用户名: 密码: 验证码:
磷改性催化剂一步合成二甲醚研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
规模化生产“绿色能源”——二甲醚(DME)所采用的方法都是通过煤气化制备得到高氢碳比的合成气进行甲醇合成,再经甲醇脱水的两步法制备得到二甲醚,在动力学和热力学方面都不是最经济的。一步法合成二甲醚的研究成果表明,使用双功能催化剂可提高一氧化碳和氢气的单程转化率,但存在催化剂中两功能团活性温度不一致,使其活性不能最大限度的发挥作用等问题。其次,制备二甲醚的原料几乎都采用煤或天然气等资源为基础原料,在生产清洁能源时还是消耗大量化石燃料(能源),最终也会使得这些地球上仅有的不可再生化石燃料资源的枯竭。另一方面,在冶金和化工等行业大量采用以煤、焦炭、天然气等作为还原剂进行金属和非金属的直接还原工艺的冶炼技术,副产大量的含高浓度一氧化碳的尾气,如黄磷炉尾气、密封电石炉气、氧气顶吹炼钢转炉尾气、炼油尾气、天然气部分氧化尾气、合成氨铜洗弛放气等,至今多数都采用燃烧利用部分热能,或进行火炬燃烧后转化成二氧化碳排入大气,既造成环境的污染,又是对碳资源的浪费。如何充分利用这些含一氧化碳宝贵资源的气体,减少排放,缓减能源短缺和燃料排放引起的环境恶化,对实现当今能源与环境协调发展和我国节能减排的目标至关重要。
     本研究在国内率先开展用含一氧化碳尾气为基本原料合成清洁燃料二甲醚,选择黄磷生产过程中排放的含高浓度一氧化碳气源,模拟黄磷尾气经部分变换制备得到含CO2高碳氢比合成气为原料,在浆态床中一步合成二甲醚工艺;通过双功能催化剂的磷改性,提高催化活性、二甲醚选择性和CO2利用率;研究新型催化剂一步合成二甲醚的热力学和动力学理论,为实现黄磷尾气等含一氧化碳尾气的资源化利用奠定理论基础。
     由磷酸浸渍法改性γ-Al203用作甲醇催化剂是一有效的方法。改性催化剂经FT-IR和X射线粉末衍射仪分析,证明磷改性使γ-Al203分子结构中增加了O=P—O键,导致催化剂γ-Al203表面的酸碱对增加,脱水性能增强。得到的P改性甲醇脱水催化剂P-γ-Al2O3与商业化铜基合成甲醇催化剂C301制备得到的新型双功能催化剂,应用于含CO2的富碳合成气在浆态床中一步合成DME,其催化活性增强,使生成的CO2的量明显减少,即可抑制CO变换生成CO2的反应,提高总碳的利用率和二甲醚的选择性。
     通过较为详细地研究三相床中的反应工艺条件以及传质、原料气中二氧化碳含量等对一步合成二甲醚反应的影响。得到在浆态床中使用磷改性双功能催化剂(C301/P-γ-Al2O3)一步合成DME的优化工艺条件为:反应温度250-270℃,系统压力4.3MPa,空速为600mL/h·gcat,H2比(CO+CO2)约1.5,惰性溶剂量150ml,催化剂用量7.3%,反应器的搅拌转速750r/min,其反应结果为CO转化率可以达到95%以上,DME选择性大于60%,远高于未改性的34.61%,反应产物中几乎不含甲醇,C02生成量很少。并且合成气中一定量CO2的存在,可抑制水煤气变换反应,提高DME选择性;但CO2量过高,会与CO在催化剂表面竞争吸附,致使反应速率降低。
     对含C02的合成气一步合成二甲醚反应系统进行热力学理论分析计算表明:所有主副反应均为放热反应,随着温度的升高,各反应式的平衡常数都是降低的,温度的升高,对甲醇合成的平衡常数降低影响最大,而对CO变换影响居中,对二甲醚合成的影响相对较小。在浆态床温度约为250℃,DME平衡选择性和收率分别可达94.5%和70%,此时总碳转化率可以达到72%,远超过合成甲醇时的碳转化率。证明含C02合成气直接制二甲醚工艺路线可以克服合成气制甲醇反应中出现的化学平衡限制。
     磷改性的双功能催化剂体系催化含CO2富碳合成气一步合成二甲醚动力学机理可以是:甲醇的形成是首先经过吸附态的CO或C02与相邻的吸附态的羟基或H直接发生反应生成甲酸盐中间体,再通过连续加氢的形式生成甲醇盐和甲醇,即CO和C02均是甲醇合成的碳源;而DME的合成则是经过分子吸附态甲醇与邻近的解离吸附态甲醇相互作用的结果;副反应CO水汽变换是由合成甲醇生成的甲酸盐中间体被还原成吸附态的二氧化碳,氢的生成可以看作是氢解离吸附的逆反应。由此推导的磷改催化体系在浆态床中一步合成二甲醚动力学模型可以由甲醇合成机理速率方程、甲醇脱水机理速率方程和水汽变换机理速率方程表示。通过实验确定的模型参数和动力学模型经实验检验,其模型计算值与实验值数据吻合较好。
     另外,新建立的由Prorapak Q填充柱和5A分子筛填充柱双柱串联,两次进TCD检测器的气相色谱分析方法,解决了需多次取样,在单一色谱柱中多次进样分析带来换算困难的难题和准确性,实现产品混合气一次进样即可进行组分的在线全分析。
The scale method for synthesis dimethyl ether (DME) is two-step method, ie. First, methanol is synthesized from the syngas, then the methanol dehydrate to DME. The process of two-step method for synthesis DME is not economic in kinetics and thermodynamics. The results from process by single-step synthesis DME in single reactor indicated:a double function catalyst had been increnced the conversion rate of CO and H2, but there is a problem that the activity temperature of synthesis methanol from syngas and methanol dehydration to DME is different in the catalyst system, and the activation of catalyst can not exert its catalysis maximum. Secondly, the basic material to synthesize cleanliness energy sources, DME, is from coal or nature gas, and it will consume the fossil energy sources in the Earth. But there are a large of tail gas contained high concentration CO to be discharge to air from the plant, which produce metal and nonmetallic with coal/coke or nature gas for reducer agent in the metallurgy and chemical industry, for example, yellow phosphorus tail gas, airproof calcium carbide tail gas, steel-making converter tail gas, oil refining tail gas, tail gas from portion oxidation of nature gas, copper wash relax gas of synthesis ammonia and so on. The usual treatment method about this kind tail gas is burning them and using portion heat, or burning by torch, which result is conversion the CO to CO2 to vent into air. How to using the invaluablener resource gas contained CO, reducing discharge, ease off the conflict of scarce energy sources and aggravating environment worsening, realizing saving energy and reducing pollution is very important in China.
