用户名: 密码: 验证码:
生物滤池工艺系统处理微污染水源水中试试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对以污泥碳化载体为滤料的生物滤池系统工艺处理微污染水源水的处理性能进行了试验研究,试验结果表明:
     以NH_4~+-N去除率达到60%以上作为判断生物膜是否成熟的依据。当生物膜成熟后,生物滤池对CODMn、NH_4~+-N和浊度均有良好的去除效果,最高去除率分别可达41.70%,79.89%和84.11%。
     在空床接触时间为12min、气水比为1.0、水温为20.2℃~26.5℃、pH:6.8~7.9,且系统稳定运行时,以污泥碳化载体为滤料的生物滤池工艺系统对CODMn、UV254、NH_4~+-N、NO2--N、浊度和色度的平均去除率分别为46.19%,32.34%,80.48%,83.26%,87.69%和73.56%。
     在相同的试验条件下,通过应用生物滤池的性能评价指标,以CODMn、NH_4~+-N、浊度和色度四个指标作为评价对象,得出了以污泥碳化载体为滤料的生物滤池性能最优。
     分析了空床接触时间、气水比、温度、有机容积负荷和NH_4~+-N容积负荷对生物滤池处理性能的影响,以污泥碳化载体为滤料的生物滤池处理微污染水源水的适宜工艺条件为:进水CODMn浓度<6mg/L,NH_4~+-N浓度<2mg/L,EBCT为12~15min,气水比为1.0左右。通过采用正交试验分析得出,对于CODMn的去除,各因素影响程度的大小依次是:气水比,EBCT,进水浓度。对于NH_4~+-N的去除,各因素影响程度的大小依次是:EBCT、气水比、进水浓度。研究了生物滤池运行性能与滤层高度的关系。结果表明:生物滤池对CODMn、浊度和色度的去除作用主要发生在滤层0~40cm范围内;对UV254的去除作用主要发生在0~60cm范围内;对NH_4~+-N的去除作用主要发生在20cm~60cm范围内。滤料高度为100cm能满足出水的要求。
     在空床接触时间为12min、气水比为1.0、水温为20.2~26.5℃时,生物滤池对沉淀出水中铁、锰的平均去除率分别为81.53%和79.17%。当气水比为1.0~1.5时,生物滤池对铁锰能同时达到最佳处理效果;水温对锰的影响较为显著;生物滤池对铁锰的去除作用分别主要发生在0~40cm和20~80cm范围内。铁的去除主要以化学氧化作用为主,而锰的去除主要依靠的是生物作用。
The effect of Bio-filter System which uses carbonation sludge carrier removing pollutants from micro-polluted source water was studied. Research results were as follows.
     It is appropriate to adopt ammonia nitrogen removal rate 60% as a basic mark to judge mature biofilm. After the biofilm formation, Bio-filter had a high rate on removing CODMn, NH_4~+-N and turbidity. The maximum removal rate of CODMn, NH_4~+-N and turbidity were 41.70%, 79.89% and 84.11%.
     When the Empty bed contact time (EBCT) was 12 min, the gas to water ratio (G/W) was 1.0, the temperature was 20.2℃~26.5℃, pH was 6.8~7.9 and the system was operated steadily, the removal effect of pollutants by Bio-filter System which uses carbonation sludge carrier were as follows: the average removal rate of CODMn, UV254, NH_4~+-N, NO2--N, turbidity and chroma were 46.19%, 32.34%, 80.48%, 83.26%, 87.69% and 73.56% respectively.
     Under the same condition, CODMn, NH_4~+-N turbidity and chroma were used as the evaluation objects by the use of performance evaluation index of Bio-filter. It can be conclued that the performance of Bio-filter System using carbonation sludge carrier was best. Influence of EBCT, G/W, water temperature, organic volumatric loading, NH_4~+-N volume loading on Bio-filter system performance were analyzed. When the CODMn was less than 6mg/L,the NH_4~+-N volume loading was less than 2mg/L, EBCT was 12 min and G/W was 1.0, the Bio-filter could have a better effect. By use of orthogonal, the result showed that the degree of each factor were G/W, EBCT and volumatric loading on the CODMn removal. The degree of each factor were EBCT, G/W and volumatric loading on the NH_4~+-N removal.
