钢.1995,04:41~45
    [16] Ito K. Fruehan. R.J. Slag foaming in smelting reduction process. Steel Research. 1989, Vol.60, No.03:151
    [17] 杨学民,郭占成等.冶金过程中炉渣泡沫化的研究进展.钢铁研究学报.1995.02:76~83
    [18] Jiang R, Fruehan R.J. Slag foaming in bath smelting. Metal trans. 1991, Vol.22B, No.8:481
    [19] 兰杰 丁文江.CaO-SiO_2-MgO-Al_2O_3-CaF_2精炼渣系起泡性能与炉渣物理性质的关系.特殊钢.1999.01:15~17
    [20] 乐可襄 董元簇.精炼渣发泡性能的实验研究和渣发泡条件的理论分析.钢铁.1998.07:18~21
    [21] 赵和明,谢兵.LF精炼渣冶金性能的研究现状.钢铁钒钛,2002.04:54~58
    [22] 郑庆 张晓兵等.钢包精炼渣成分的最优化.上海大学学报(自然科学版).第三卷增刊.1997.11:161~164
    [23] 迪林 王平 傅杰.LF埋弧泡沫渣实验研究.特殊钢.1999,Vol.20,No.3:24~26
    
    
    [24] 兰杰 姜周华等.CaO-SiO_2-MgO-Al_2O_3-CaF_2五元精炼渣系的起泡性能.钢铁研究学报.1999,Vol.11,No.2:14~18
    [25] 王昌尘.炉外精炼轴承钢工艺研究.特殊钢.1987.02:59-67
    [26] 孙军立等.Gcr15轴承钢LFV精炼工艺研究.特殊钢.1992.02:30-34
    [27] 王勤朴 刘茂文等.50t UHP(EBI)电炉—50t LF精炼轴承钢工艺及其冶金效果分析.山东冶金.1999,Vol.21.No.2:49~52
    [28] 曾新光.泡沫渣技术的应用.特殊钢.1994,04:54
    [29] 牛四通.成国光.张鉴.精炼渣系的发泡性能.北京科技大学学报.1997,02:138~142
    [30] 迪林 王平.精炼渣氧化性对炉渣发泡性能影响的研究.钢铁研究,1998.06:25~27
    [31] 乐可襄 董元簇.精炼渣发泡性能的实验研究.炼钢.1997.02:22~25
    [32] 殷宝言 邓学晖 熔氧结合泡沫渣埋弧冶炼工艺.炼钢.1991,Vol7,No.6:7~10
    [33] 乐可襄等.CaO-SiO_2-MgO-Al_2O_3渣的脱硫性能.特殊钢.1998.03:15~17
    [34] Turkdogan F T. Slags and Fluxes for ferrous metallurgy. Iron and steelmaking. 1995, 02:64
    [35] 张鉴.炉外精炼的理论与实践.冶金工业出版社.1991:89
    [36] 曲英.钢铁学原理(第二版).北京.冶金工业出版社.1994:215~220
    [37] 牛四通,张鉴.LF埋弧渣技术的开发及应用钢铁.1997.03,21~24
    [38] 汤曙光.LF-VD精炼渣组成对冶金效果的影响.炼钢.2001,Vol.17.No.4:29~31
    [39] 陈襄武.炼钢过程和脱硫.北京.冶金工业出版社.1989:175~177
    [40] Hille K F. Slag Control Techniques for High Quality Steel. Steelmaking Conf. Proc. 1991:419~422
    [41] Simeonov SR. Sulphur equilibrium distribution between CaO-CaF_2-SiO_2-Al_2O_3 slags and carbon-saturated iron. ISIJ International. 1991,31(12): 1396
    [42] 周宏,吴晓春.硫在CaO-Al_2O_3系熔渣与钢液之间的分配.钢铁.1995,Vol.30,No.6:14~17
    [43] Martinez. E and Sano. N. Metal trans. 1990(2B): 481
    [44] 王俭等译.渣图集.北京.冶金工业出版社.1989:102~105
    [45] 周世祥等.铝渣灰脱硫剂对提高L F炉脱硫效果的影响.北京科技大学学报.1997,04:338~341
    [46] 成国光等.钢液深脱硫精炼工艺的研究.钢铁.2001.03:21~22
    [47] 黄希祜编.钢铁冶金原理,冶金工业出版社,1990:93~120
    [48] Pielet H.M., Bnattalharya D. Metallurgical transaction. 1984,15:B547
    [49] Hideaki SUITO. Hajime INOUE and Ryo INOUE. Aluminum-Oxygen Equilibrium between CaO-Al_2O_3 Melts and Liquid Iron. Iron&steel making. 1991, Vol.31, No.12:1389~1395
    [50] 董履仁,刘新华编著.钢中大型金属夹杂物.冶金工业出版社.1991:185
    