     There are summarized about the synthesis technique and reaction mechanism of DME at home and abroad to be discussed and the research harvest about technological progress and basic theory of single-step synthesis DME from syngas was presented emphatically in this paper. This thesis discuss the single-step process for synthesis DME by modified bifunctional the catalysis in a slurry reactor, using the simulation syngas with high rate of CO/H2 contained CO2 from the yellow phosphorus tail gas via portion water-shift. The research included the phosphorus modified of catalysis, optimization of the technology condition in a slurry reactor, and study of the process dynamics and thermodynamics.
     A new modified bifunctional catalyst (C301/P-γ-Al2O3) is preparation with basic Cu (C301) catalyst for synthesis Methanol and modified dehydrate catalyst (P-γ-Al2O3) with H3PO4 dipping and calcinations. There are new O=P—O bond to be found in the modifiedγ-Al2O3 by analyse with FT-IR and X-ray diffraction, and it increase the pair acid-alkali in dehydrate catalyzer. And the modified bifunctional catalyst(C301/P-γ-Al2O3) enhance the capability of methanol conversion to DME, and increas the conversion rate of total Carbon and selectivity of DME, and restrain the by-reaction from CO to CO2.
     A optimum technology reaction conditions are obtained after study the transfer and reaction condition with the modified bifunctional catalyst (C301/P-γ-Al2O3) in slurry bed, namely,250-270℃of system temperature,4.3MPa of the system pressure,600mL/h·gcat of space time, H2/(CO+CO2)≈1.5,150ml of the inert solvent,7.3% of the catalyst to the solvent,750r/min of the stirrer rotate speed. When the modified catalyst was used for synthesis DME in slurry bed reactor from the rich carbon syngas cantained CO2, the conversion rate of CO achieved 95.90% and selectivity of DME is 60%., which is outclass the 34.61% of the selectivity in using the non-modified catalyst system. And it is ture that the production ratio of CO2 is reduced evidently, the methanol is little or none in production system.
     The relation equations about reaction heat and reaction balance constant with the system temperature were built by process thermodynamics analysis. The all reactions are exothermic reaction, and their balance constant will reduce when the reaction temperature increase, and the balance constant for methanol synthesis is most sensitivity, the CO/H2O shift reaction is secondly. The calculated value of total carbon and selectivity of DME are 72% and 95.4% by Matlab software from optimum equation about rich carbon syngas contained CO2 at 250℃, which closed to the experiment value. The calculate results prove single-step synthesis DME technology by P modified bifunctional catalyst (C301/P-y-Al2O3) from syngas contained CO2 will overcome the problem of the restriction of chemistry reaction balance.
     The kinetics modeling basic rich carbon syngas contained CO2 synthesis DME with the modified bifunctional catalyst(C301/P-y-Al2O3) in slurry bed reactor can be express with the combination of reaction rate equations about:1)syngas to methanol,2) methanol dehydrate to DME, and 3) CO-H2O shift to CO2. The reaction process mechanism is that CO and CO2 all are the Carbon resource to synthesis Methanol, the middle process include: 1) adsorbed CO/CO2 convert to intermediate, formate, and it continuous add H with adsorbed OH/H to methanol; 2) adsorbed methanol and isolate adsorbed methanol convert to DME; 3) the by-reaction are form by formate deoxidized to CO2 and adsorbed H convert to H2.
     The calculation data with kinetics model have a good inosculated with check-up by experimentation. It is be found that the CO2 in syngas can restrain the CO-H2O shift reaction, and increase the selectivity of DME. But excessive CO2 will be competed adsorption on the face of catlyzer with CO, and it will result the reaction rate decrease.