     The relation between operation characteristics and filter height of the Bio-filter was studied. The removal of CODMn turbidity and chroma were mainly occurred in 0-40cm. The removal of UV254 was mainly occurred in 0-60cm. The removal of NH_4~+-N was mainly occurred in 20-60cm. Thus the Bio-filter height of 100cm used can make effluent meet the requirement.
     When EBCT was 12 min, G/W was 1.0 and the temperature was 20.2℃~26.5℃, the average removal rate of iron and manganese were 81.53% and 79.17%. When the G/W was 1.0-1.5, the Bio-filter system had a better removal rate on iron and manganese at the same time. The temperature influenced on manganese removal significantly. Iron and manganese removal were mainly occurred in 0-40cm and 20-80cm. The Fe and Mn removal mechanism were mainly chemical oxidation and biological effect respectively.
引文
[1]鄂学礼,凌波.饮用水深度净化与水质处理器[M].北京:化学工业出版社,2004:1.
    [2]杨爱玲,朱颜明.城市地表饮用水源保护研究进展[J].地理科学,2000,20(1):72-77.
    [3]环境保护部.中国环境状况公报[M].北京,2007:4.
    [4]金相灿等.中国湖泊环境[M].海洋出版社,北京,1995.
    [5]上海黄浦江上游有机污染物的GC/MS分析方法研究及其应用[M].上海环境监测中心, 1992,11.
    [6]中华人民共和国水利部.中国水资源公报2007[M].北京:中国水利水电出版社,2008.
    [7]吴启州.饮用水中有机污染物的危害及对策[J].水处理技术,1997,23(4):240-244.
    [8]吴舜泽,夏青,刘鸿亮.中国流域水污染分析[J].环境科学与技术,2000,9(2):1-6.
    [9]S. D. Richardson. Disinfection by-products and other emerging contaminants in Drinking Water.Trends in Analytical Chemistry,2003,22(10):666-684.
    [10]刘辉.全流程生物氧化技术处理微污染原水[M].北京:化学工业出版社,2003.
    [11]江东,王建华译.城市用水:21世纪的挑战[M].世界科学,1999:14(5):28.
    [12]肖羽堂,张晶晶,吴鸣等.我国水资源污染与饮用水安全性研究[J].长江流域资源与环境,2001,10(1):51-59.
    [13]Mitsurn Takassaki,et al. Evaluation of the NH3-N and COD Removal Efficiency by Submerged Biofilm Process in Tap Water Supply Pretreatment System[J].Water Science Technology, 1998, 20(11): 517-519.
    [14]H.P.Chu, I.H.C.Wong, X.Y Li. Trihalomethane Formation Potentials of Organic Pollutants in Wastewater Discharge[J].Water Science Tech.,2002,46(11):401-406.
    [15]郑平,胡宝兰.生物脱氮技术的研究进展[J].环境污染与防治,1997,19(1):32-35.
    [16]岳舜琳.给水中的氨氮问题[J].净水技术,2001,20(2):12-15.
    [17] COOPER P, DAY M et al. Proeess Option for PhosPhorus and Nitrogen Removal from Wastewater[J]. JIWEN, 1994, 8(2):84-92.
    [18]濮培民,王国祥,胡春华.底泥疏浚能控制富营养化[J].湖泊科学, 2000, 12(3): 269-279.
    [19]张杰,戴镇生.地下水除铁除锰现代观[J].给水排水,1996,22(10):13-16.
    [20]A. Gouzinis, N. Kosmidis, D.V. Vayenas and G.Lyberatos. Removal of Mn and simultaneous removal of NH3, Fe and Mn from potable water ueing a trickling filter. Water Res., 1998, 32(8): 2442-2450.
    [21]B. Das, P. Hazarika et al. Removal of iron from groundwater by ash: A systematic study of a traditional method[J]. Elsevier, 2007, 141:834-841.
    [22]张杰,戴镇生.地下水除铁除锰现代观[J].给水排水,1996,22(10):13-16.
