用户名: 密码: 验证码:
免标记光学探针和多模态成像探针的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物标志物的检测分析是疾病早期诊断的有效手段,对于预防和控制疾病以及检测病情发展具有重要意义,在临床实验和干预治疗评价等方面具有极大的应用价值。免标记光学探针制备方法简单,检测过程方便,在生物标志物的检测方面具有很大的临床应用潜能;活体成像技术是临床医学上广泛应用的分析手段,由于其可以“看到”病情的发展情况以及目标物在活体中的含量和分布范围,因而在临床诊断和医学科研方面发挥着重要的作用,是其他技术无法取代和比拟的。活体成像探针的设计是活体成像技术的关键。生物标志物的检测和活体成像相辅相成,共同构成临床诊断和科研的基础。本论文旨在一方面:拓宽免标记方法在多种光谱方法上的应用,构建基于荧光法、比色法、共振光散射检测的不同传感体系对生物分子的识别和检测;另一方面针对目前活体成像探针制备存在的一些问题,初步探索了新型多模态探针的制备及其在活体成像中的应用。
     (1)基于同型半胱氨酸诱导聚乙烯亚胺包覆的银纳米簇的自组装,发展了一种简单、快速、灵敏和高选择性的共振光散射方法用于检测同型半胱氨酸。因为巯基和银纳米簇之间的配位作用,以及同型半胱氨酸上的羧基和聚乙烯亚胺上的氨基的静电相互作用,所以同型半胱氨酸可以作为一个桥梁将银纳米簇和聚乙烯亚胺连接起来。这种组装体的共振光信号比组装前有显著的增强。由于同型半胱氨酸的还原能力要强于半胱氨酸和谷胱甘肽,本方法对同型半胱氨酸的检测具有很高的选择性。本方法检出限为42nM,成功用于生物体液中同型半胱氨酸的检测。
     (2)基于指示剂置换策略和Ni2+-组氨酸的高亲和力,发展了一种简单有效的比色法用于裸眼检测生物体液中组氨酸含量。通过本方法实现了对组氨酸的选择性检测。将组氨酸引入到紫脲酸铵-Ni2+中,由于组氨酸和紫脲酸铵对Ni2+的竞争结合作用,会使溶液由黄色转变为紫色,使得我们通过裸眼即可检测组氨酸。本方法检出限为0.4μM,线性范围为2-30μM。十一次重复检测8μM的组氨酸的相对标准偏差为2.0%。,本方法不需要复杂的样品前处理过程,可以快速、灵敏和选择性地检测人尿样中的组氨酸含量,加标回收率为97-105%。
     (3)基于孔雀石绿/G-四联体体系发展了一种免标记近红外荧光法用于检测DNase I活性。在Na+或者K+存在的条件下,单链DNA可以形成G-四联体结构,这种结构可以增强孔雀石绿分子的刚性使其荧光显著增强。由于DNase I可以无选择性的将各种DNA水解成核苷酸,因此在DNase I存在的条件下,G-四联体会被水解,使得其对孔雀石绿的荧光增敏减弱。DNaseⅠ可以减弱孔雀石绿/G-四联体体系的近红外荧光,这提供了一个平台用于免标记、简便的检钡DNase I的方法。在最优的条件下,该方法用于检测DNase I活性的检出限为1u mL-1,十一次测定50umL-1DNaseⅠ的相对标准偏差为3.2%。本方法成功应用于加标人尿样中DNase Ⅰ活性的检测,加标回收率为99.1-109.0%。
     (4)发展了一步模拟生物矿化过程制备Gd2O3/Au杂化纳米探针用于活体近红外和核磁共振成像。由于牛血清白蛋白具有大量的活性基团包括羧基、氨基以及35个潜在的巯基官能团,因此它被广泛用于制备纳米材料的模板,在本实验中即以牛血清白蛋白作为模板。所制备的Gd2O3/Au杂化纳米探针具有优良的化学稳定性、生物相容性、强烈的近红外发光以及良好的核磁共振成像能力。该探针成功应用于活体近红外荧光血池成像。将RGD多肽修饰在该探针上,使其具有靶向识别能力,并成功应用于活体肿瘤成像。
The detection of biomarkers is an effective method for early diagnosis of disease, and it is significant for the prevention and control of disease, and monitoring the development process of disease. The detection of biomarkers is also valuable in the aspects of clinical trials and intervention treatment evaluation. Due to simple preparation and convenient detection process, label-free optical probes have a great potential in clinical applications for the detection of biomarkers. In vivo imaging is widely used in clinical medicine, which could "see" the disease development and the distribution of targets in vivo, playing an important role in the clinical diagnosis and medical research. The design of imaging probes plays a key role in the development of imaging. Biomarker detection and in vivo imaging complement each other and together to form the basis of clinical diagnosis and research. The thesis of the article aims on two aspects:On the one hand:to broaden the application of label-free methods in a variety of spectroscopic methods, and fabricate various optical biosensors for detecting biological molecular based on fluorescent detection, colorimetric assay and resonance light scattering methods; On the other hand, to solve the problems in the preparation of imaging probe using obtained methods, a novel dual modal imaging probe was fabricated and applied in vivo imaging.