     A new analysis system with GC for analyzing complexity production gas in the single-step synthesis DME system was built, which change the side-by-side double column to tandem Prorapak Q and molecule sieve filled column, and the sample pass though the TCD detector twice. The analysis system and method have solved the problem which need sampling and insert sample time after time in experiment, and the trouble for conversion data, and it is make the analyzing reaction gas quickly and easy on-line.
     Anyway, using the resource for the tail gas contained high concentration CO to synthesis DME is an excellent path, which achieve saving energy, lowering energy consumption and reducing pollutants discharge. The modified of bifunctional catalyst by P can improved the matching temperature of the function group; and has a application worth practicality for synthesis DME from rich carbon syngas cantained CO2 in slurry bed; And the theorys about kinetics and thermodynamics have a guidance significance for scale in the industry.
引文
1. Carl L. Yaws(编),陶鹏万黄建彬朱大方(译).Matheson气体数据手册[M].北京:化学工业出版社,2003:320-325
    2. 胡益之李洪晋韩冬青.21世纪洁净燃料——二甲醚[J],煤化工,2006,No5:10-14
    3. Gertsberg L Ya. Surzhan G P. Barvin V I., Efficient production of dimethyl sulfate [J]. Tr Brugat Filial Sib Otd Akad Nauk SSSR,1991,10:228~229
    4. Dennis M. Brown B L. Novel Technology for the Synthesis of Dimethyl Ether from Syngas [J]. Catalysis Today,1991,8:279~304
    5. Tartamella T L, Lee S. Role of acid catalysis in dimethyl ether conversion processes [J]. Proc-Annu Int.Pittsurgh Coal Conference,1996,2(13):996~1001
    6. Mitsubishi Chemical Industries Co.Ltd. Vinyl acetate [P]. EP 48174,1982
    7. Isshiki, TomiyaKijima, Yasuhiko, Kondoh Takao. Ethylidene diacetate[P].JP 28515, 1981
    8. Michael A Pacheco, Chirstopher I Marshall. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive [J]. Energy & Fuel,1997,11:2-29
    9. 蔡宇光刘中民.合成气经由二甲醚制取低碳烯烃[J].天然气化工,1994,19(5):26-30
    10. Minor B H, Chisonlen T E C, Shealy G S. Compositions including a three carbon cyclic fluoroether [P]. US 5480572,1996
    11. Minor B H, Bivens D B, Lunger B S. Hydrofluorocarbon compositions [P]. US 5417871,1995
    12. Minor B H, Chisolm T E C, Shealy G S. Refigerant Compositions Including an Acyclic Fluoroether [P]. WO 9426837-A,1994
    13.刘敬辉陈江平鲁雪生.二甲醚制冷性能分析及其lgP-h图[J].能源技术.2004,25(6):238-242
    14.侯昭胤费金华郑小明.二甲醚的应用和生产工艺[J].石油化工,1999,28(1):59-61
    15.陈其超.浅谈二甲醚工业的发展前景[J].能源与环境,2004,(2):16-19
    16.白颐.十一五我国石油替代和再生能源部分产品发展分析,化工技术经济,2006, 24(11):1-9
    17.吕学珍.二甲醚——替代能源中的新军[J],上海煤气,2007,No1:38-41
    18.韩韫熊良铨白生军等.二甲醚作为超清洁燃料的应用[J].新疆石油科技,2004,14(4):68-74
    19.黄震,二甲醚——中国能源安全与环境保护之路,中共上海交通大学委员会校报电子版,2007,第1213期,第03版
    20.刘存祥丁攀刘文艺王文堂刘杰.二甲醚技术发展现状及替代柴油的经济性分析,可再生能源[J],2006,No4,54-57
    21.陈斌金红光高林.二甲醚分产及二甲醚-动力联产的比较[J].工程热物理学报,2006,27(5),721-724
    22.刘广建李政倪维斗徐恒泳.几种二甲醚合成工艺的技术经济分析[J].动力工程,2006,26(5):738-741
    23.吴满昌.黄磷尾气净化处理研究.硕士学位论文.昆明:昆明理工大学,2003.4
    24.任占冬.净化黄磷尾气和合成气一步法制二甲醚.硕士学位论文.昆明:昆明理工大学图书馆,2004.3
    25.任占冬陈樑宁平陈云华张恒津.黄磷尾气净化脱除磷化氢、硫化氢中试试验[J].现代化工,2005,25(12):48-50,52
    26.任占冬陈樑宁平陈云华张恒津.催化氧化法脱除黄磷尾气中的磷化氢和硫化氢[J].化工环保,2005,25(3):221-224.
    27.宁平Hans-JoergBart王学谦马丽萍陈梁.催化氧化净化黄磷尾气中的磷和硫[J].中国工程科学,2005,7(6):27-35.
    28.任占冬陈樑.JC系列催化剂上氧化脱除黄磷尾气中PH3、H2S[J].天然气化工2004,29(6):19-23.