    [23]王占生,刘文君.徽污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [24]Gao B Y, Yue Q Y, Wang B J et al. Poly-aluminum-silicate-chloride(PASiC)-a new type of composite inorganic polymer coagulant[J].Colloids and Surfaces,2003, 229(1-3):121-127.
    [25]于秀娟,张熙琳,王宝贞等.臭氧-生物活性炭工艺去除水中有机微污染物[J].环境污染与防治,2000,22(8):1-3.
    [26]王琳,王宝贞.饮用水深度处理技术[M].北京:化学工业出版社,2002:4-20.
    [27]王志良,夏明芳,于鑫等.安全饮用水保障处理中试平台的开发和建设[J].污染防治技术,2007,20(1):21-24.
    [28]王琳,王宝贞.优质饮用水净化技术[M].北京:科学出版社,2000:23.
    [29]傅军,李世凡.辽宁省饮水污染调查与分析[J].环境与健康,1997,6:5-8.
    [30]刘宏远,张燕.饮用水强化处理技术及工程实例.北京:化学工业出版社, 2005:3-4.
    [31]V. B. Camel. The Use of Ozone and Associated Oxidation Process in Drinking Water Treatment. Water Res.,1998,32(11):3208-3222.
    [32]C. E. Isabel, H. Seungkwan, A. R. Andrew. Removal of Assimilable Organic Carbon and Biodegradable Dissolvedorganic Carbon by Reverse Osmosis and Nanofiltration Membrances. J. Membrane Sci.,2000,17:1-7.
    [33]潘碌亭.中国微污染水源水处理技术研究现状与进展[J].工业水处理,2006,26(6):6-9.
    [34]M.E.Tryby.TOC Removal as a Predictor of DBP Control with Enhanced Coagulation. Proc. AWWA WQTC. Miami. Fla,1999,15:123-139.
    [35]G.Crozes. Enhanced Coagulation: Its Effect on NOM Removal and Chemical Costs[J]. AWWA, 1995,87(1):78-80.
    [36]L.A.Smith.Effects of Enhanced Coagulaytion on Halogenated Disinfection By-product Formation Potentials.Proc.AWWA Ann. Conf. NewYork,1994,8:12-19.
    [37]Z.K.Chowdhury. Optimization of NOM Precursors and Arsenic Removal by Enhanced Coagulation. Proc.AWW AAnn. Conf. NewYork,1994,9:48-58.
    [38]李圭白等.用高锰酸钾去除和控制受污染水源水水中的致突变物[J].给水排水,1992, 18(2):15-18.
    [39]熊正为,陈春宁.微污染水源水传统处理工艺的强化措施[J].中国锰业,2001,19(1):13-14.
    [40]陈莉,范跃华.微污染原水的处理技术发展与探讨[J].重庆环境科学,2002,24(6):67-69,78.
    [41]王绍文,陈润明.一种小间距斜板沉淀设备:中国,B01D21/18[P].1997-04-16.
    [42]李德生,黄晓东,王占生.微污染源水净化新工艺-生物强化过滤研究[J].中国给水排水, 2000,16(10):18-20.
    [43]丁煜,罗国荣,陈艺韵. GAC-石英砂滤池处理微污染水生产研究[J].工业用水与废水,2008,39(5):15-18.
    [44]龙小庆,富良,顾玉其等.活性滤池去除微污染水中有机物和氨氮[J].中国给水排水,2002, 18(8):44-45.
    [45]尚贞晓.强化混凝处理微污染水源水的实验研究[D].济南:山东大学,2006.
    [46]张敏,叶峰,张林生.沸石去除微污染水源中氨氮的研究[J].污染防治技术,2002,15(4):7-9.
    [47]岳禹峰,黄仕元,庞朝晖等.微污染水源水处理技术发展与探讨[J].工业水处理,2006,26(9):14-17.
    [48]许国仁,李圭白.高锰酸钾复合药剂对水中微量有机污染物去除效能的研究[J].给水排水,1999,25(7):14-18.
    [49] Yasushi T, Kazuhiro M, et al. Removal of organic substances from water by ozone treatment followed by biological activated carbon treatment[J].Wat. Sci. Tech,1997,35(7):171-178.