    
    [51] 李代钟著.钢中的非金属夹杂物丛书.科学出版社.1983:92,
    [52] 郭宝志 还原条件下脱硫渣系的实验研究.东北大学研究生毕业论文.1999:59~61
    [53] 王群,预熔型精炼渣脱硫的实验室研究.东北大学研究生毕业论文.1998:43~49
    [54] (捷)B.Jaloslav,刘树振译.CaO-Al_2O_3基重熔渣用于炉外精炼的意义和优点.武钢技术,1990.02:33~38
    [55] E.T.Turkdogan. Slags and flouros for ferrous ladle metallurgy. Ironmaking and Steelmaking. 1985, Vol 12, No.2:181~193
    [56] 李阳,姜周华等.CaO-Al_2O_3基精炼渣对钢液脱氧的影响.钢铁研究学报.2002,Vol.14,No.5:12~15
    [57] 朱伟勇编著.最优设计理论与应用.辽宁人民出版社,1981:184
    [58] P.G. Jonsson, L.Jonsson and D.Sichen. Viscosities of LF Slags and their Impact on Ladle Refining. ISIJ International. 1997,05:484~491
    [59] 天津大学普通化学教研室。无机化学(上册)北京:高等教育出版社:235~237
    [60] 董凌燕 魏庆成.含SrO连铸保护渣熔点及粘度的研究.重庆大学学报(自然科学版).1999.05:75~78
    [61] 吕庆,尹海生等.COREX工艺中高MgO炉渣性能的研究.河北理工学院学报.1996,04:24~30
    [62] 王民权 王东.名义组成2SrO·3Al_2O_3:Eu~(2+)高效磷光体.1999,06:763~768
    [63] 陈家祥编.炼钢常用图表数据手册.冶金工业出版社,北京.1984:163
    [64] 俞景禄.CaO-SiO_2-MgO-Al_2O_3-CaF_2系最佳组成精炼渣的脱硫和去夹杂能力.钢铁.1989,Vol.24,No.1:17~21
    [65] R.W.Young, J.A.Duffy, G.J.Haaaall and Z.Xu. Use of optical basicity concept for determining phosphorous and sulphur slag-metal partitions. Iromnaking and Steelmaking. 1992, Vol 19, No.3:201~219
    [66] Magareta A.T. Andersson, Par G. Jonsson and Mselly M. Nzotta. Application of the sulphide capacity concept on high-basicity ladle slags used in bearing-steel production. ISIJ International. 1999, Vol.39, No.11 : 1140~1149.
    [67] M. M. Nzotta, R.Nilsson, Du Sichen, and S.Seetharaman. Sulphide capacity in MgO-SiO_2 and CaO-MgO-SiO_2 slags. Ironrnaking and Steelmaking. 1997, Vol 24, No.4:300~305
    [68] 蒋武锋,郭华等.CaO、SiO2、Al2O3和MgO四元渣系脱硫.河北理工学院学报.2000,Vol.22.No.3:5~10
    [69] 吕庆,尹海生,蒋武锋,COREX工艺中高MgO炉渣性能的研究[J].河北理工学院学报.1996,Vol.18,No.4:24.
    [70] Filippose PATSIOGIANNIS, Uday B.Pal and Robert S. BOGAN. Laboratory scale refining
    
    studies on low carbon aluminium killed steels using synthenic fluxes. ISIJ International. 1994, Vol.34, No.2: 140~149.
    [71] M.A.T..Andersson, P.G..Jonsson and M.Hallberg. Optimization of ladle slag composition by application of sulphur capacity model. Ironmaking and Steelmaking. 2000, Vol 27, No.4:286~293
    [72] 张鉴著.冶金熔体的计算热力学.北京.冶金工业出版社.1998:173
    [73] 李金锡,张鉴.CaO-MgO-Mno-FeO-CaF_2-Al_2O_3-SiO_2渣系粘度的计算模型.北京科技大学学报.2000.05:438~441
    [74] 王平,马廷温,张鉴.CaO-SiO_2-Al_2O_3-MgO渣系的作用浓度模型及其应用.钢铁.1996.06:27~31
    [75] Turchdogen E T. Physical Chemistry of High Temperature Technology. New York Academic Press. 1980:5~24
    [76] 徐士良.C常用算法程序集.北京.清华大学出版社.1996:231~233
    [77] 潘国平,张求剑等.MC-15型模铸保护渣吸收Al_2O_3夹杂物的研究.马钢科研,1991.01:58~61
    [78] 重庆大学冶金原理教研室编.冶金原理实验(修正版).重庆.1997:28~32
    [79] 刘承军,朱英雄等.CaO-SiO_2-Na_2O-CaF_2-Al_2O_3-MgO保护渣系的Al_2O_3吸收速率.炼钢.2001,Vol 17,No.3:42~46
    [80] 李为编译.钢中非金属夹杂物.北京.冶金工业出版社.1988:58~59
    [81] 王谦,迟景灏.连铸含铝钢中Al_2O_3夹杂与结晶器保护渣的作用.四川冶金.1991.03:46~53
    [82] 张鉴.冶金熔体的计算热力学.北京.冶金工业出版社.1984:167-174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700