    29.任占冬陈樑宁平.活性炭法净化黄磷尾气中硫化氢、磷化氢的研究进展[J],现代化工,2006,26(11):25-28
    30.任占冬陈樑.催化氧化法脱除黄磷尾气中PH3、H2S催化剂的性能与再生[J],天然气化工:C1化学与化工,2005,30(5):27-29
    31.任占冬陈樑宁平陈云华潘克昌张恒津.净化黄磷尾气制取甲酸、碳酸二甲酯工艺研究[J].化学工程,2006,34(12):62-65
    32.宁平王学谦陈梁,黄磷尾气净化制甲醇[J].磷酸盐工业,2006,No3:3-8
    33.陈云华陈樑宁平李志锋.利用黄磷尾气发展一碳化工——黄磷企业产品结构调整的思路[J].中国石油和化工经济分析,2005,No14:42-44
    34.章江洪陈樑宁平.CO、甲醇液相羰化合成甲酸甲酯的工艺优化研究[J],天然气化工:C1化学与化工,2005,30(2):11-13
    35.陈樑宁平章江洪陈云华万荣惠.二甲基甲酰胺助催化甲醇羰化合成甲酸甲酯[J].昆明理工大学学报,2005,30(1):57-60
    36. Liang Chen,,Jianghong Zhang, Ping Ning, Yunhua Chen, Wenbing Wu, Kinetics of Methanol Carbonylation to Methyl Formate Catalyzed by Sodium Methoxide [J], Journal of Natural Gas Chemistry,2004,13(4):225-230
    37.陈樑宁平陈云华.吡啶助催化甲醇液相羰化合成甲酸甲酯研究[J].天然气化工,2002,27(1):14-18
    38.何宏舟.生物质能转化利用的若干技术分析[J].能源与环境,2006,No5,24-25,28
    39.衷小琴陈梁.二甲醚的生产及深加工[J].化工时刊,2004,18(9):12-14
    40.张宝森刘继森.二甲醚的生产和应用前景[J].辽宁化工,1999,28(5):264-265
    41.张海涛,房鼎业林荆.甲醇催化脱水制取二甲醚[J].中氮肥,1999,(4):1-6
    42.刘俊峰刘源李学忠.杂多酸催化甲醇液相合成二甲醚[J],石油化工,2006,35(10):924-926
    43.李奇.复合酸法脱水催化生产二甲醚:中国,1322704A[P].2001
    44. William Judason Mattox, Baton Rouge L. Method for Converting alcohols to ethers [P]. US 3036134,1965
    45.李晋鲁刘卫华.合成气合成二甲醚催化剂的共沉淀浸渍制备法[J].天然气化工,1992,17(4):13
    46. SHELL INT RESEARCH, Production of dimethyl ether[P]. GB2253623,1991-09-16
    47.方永成江桂秀戴德斌.催化蒸馏合成二甲醚工艺[P].CNl 111231,1995
    48. Fujimoto K, Asami K, Shikada T et al. Selective Synthesis of Dimethyl Ether from Synthesis Gas[J]. Chem Lett,1984,2051-2054.
    49. Lewnard J, et al. Single-step Synthesis of Dimethyl Ether in a Slurry Reactor.[J]. Chem. Eng. Sci.,1990,45(8):2735~2741
    50.蔡光宇石仁敏姜增合等.由合成气合成二甲醚及用催化剂制备甲醚工艺[P].CN 1085824A,1993
    51.赵宁陈小平任杰等.浆态床合成二甲醚的研究[J].天然气化工,2001,26(1):9-12
    52.赵宁陈小平任杰等.浆态床合成二甲醚反应工艺条件的研究[J].天然气化工,2000,25(3):1-4
    53.刘殿华.合成气一步法制二甲醚的研究.硕士学位论文.上海:华东理工大学图书馆,2000.11
    54.郑文捷.合成气一步法合成二甲醚工艺研究.硕士学位论文.兰州:兰州大学图书馆,1998.10
    55.衷小琴.气-液-固三相床一步法合成二甲醚,硕士学位论文,昆明:昆明理工大学图书馆,2004.12
    56.衷小琴陈樑杨天宇任占东.气-液-固三相床合成气直接制取二甲醚,化工时刊,2004,18(6):50-52
    57.吴文炳,浆态床富碳合成气制二甲醚的工艺及动力学研究,硕士学位论文,昆明理工大学图书馆,2006.4.
    58.张世玲.含CO2合成气制二甲醚研究,硕士学位论文,昆明理工大学图书馆,2006.4
    59.任占冬陈樑.浆态床中合成二甲醚的研究[J],现代化工,2006,Vol26,增刊(2):160-162
    60. Liang CHEN, Wenbin WU Shiling ZHANG, Yifu LIANG, The kinetics study of synthesis DME from rich CO syngas on bi-functional catalyst-C301/γ-Al2O3 by phosphorus modified, The 14th Seminars of JSPS-MOE Core University Program on Urban Environment, September 7-8,2007, Kyoto, Japan