    [50]鄂学礼.饮用水深度净化与水质处理器[M].北京:化学工业出版社,2004.
    [51]赵云龙.生物与处理工艺用于富营养化水源水净化研究[J].科技情报开发与经济,2003,13(10):150-152.
    [52]路名义,王业君,张方银.受有机物污染水源的处理技术研究.2002年中国环境工程领域回顾与展望研讨会,2002.
    [53]张林生主编.水的深度处理与回用技术[M].化学工业出版社,2004.
    [54]王占生,刘文君.微污染水的处理技术[M].中国环境出版社.
    [55]贺瑞敏,朱亮,谢曙光.微污染水源水处理技术现状及发展[J].陕西环境,2003,10(1):37-40.
    [56]李伟英.给水生物预处理工艺中生物相变迁规律及作用[J].环境与开发,2000,15(2):5-8.
    [57]Frederik Hammes, et al.Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon(AOC) formation during the ozonation of drinking water[J].Water Research, 2006,40(12):2275-2286.
    [58]王琳,王宝贞,聂梅生等.活性炭与超滤组合工艺深度处理饮用水[J].中国给水排水,2002, 18(2):1-4.
    [59]Sylwia Mozia, Maria Tomaszewska. Treatment of surface water using hybrid processes adsorption on PAC and ultrafiltration[J]. Elsevier B.V, 2004,162(10):23-31.
    [60]曾炽涛,陈爱平,古政荣.光催化技术在饮用水深度净化中的应用[J].净水技术,2002,21(1): 16-17.
    [61]雷乐成等.水处理高级氧化技术[M].北京:化学工业出版社,2001.
    [62]高乃云,芮曼,徐斌等.UV-H2O2工艺降解饮用水中内分泌干扰物-双酚A[J].哈尔滨工业大学学报,2008,40(2):328-332.
    [63]Zalazar C S, Labas M D, et al. Dichloroacetic acid degradation employing hydrogen peroxide and UV radiation[J].Chemosphere, 2007,66(5):808-815.
    [64]Sommer R, Haider T, Cabaj A. Time dose reciprocity in UV disinfection of water[J].Water Sci Technol.,1998,38:145-150.
    [65] Murray CA, Goslan EH, Parsons SA. Novel NOM removal: TiO2/UV a one stage process[C]. The Third IWA Leading-Edge Conference& Exhibition on Water and Wastewater Treatment Technologies. Japan: IWA, 2005.
    [66]张朝晖.饮用水深度处理工艺的优化研究[D].南京:东南大学,2005.
    [67]郝晓地,魏丽,仇付国.未来饮用水处理技术及其工程应用展望[J].中国给水排水,2007,23 (24):1-5.
    [68]李静,刘国荣.臭氧高级氧化技术在废水处理中的应用[J].污染防治技术,2007,20(6):55-57.
    [69]赵金辉,陈卫,林涛.臭氧高级氧化技术在饮用水安全保障中的作用[J].给水排水,2007, 33(6):117-121.
    [70]张天健.活性炭在我国饮用水处理中的应用研究进展[J].生物质化学工程,2009,43(2):54-60.
    [71]王旭东,王磊.纳滤膜分离技术在安全饮用水保障中的应用[J].四川环境,2005,24(4):26-28.
    [72]董文艺,范洁,张金松.微滤膜与活性炭联用工艺去除富营养化水源水中藻类[J].环境污染治理技术与设备,2004,5(3):74-79.
    [73]Suzuki T,Takahashi S.Removal performance of trace chemicals by Nanofiltration[C]. The Third IWA Leading-Edge Conference& Exhibition on Water and Wastewater Treatment Technologies. Japan: IWA, 2005.
    [74]Wiesner MR. Responsible development of nanotechnologies for water and wastewater treatment [J]. Water Sci Technol, 2006,53:45-51.
    [75]居晓.反渗透脱盐水使用技术总结[J].大氮肥, 2008,31(4): 282-285.
    [76]刘艳辉,潘献辉,葛云红.反渗透海水淡化脱硼技术研究现状[J].中国给水排水, 2008,24(24): 91-93.