     (1) A simple, rapid, sensitive and selective RLS bioassay for detecting Hey based on Hcy-involved assembly of PEI-capped Ag-nanoclusters. Hey may act as a bridge to link the Ag cores and hyperbranched PEI due to the strong affinity of SH to Ag and the interaction between the amino groups of PEI can interact with the carboxyl groups of Hey, leading to assembling of the Ag-nanoclusters. The resultant adjoining nanoclusters can interact with one another, giving rise to the oscillation coupling of individual nanoclusters and enhancing the RLS signal. As Hey has stronger reducing ability than Cys and GSH, the proposed bioassay allows discriminating Hey from Cys, GSH and other amino acids with a detection limit of42nM, and permits detecting trace Hey in biological liquid.
     (2) A simple and efficient colorimetric method for the naked-eye detection and quantification of histidine in biological fluids was developed based on an indicator-displacement assay (IDA) and the Ni2+-histidine affinity pair. In this IDA approach, a commercially available dye, murexide, was used as the indicator and the selective detection of histidine was achieved based on the competition between indicator and histidine for the binding with Ni2+. The competition of histidine with murexide for Ni2+resulted in an obvious color change of the solution from yellow to purple, and the permitted naked-eye detection of trace histidine. The detection limit of the developed bioassay was0.4μM with a linear range from2to30μM. The relative standard deviation for11replicate detections of8μM histidine was2.0%. The developed bioassay allows the rapid, sensitive and selective detection of histidine in urine samples with recoveries from97to105%, and does not need complicated sample pretreatment.
     (3) A label-free NIR fluorescent assay was developed for selective determination of DNase I activity based on malachite green (MG)/G-quadruplexes. In the presence of Na+or K+, single stranded DNA (ssDNA) is able to form a G-quadruplex structure, thus to increase the rigidity of MG structure and result in a remarkable NIR fluorescence. As DNase I is capable of cleaving all types of DNA indiscriminately to release nucleotide products, the G-quadruplexes are cleaved into oligonucleotides in the presence of DNase I. As a result, the rigidity of MG structure is reduced, and the NIR fluorescence of the solution decreases with increase of DNase I activity, providing a useful platform for low-cost, label-free and convenient detection of DNase I activity. Under the optimum conditions, the proposed label-free NIR fluorescent assay gave a detection limit of1u mL-1, and a relative standard deviation of3.2%for eleven replicate detections of50umL-1DNase I. The proposed assay was applied to the determination of DNase I activity in spiked human urine samples with recoveries from99.1to109.0%.
     (4) One-pot biomineralization synthesis of Gd2O3/Au hybrid nanoprobe was developed and applied for dual-modal imaging (near infrared (NIR) fluorescence imaging and MRI) in vivo. Bovine serum albumin (BSA) was used as the template in the biomineralization synthesis as it is plenty of active chemical groups including carboxyl groups in aspartic and glutamate residues and35potential thiol groups, and thus widely used as the template for biomineralization synthesis of nanomaterials. The fabricated BSA-Gd2O3/Au nanoprobe showed excellent chemical stability, excellent biocompatibility, intense NIR fluorescence and good MRI ability. The dual-modal imaging potential of the prepared multifunctional nanoprobe was demonstrated by successful NIR fluorescent blood pool imaging. Further modification with RGD peptide enabled the nanoprobe for targeted tumor imaging in vivo.