    61.黄友梅葛庆杰李双娣.由合成气直接制取二甲醚的催化剂[P].CN1153080A,1995
    62.任飞王金福.浆态床一步法二甲醚产业化技术突破与进展[J].化工科技市场,2005(2):23-25
    63. Topp-Joergensen J. Topsoe Integrated Gasoline Synthesis-the TIGAS Process [J]. Stud Surf Sci Catal,1988,36,293-305.
    64. Brown D M, Bhatt B L, Hsiung H. Novel technology for the synthesis of dimethyl ether from syngas [J]. Catalysis Today,1991,8:279-295
    65.费金华王一兆.二甲醚的生产工艺及其特点[J].小氮肥设计技术,2003,24(1):57-59
    66.肖文德鲁文质.一种合成气直接合成二甲醚的方法[P].CN 1332141
    67.李润领.二甲醚合成动力学及流化床反应器模拟研究.硕士学位论文.上海:华东理工大学图书馆,2004.2
    68.刘勇曹宇.二甲醚—步法合成技术进展[J].天然气工业,2000,20(5):79-83
    69.王金福金涌魏飞.新型浆态床合成二甲醚反应工艺及设备[P].CN 1194257A,1998
    70.王文清.二氧化碳加氢合成二甲醚的研究进展[J],广东化工,2006,33(11):52-54
    71. Shen W J,Jun K M,Choi H S,etal.Thermodynamic investigation of methanol and dimethyl ether synthesis from CO2 hydrogenation[J].Korean J Chem Eng,2000, 17(2):210-216
    72. Jun Ki Won,Lee Kyu Wan.Hydrogenation process and zeolite catalysts for preparing a mixture of dimethyl ether and methanol from carbon dioxide[P].WO 9919287,1998
    73.葛庆杰黄友梅邱凤炎等.C02加氢直接制取二甲醚的研究[J].分子催化,1997,11(4):297-300
    74.长岭公司催化剂厂等开发合成二甲醚催化剂[J].石油化工,2002,31(8):685
    75.柯思明刘殿华曹发海等.C02加H2在三相床中一步法制二甲醚[J].华东理工大学学报:自然科学版,2001,27(1):20-23
    76.王继元曾崇余任晓乾.C02加氢合成二甲醚的适宜工艺条件[J].南京工业大学学报(自然科学版),2004,26(3):89-93
    77.王继元王晓辉曾崇余吴昌子.二氧化碳直接加氢合成二甲醚的本征动力学[J],石油学报(石油加工)2007,23(1):
    78.赵彦巧陈吉祥张建祥 张继炎.二氧化碳加氢直接合成二甲醚催化剂的研究[J],天然气化工,2006,31(1):5-8
    79.蔡飞鹏林乐腾孙立.二甲醚合成技术研究概况[J],生物质化学工程,2006,40(5),37-42
    80.王亚明.催化原理及新催化技术[M].昆明:云南科技出版社,1997:67-70
    81. Ohno Y, Inoue N, Ogawa T, etal. Slurry phase synthesis and utilization of dimethyl ether [J]. NKK Technical Review,2001,8(5):23-28
    82.鹿田勉水口雅嗣大野阳太郎等.二甲醚制造用催化剂及其制造方法以及二甲醚的制造方法[P].中国专利97110905,1998.01.14
    83. Shikada T, Ohno Y, Ogawa T, Ono M, Mizuguchi M, Tomura K, Fujimoto K. Direct synthesis of dimethyl ether from synthesis gas[J]. Natural Gas Conversion Studies in Surface Science and Catalysis,1998,119:515-520
    84.沃斯乔恩森汉森.燃料级二甲醚的制备方法[P].中国专利9619t760.1,1998.02.04
    85. Finn J, Bodil V, John H B. Preparation of fuel grade dimethyl ether [P]. US 5908963, 1999.06.01
    86. Hammer H D,Haas B D,Dornhagen H D,et al. Process for the preparation of dimethyl ether and catalyst used for this purpose:DE,3642845[P].1988.
    87.蔡光宇石仁敏姜增全等.一种由合成气制取二甲醚工艺[P].中国专利98114227.3,1999.05.05
    88.刘殿华曹海发应卫勇等.三相床中合成气一步法制—甲醚[J].化学工业与工程技术,2001,22(3):21-23.
    89. Xu M,Lunsford J H,Goodman D W, et al. Synthesis of dimethyl etherfrom methanol over solid acid catalysts [J]. Appl Catal A,1997,149:289-301.
    90.林乐腾蔡飞鹏王建梅孙立,许敏张晓东.合成气制二甲醚双功能催化剂的研究进展[J],现代化工,26(增2):43-47
    91.葛庆杰黄友梅.合成气直接制取二甲醚的双功能催化剂Ⅱ.脱水组分对催化剂性能影响的研究[J].天然气化工,1996,21(6):16-20.
    92. Snamprogetti S P A. Process for the production of dimethyl ether [P].US4098809. 1978.07.04
    93. Jun K W,Lee H S,Roh H S, et al. Highly Water—enhanced H—ZSM—5 catalysts for dehydration of methanol to dimethyl ether[J]. Bull Korean Chem Soc,2003.24 (1):104-108.
    94. Campelo J M,Lafont F,Marinas J M, et al. Studies of catalyst deactivation in methanol conversion with high,medium and small pore silicoalu—minophosphates[J]. Appl Catal A,2000,192:85-96.
    95.王守国王元鸿邵允等.H4SiW12040-La203/γ-.Al203催化甲醇脱水制备二甲醚[J].分子科学学报,2001,17(2):99-104.
    96. Moreno Castilla C,Carrasco Marm F,Parejo Perez C, et al. Dehydration methanol to dimethyl ether catalyzed by oxidized activated carbons with varying surface acidic character [J]. Carbon,2001,39:869-875.