    [77]魏复盛主编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002:210-372.
    [78]白晓慧,陈英旭,王宝贞.活性污泥法低温硝化及运行控制条件研究[J].环境科学学报,2001,21(5):569-572.
    [79] Joost Groeneweg. Ammonia oxidation in nitrosomonas at NH3 concentrations near km: effects of pH and temperature [J]. Wat Res1994, 28(12):2561~2566.
    [80] Nedwell D B. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature[J].FEMS Microbiology Ecology,1999,30:101~111.
    [81]员军锋,李善评.曝气生物过滤反应器的新型挂膜方法[J].环境工程,2003,21(2):22-24.
    [82]王冠平,谢曙光,施汉昌等.预处理生物滤池挂膜的影响因素[J].中国给水排水,2003,19(13):41-43.
    [83]张杰,曹相生,孟雪征,刘俊良.好气滤池3种挂膜方法的实验研究[J].哈尔滨工业大学学报,2003,35(10):1216-1219.
    [84]Pak D, Chang W, Hong S. Use of natural zeolite to enhance nitrification in biofilter[J]. Environmental Technology,2002,23(7):791-798.
    [85]李小琴,汪永辉,周建东.沸石滤料曝气生物滤池的挂膜启动研究[J].环境科学与管理,2008,33(9):91-93.
    [86]陆少鸣,方平,杜敬等.曝气生物滤池挂膜的中试试验[J].水处理技术:2006,32(8):67-69.
    [87]桑军强,张锡辉,张声等.原水生物预处理的轻质滤料滤池和陶粒滤池运行效果对比[J].环境科学,2004,25(3):40-43.
    [88]朱亮.供水水源保护与微污染水体净化[M].北京:化学工业出版社,2005:290-310.
    [89] Chudoba P, Pujol R. A three stage biofiltration process performances of a pilot plant[J]. Water Science and Technology, 1998,38(8-9):257-265.
    [90]P.C.Singer.Humic Substances as Precursors for Potentially Harmful Hisinfection Py-Produces[J].Water Sci.Technol.,1999,40(9):25-30.
    [91]岳舜琳.给水中有机物与Ames致突变物的相关性[J].中国给水排水,2003,19:20-22.
    [92]方振东.饮用水生物处理工艺中的生物陶粒技术的应用研究[D].清华大学,1995.
    [93]于鑫,乔铁军,等.饮用水生物滤池中亚硝酸盐氧化细菌的生长规律[J].应用与环境生物学报,2003,9(3):318-321.
    [94]周群英,高延耀.环境工程微生物学[M].北京:高等教育出版社,2000.
    [95]朱亮.供水水源保护与微污染水体净化[M].北京:高等教育出版社,2005.
    [96]曹相生,梦雪征,杨宏等.生物快滤池的性能评价指标BFI[J].中国给水排水,2005,21(1):34-36.
    [97]Khristanovich S. A.. Fundamentals of filtration theory[M]. Rock Mechanics and Mine Pressure,2001,27(1):1-15.
    [98]崔燕萍,田文华.双层曝气生物滤池充氧性能及流态特征[J].中国给水排水,2004,30(8):41-44.
    [99]Lazarova V., Nogueira R., Manem J., Melo L. F. Control of nitrification efficiency in a new biofilm reactor[J]. Water Science and Technology, 1995,36(l):31.
    [100]李怀正,傅威,白月华,张杰.生物接触氧化预处理源水的设计参数[J].中国给水排水,2001,17(2):43-45.
    [101]雷灵玫,张雁秋,赵耀民.生物脱氮技术研究的新进展[J].江苏环境科技,2003,16(3):43-46.
    [102]谢曙光,张晓健,王占生.曝气生物滤池最新发展和运用[J].水处理技术,2004,30(l):4-7.
    [103]北京市政设计研主编.给水排水设计手册(5).北京:中国建筑工业出版社,1986,79-90.
    [104]白晓慧,陈英旭,王宝贞.活性污泥法低温硝化及运行控制条件研究[J].环境科学学报,2001,21(5):569-572.
    [105]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2003,38-56.
    [106]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工厂实例[M].北京:化学工业出版社,2002,52-68.