引文
[1]Atkinson A J, Colburn W A, DeGruttola V G, et al., Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework*. Clin Pharmacol Ther,2001,69:89-95
    [2]Sacher R A.McPherson R A, Widmann's Clinical interpretation of Laboratory Tests,11 th edition, Philadelphia:Davis F A Company,2001.
    [3]Kircher M F,Willmann J K, Molecular Body Imaging:MR Imaging, CT, and US. Part II. Applications. Radiology,2012,264:349-368
    [4]Kircher M F,Willmann J K, Molecular Body Imaging:MR Imaging, CT, and US. Part I. Principles. Radiology,2012,263:633-643
    [5]Louie A, Multimodality Imaging Probes:Design and Challenges. Chem Rev,2010,110: 3146-3195
    [6]Lee D E, Koo H, Sun I C, et al., Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev,2012,41:2656-2672
    [7]Henry J B, Clinical diagnosis and Management by Laboratory Methods,20th edition, Saunders, Philadelphia, PA,2001.
    [8]郑铁生.临床生物化学检验.北京:中国医药科技出版社,2004.
    [9]Simon E, Biological and chemical sensors for cancer diagnosis. Meas Sci Technol,2010,21: 112002
    [10]Famulok M,Mayer G, Aptamer Modules as Sensors and Detectors. Acc Chem Res,2011,44: 1349-1358
    [11]Jiang H J, Chemical Preparation of Graphene-Based Nanomaterials and Their Applications in Chemical and Biological Sensors. Small,2011,7:2413-2427
    [12]Ma Q,Su X G, Recent advances and applications in QDs-based sensors. Analyst,2011,136: 4883-4893
    [13]Liana D D, Raguse B, Gooding J J, et al., Recent Advances in Paper-Based Sensors. Sensors, 2012,12:11505-11526
    [14]Liu Y X, Dong X C,Chen P, Biological and chemical sensors based on graphene materials. Chem Soc Rev,2012,41:2283-2307
    [15]Qazi H H, bin Mohammad A,Akram M, Recent Progress in Optical Chemical Sensors. Sensors,2012,12:16522-16556
    [16]Vestergaard M, Kerman K, Saito M, et al., A rapid label-free electrochemical detection and kinetic study of Alzheimer's amyloid beta aggregation. J Am Chem Soc,2005,127: 11892-11893
    [17]Xiao Y, Lubin A A, Heeger A J, et al., Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed,2005,44:5456-5459
    [18]Choi J H, Chen K H,Strano M S, Aptamer-capped nanocrystal quantum dots:A new method for label-free protein detection. J Am Chem Soc,2006,128:15584-15585
    [19]Wongkongkatep J, Miyahara Y, Ojida A, et al., Label-free, real-time glycosyltransferase assay based on a fluorescent artificial chemosensor. Angew Chem Int Ed,2006,45:665-668
    [20]Xiang Y, Xie M, Bash R, et al., Ultrasensitive label-free aptamer-based electronic detection. Angew Chem Int Ed,2007,46:9054-9056
    [21]Lee J H, Wang Z D, Liu J W, et al., Highly Sensitive and Selective Colorimetric Sensors for Uranyl (UO22+):Development and Comparison of Labeled and Label-Free DNAzyme-Gold Nanoparticle Systems. J Am Chem Soc,2008,130:14217-14226
    [22]Xiang Y, Tong A J,Lu Y, Abasic Site-Containing DNAzyme and Aptamer for Label-Free Fluorescent Detection of Pb2+and Adenosine with High Sensitivity, Selectivity, and Tunable Dynamic Range. J Am Chem Soc,2009,131:15352-15357
    [23]Dave D P,Chirvi S, Label-free quantitative detection of biomarkers. In Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues Viii, Farkas, D. L.; Nicolau, D. V.; Leif, R. C., Eds.2010; Vol.7568.