    97. Kou M R S,Mendioroz S,Salerno P,et al. Catalytic activity of pillared clays in methanol conversion [J]. Appl Catal A,2003.240:273-285.
    98.葛庆杰黄友梅李树本.二甲醚的用途及制备[J].石油化工,1997,26(8):560-564
    99. Qingjie G,Youmei H,Fengyan Q,et al.Bifunctional catalysts for conversion of synthesis gas to dimethyl ether[J].Appl Catal.A:General,1998,167(1):23-30
    100.Qingjie G,Youmei H,Fengyan Q,et al.New Bifunctional catalyst for direct synthesis of dimethyl ether[J].J Nat Gas Chem,1999,8(4):280-285
    101.葛庆杰黄友梅.合成气直接制二甲醚双功能催化剂助剂的研究[J].分子催化,1998,8(12):308-310
    102.葛庆杰黄友梅李双娣.合成气直接制取二甲醚催化剂的制备因素及其应用[J].石油化工,1997,26(9):593-597
    103.Shikada T, Ono Y, Fujimoto K. Copper oxide-zinc oxide-alumina catalysts, their manufacture, and manufacture of dimethyl ether using them [P]. JP09173845,1997
    104.Shikada T, Ono Y, Fujimoto K. Catalysts for preparation of dimethyl ether comprising methanol synthesis catalysts and methanol dehydration catalysts and preparation of dimethyl ether using the catalysts[P]. JP09173863,1997
    105.王继元 曾崇余.Zr促进的Cu-ZnO/HZSM-5合成二甲醚催化剂的制备[J].石油炼制与化工,2004,35(12):13-17
    106.滕丽华鲁文质李霞.合成二甲醚过程中的多功能催化协同效应[J].华东理工大学学报,2004,30(4):365-369
    107.侯昭胤费金华齐共新等.负载型Cu-MnOx催化剂上CO加氢制二甲醚的研究-制备方法和反应条件的影响[J].燃料化学学报,2000,28(6):555-559
    108.贾美林李文钊徐恒泳等.含氮合成气直接制二甲醚的Cu基催化剂研究[J].分子催化,2002,16(1):35-38
    109.郭俊旺牛玉琴张碧江.催化剂比例与温度对浆态床合成气制二甲醚的影响。天然气化工,1998,23(6):26-30
    110.郭俊旺牛玉琴张碧江.浆态床合成气制二甲醚双功能催化剂的性能.燃料化学学 报,1998,26(4):321-325
    111.Alkenos C S. Mike S.[J].Scurrell. Ind. Eng. Chem. Res.,1991,30:119
    112.孔承林蔡光宇易霖霖等.由合成气转化为二甲醚反应用金属沸石催化剂[P].CN1087033,1994
    113.Han Y Z,Fujimoto K,Shikata T.Dimethyl ether synesis from syngas in slurry phase. Proc-annu. Int. pittsburgh coal conf.14th S30/10-S30/14,1997
    114.Peng X D, Toseland B A, Tijm P J. A kinetic understanding of the chemical synergy under LPDMETM conditions once through applications [J]. Chem Eng Sci 1999, 54:2787-2792.
    115.一种由合成气直接制取二甲醚的催化剂[P],CN 1883799
    116.谭猗生解红娟崔海涛韩怡卓钟炳.CuO的添加方式对合成二甲醚反应中脱水性能的影响[J],分子催化,2006 Vol.20 No.4:330-334
    117.谭猗生解红娟崔海涛韩怡卓钟炳,脱水催化剂的改性对浆态床一步法合成二甲醚的影响[J],催化学报.2005,26(3):229-232
    118.侯昭胤费金华.直接合成二甲醚的铜-锰催化剂[J].石油化工,2000,29(11):819-822
    119.齐共新费金华侯昭胤.助剂Mn对Cu/Al2O3催化剂一氧化碳加氢性能的影响[J].燃料化学学报,2000,28(4):382-384
    120.郑净植毛丽秋尹笃林.阴离子对外表面化学修饰[J].襄樊学院学报,2000,21(2):64-67.
    121.南京大学.用于合成二甲醚的改性氧化铝催化剂[P]:中国,1613558A.2005.
    122.中国石油化工股份有限公司中国石油化工股份有限公司上海石油化工研究院.用于合成气直接制备二甲醚的催化剂[P]:中国,1657163A.2005.