    [107]周春生,李永秋等.饮用水低温生物预处理生化活性研究[J].应用与环境生物学报,1995,1(2):160-167.
    [108]谢曙光,张晓健,王占生.生物滤池系统内生化作用机理综合研究[J].环境科学学报,2002,22(5):557-561.
    [109]Takasaki M., Harada M., Sato A.. Evaluation of the NH4+-N and DOC Removal Efficiency by Submerged Biofilm Process in Tap[J]. Water Science and Technology,1998,38(5):207-211.
    [110]刘文君等.生产性生物陶粒滤池对微污染源水中氨氮的去除效果研究[J].给水排水,1995,10:8-10.
    [111]王春荣,王宝贞,王琳.曝气生物滤池内的自养反硝化作用[J].中国环境科学,2004,24(6):746-749.
    [112]兆坤,李桂平,王曙光.微絮凝-深床直接过滤及工艺参数研究.中国给水排水,2002,18(4):14-18.
    [113]李亚新,李宏奎,徐丽花.生物曝气滤池处理生活污水试验研究.环境工程,2000,14-16.
    [114]Wang J. Z., Summers R. S., Miltner R. J.. Biofiltration Performance: Partl,Relationship to biomass. AWWA.1995:54-63.
    [115]Mannl A. Performance of floating and sunken media biological aerated filters under unsteady state condition[J]. Wat.Res.,1999,33(4):1108-1113.
    [116]李汝琪,孔波.曝气生物滤池处理污水实验[J].环境科学,1999,20(5):69-71.
    [117]Mann A. A comparison of floating and sunken media biological aerated filters for nitrification[J]. J.Chem. Techn.,1998,72(26):273-279.
    [118]齐兵强,王占生.曝气生物滤池在污水的处理中的应用[J].给水排水,2000,26(10):5-8.
    [119]Fdz-Polanco F., et al. Spatial distribution of heterotrophs and nitrifiersin a submerged biofilter for nitrification[J]. Wat.Res.,2000,34(16):4081-4089.
    [120]Lan Qing,Ji Hua. Advanced Treatment of Waster and Slightly Deteriorated Raw Water by Biological Activated Carbon Method Under Oxygen Condition[J].Journal of China Textile University,2000,17(1):61-63.
    [121]Ewa Okoniewaka, Joanna Lach, Malgorzata Kacprzak, et al. The removal of manganese, iron and ammonium nitrogen on impregnated activated carbon[J].ElsevierB.V.,2007, 206(1-3):251-258.
    [122]Mark S.Burger, Stephen S.Mercer,Gordon D.Shupe, et al. Manganese removal during bench-scale biofiltration[J].2008,42(19):4733-4742.
    [123]A.G.Tekerlekopoulou, D. V. Vayenas. Ammonia,iron and manganese removal from potable water using trickling filters[J].ElsevierB.V.,2007,210(1-3):225-235.
    [124]薛罡,赵红宾,陈向明,宋宪谋.地下水除铁除锰生物处理工艺实验研究[J].给水排水,2000,26(12):8-11.
    [125]姜安玺,韩玉花,杨宏,张杰.生物除铁除锰滤池的曝气溶氧研究[J].中国给水排水,2001,17(10):16-19.
    [126]薛罡,邹联沛,刘建勇.接触氧化法除地下水铁锰时不同滤料性能的对比研究[J].东华大学学报(自然科学版),2002,28(6):58-61.
    [127]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.
    [128]王文军等.生物膜的研究进展[J].环境科学进展,1999,7(5):43-51.
    [129]余健.生物过滤去除饮用水中有机物、铁、锰的特性与机理研究[D].湖南大学,2004.
    [130]薛罡,赵洪宾.地下水中生物除铁除锰的最佳运行条件及动力学[J].中国给水排水,2003,19(13):85-87.
    [131]PAULWILLIAMS, ONDEO DEGREMONT. Biological iron andmanganese removal as a viable alternative forgroundwater treatment[J]. Environmental Science and Engineering, 2002, 3: 17-20.
    [132]天津大学无机化学教研室.无机化学第二版[M].北京:高等教育出版社,1992:311-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700