    123.宋庆英毛东森张斌.HZSM-5分子筛的改性对合成气直接制二甲醚反应的影响[J].天然气化工,2004,29(2):12-15
    124.沙雪清史克英.一步法制二甲醚工艺及催化剂的研究[J].化学工程师,2005,114(3):11-13
    125.贾美林李文钊徐恒泳等.含氮合成气直接制二甲醚的Cu基催化剂研究[J].分子催化,2002,16(1):35-38
    126.毛东森张斌宋庆英等.镁改性HZSM-5对Cu-ZnO-Al2O3/HZSM-5催化合成气直 接制二甲醚反应的影响[J].催化学报,2005,26(5):365-370
    127.毛东森宋庆英张斌杨为民卢冠忠.合成气在以锑改性的HZSM~5分子筛为酸性组分的双功能催化剂上直接转化制二甲醚,石油学报(石油加工),2007,23(1):20-27
    128.周学良.催化剂[M].北京:化学工业出版社,2002:104-109
    129.谢淑萍.一氧化碳变换制氢的研究.学士学位论文,昆明理工大学.2006.6
    130.Zahner J C. Conversion of Modified Synthesis Gas to Oxygenated Organic Chemicals. America, US4011275.1977
    131.Gogate MR. Fuel Sci Tech International,1991,9(6):653-679
    132.肖文德滕丽华鲁文质.合成气制备甲醇、二甲醚的反应机理及其动力学研究进展[J].石油化工,2004,33(6):497-507
    133.Lee J S, Lee K H, Lee S Y, et al. A Comparative Study of Methanol Synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 Catalyst[J]. J. Catal,1993,144:414~424
    134.钟海庆.红外光谱入门[M].北京:化学工业出版社,1984:129-132
    135.刘钢李雪梅朱小梅等.AlPxO催化剂的制备、表征及其在邻苯二酚0-单醚化反应中的催化性能[J].高等学校化学学报,2005,26(8):1492-1496
    136.Knozinger H. Scheglila A. Watson A M. The Dehydration of Alcohols over Alumina VII.The Ether Formation from the Deuterated Methanols CH3OH, CD3OH, CH3OD, and CD3OD[J]. J Phy Chem,1968,72(8):2770~2774
    137.Tain J R. Pillai C N. Catalytic dehydration of alcohols over alumina Mechanism of ether formation[J]. J Catal,1967,9(4):322~330
    138.Padmanabhan V R, Eastburn F J. Mechanism of Ether Formation from Alcohols over alumina Catalyst[J]. J Catal,1972,24:88~91
    139.Lin Y M, Wang Y K. A Kinetic Study of Dehydration of Methanol to Dimethyl Ether over Solid Acid-Base Catalysts[J]. J Chin Inst Chem Eng,1981,12:173~182
    140.王志良王金福刁杰金涌.浆态床二甲醚合成中的过程耦合协同效应[J].化学反应工程与工艺,2001,17(3):233-237
    141.Lee S, Gogate R, Kulik C J, A Novel single-step dimethyl ether(DME) synthesis in a three-phrase slurry reactor from CO-rich syngas.Chem Eng,1992,47(13-14):3769~ 3776
    142.Gogate R. Vijayaraghavan P. Lee S. A single-stage,liquid-phase dimethyl ether synthesis[LPDME]process from syngas.IV.Thermodynamic analysis of the Lpdme process system[J].Fuel Sci Technol Int,1992,10(3):261-311
    143.张海涛,曹发海.合成气直接合成二甲醚与甲醇的热力学分析[J].华东理工大学学报:自然科学版,2001,21(2):198-201
    144.王志良,王金福,刁杰等.合成气直接合成二甲醚过程化学平衡分析[J].石油化工,2002,31(2):89-94
    145.Starling H., et al. Fluid Thermodynamic Properties for Light Petroleum Systems [M]. Gulf Publishing Coop.,1973
    146.Herman R G, Klier K, Simmons G W, et al. Catalytic synthesis of methanol from CO/H2:I. Phase composition, electronic properties, and activities of the Cu/ZnO/M2O3 catalysts[J]. J. Catal,1979,56(3):407-429
    147.Klier K, Chatikavanij V, Herman R G, et al. Catalytic Synthesis of Methanol from Carbon Monoxide/Hydrogen IV:The Effects of Carbon Dioxide[J]. J. Catal,1982, 74(2):343-360
    148.Keim W(西德)主编,黄仲涛,等译.C1化学中的催化[M].北京:化学工业出版社,1989:89-91
    149.Andrzej, cybulski. Liquid-phase methanol synthesis:catalysts mechanism, kinetics, Catal. Rev. Sci. Eng.1994,36(4):557~615
    150.Agny R M. Takoudis C G. Synthesis of Methanol from Carbon Monoxide and. Hydrogen over a Copper-Zinc Oxide-Alumina Catalyst. Ind Eng Chem Prod Res Dev, 1985,24:50~55
    151.Ruiqin Y, Yilu F, Yi Z, Tsubaki N. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter[J]. J. Catal,2004,228(1):23~35
    152.夏丕通.合成甲醇反应机理的研究现状[J].合成化学.1994,2(1):18-26
    153.Kagan Y B, Rozovskii A Y, Bashkirov A N, et al. Mechanism of Methanol Synthesis from Carbon and Hydrogen Oxides. Sofia(Russian),1978,282~288
    154.Vedage G A, Pitchai R, Herman R G, et al. Water Promotion and Identification of Intermediates in Methanol Synthesis.8th International Congress on Catalysis, Berlin: Weinheim, Fed Rep Ger,1985.2:Ⅱ47-Ⅱ58
    155.Chinchen G C, Waugh K C, Whan D A. The activity and state of the copper surface in methanol synthesis catalysts [J]. Appl Catal,1986,25:101-107
    156.Chinchen G C, Denny P J, Parker D J, et al. Mechanism of Methanol Synthesis from CO2/CO/H2 Mixtures over Copper/Zinc Oxide/Alumina Catalysts:Use of 14C-Labelled Reactants [J]. Appl Catal.1987,30:333-338
    157.Lee J S, Lee K H, Lee S Y, et al. A Comparative Study of Methanol Synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 Catalyst[J]. J. Catal,1993,144:414-424
    158.Sun Q, Liu C W, Pan W, et al. In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst[J]. Appl Catal A:General,1998,171: 301-308
    159.Hu Z M, Takahashi K, Nakatsuji H. Mechanism of the hydrogenation of CO2 to methanol on a Cu(100) surface:dipped adcluster model study [J]. Surf Sci,1999, 442(1):90-106
    160.Saussey J, Lavalley J C. An in Situ FT-IR Study of Adsorbed Species on a Cu-ZnAl2O4 Methanol Catalyst under IMPa Pressure and at 525 K:Effect of the H2/CO/CO2 Feed Stream Composition. J Mol Catal,1998,50:343~353
    161.Liu G, Willeox D, Garland M, et al. The Role of CO2 in Methanol Synthesis on Cu-Znoxide:An Isotope Labeling Study.J Catal,1985,96:251-260
    162.Graaf G H, Stamhuis E J, Beenachers A A C M. Kinetics of low-Pressure Methanol Synthesis[J]. Chem Eng Sci.1998,43(12):3185-3195
    163.Andres T. Aguayo, Javier Erena, Irene Sierra,et al. Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2. Catalysis Today,2005
    164. Javier Erena, Raul Garona, Jose M. Arandes,etal. Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO-Al2O3/NaHZSM-5 bifunctional catalyst. Catalysis Today,2005,107-108:467-473
    165.房鼎业柯思明刘殿华.三相搅拌反应器中二氧化碳加氢合成二甲醚.天然气化工2000,24(2):15-18
    166.Bandiera J, et al. Modified mordenites for catalytic conversion of methanol. Proc. Int. Zeolite Conf.,6th.1983:337-344
    167.解峰黎汉生赵学良等.甲醇在活性Al203催化剂表面的吸附与脱水反应[J].催化学报,2004,25(5):403-408
    168.Pines H, Kobylinski T P. Hydrogenolysis of alcohols Ⅳ.Dehydration of cis-and trans-1,4-cyclohexanediol over nickel-kieselguhr catalyst:contribution to the mechanism of ether formation[J]. J Catal,1970,17(3):394-396
    169.Parera J M, Figoli N S. Active sites and mechanisms of dehydration of methanol and methylation of methylaniline on alumina and on silica-alumina [J]. J Catal,1969,14(4): 303-310
    170.Figoli N S, Hillar S A, Parera J M. Poisoning and nature of alumina surface in the dehydration of methanol[J]. J Catal,1971,20(2):230-237
    171.Xu M T, Lunsford J H, Goodman D W, etal. Synthesis of dimethyl ether(DME) from methanol over solid-acid catalysts[J]. Applied Catalysis A:General,1997,149(2): 289-301
    172.杜爱萍许磊张大治等.SAPO-34和SPO-44分子筛上吸附甲醇的TPSR-MS研究[J].催化学报,2004,25(8):619-623
    173.胡山鹰李明恒李有润.简单计量系数反应方程,过程工程学报,2004,4(6):543-548
    174.贾广信谭猗生韩怡卓.浆态床二甲醚合成的本征的动力学研究[J].石油化工,2004,33(12):1124-1129
    175.Ng KL,Chadwic D,Toseland KB A. Kinetics and modeling of dimethylether synthesis from synthesis gas[J]. Chem Eng Sci,1999,54:3587-3592.
    176.Vanden B KM,Froment G F. A steady2state kinetic model for methanolsynthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst [J]. Journal of catalyst,1996,1(10):161-166.
    177.郭莹黎汉生王德峥等.合成气一步法制二甲醚反应宏观动力学[J].石油化工,2003,32(6):478-482.
    178.郭俊旺牛玉琴张碧江.浆态床合成气制二甲醚的宏观动力学研究.天然气化工,2000,25(1):4-7
    179.杜明仙李永旺胡惠民等.CO+H2合成甲醇、二甲醚过程及其动力学研究Ⅱ.动力 学研究[J].煤炭转化,1993,16(4):68-75
    180.应卫勇,曹发海,房鼎业.碳—化工主要产品生产技术[M].第一版.北京,化学工业出版社,2004
    181.胡惠民栗同林.甲醇脱水制二甲醚过程的动力学[J].天然气化工,1990,(2):17-20
    182.毛丽秋尹笃林郑净植.在改性高岭土催化剂上甲醇脱水生成二甲醚的动力学考察[J].分子催化,2000,14(5):379-383
    183.K.M. Vanden Bussche, F. Forment. A Steady-State Kinetic Model for Methanol Synthesis and the Water Gas Shift Reaction on a Commercial Cu/ZnO/Al2O3 Catalyst [J]. Journal of Catalyst,1996,161:1~10
    184.王志良王金福刁杰等.合成气直接合成二甲醚过程化学平衡分析[J].石油化工,2002,31(2):89-94
    185.房鼎业张海涛曹发海.CO、CO2、H2直接合成二甲醚与甲醇的化学平衡[J].煤化工,1999,24(3):29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700