    [24]Castellana E T, Gamez R C,Russell D H, Label-Free Biosensing with Lipid-Functionalized Gold Nanorods. J Am Chem Soc,2011,133:4182-4185
    [25]Chung C Y S,Yam V W W, Induced Self-Assembly and Forster Resonance Energy Transfer Studies of Alkynylplatinum(II) Terpyridine Complex Through Interaction With Water-Soluble Poly(phenylene ethynylene sulfonate) and the Proof-of-Principle Demonstration of this Two-Component Ensemble for Selective Label-Free Detection of Human Serum Albumin. JAm Chem Soc,2011,133:18775-18784
    [26]Yan X W, Yang L M,Wang Q Q, Lanthanide-Coded Protease-Specific Peptide-Nanoparticle Probes for a Label-Free Multiplex Protease Assay Using Element Mass Spectrometry:A Proof-of-Concept Study. Angew Chem Int Ed,2011,50:5130-5133
    [27]Leslie D C, Li J Y, Strachan B C, et al., New Detection Modality for Label-Free Quantification of DNA in Biological Samples via Superparamagnetic Bead Aggregation. J Am Chem Soc,2012,134:5689-5696
    [28]Torres D A, Azagarsamy M A.Thayumanavan S, Supramolecular Displacement-Mediated Activation of a Silent Fluorescence Probe for Label-Free Ligand Screening. J Am Chem Soc, 2012,134:7235-7237
    [29]Elghanian R, Storhoff J J, Mucic R C, et al., Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science,1997,277:1078-1081
    [30]Li H X,Rothberg L, Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. P Natl Acad Sci USA,2004,101: 14036-14039
    [31]Wang L H, Liu X F, Hu X F, et al., Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun,2006,3780-3782
    [32]Liu R R, Liew R S, Zhou H, et al., A simple and specific assay for real-time colorimetric visualization of beta-lactamase activity by using gold nanoparticles. Angew Chem Int Ed, 2007,46:8799-8803
    [33]Wang Z D, Lee J H,Lu Y, Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater,2008,20:3263-+
    [34]Zayats M, Baron R, Popov I, et al., Biocatalytic Growth of Au Nanoparticles:From Mechanistic Aspects to Biosensors Design. Nano Letters,2004,5:21-25
    [35]Li H, Ma X Y, Dong J, et al., Development of Methodology Based on the Formation Process of Gold Nanoshells for Detecting Hydrogen Peroxide Scavenging Activity. Anal Chem,2009, 81:8916-8922
    [36]Shang L, Qin C, Jin L, et al., Turn-on fluorescent detection of cyanide based on the inner filter effect of silver nanoparticles. Analyst,2009,134:1477-1482
    [37]Tripathy S K, Woo J Y,Han C S, Highly Selective Colorimetric Detection of Hydrochloric Acid Using Unlabeled Gold Nanoparticles and an Oxidizing Agent. Anal Chem,2011,83: 9206-9212
    [38]Medintz I L, Uyeda H T, Goldman E R, et al., Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater,2005,4:435-446
    [39]Michalet X, Pinaud F F, Bentolila L A, et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science,2005,307:538-544
    [40]Spanhel L, Haase M, Weller H, et al., Photochemistry of colloidal semiconductors.20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc, 1987,109:5649-5655
    [41]Zhang Y, Li Y.Yan X P, Photoactivated CdTe/CdSe Quantum Dots as a Near Infrared Fluorescent Probe for Detecting Biothiols in Biological Fluids. Anal Chem,2009,81: 5001-5007
    [42]Wu P,Yan X P, A simple chemical etching strategy to generate "ion-imprinted" sites on the surface of quantum dots for selective fluorescence turn-on detecting of metal ions. Chem Commun,2010,46:7046-7048
    [43]Chen Y,Rosenzweig Z, Luminescent CdS Quantum Dots as Selective Ion Probes. Anal Chem, 2002,74:5132-5138
    [44]Diao X-L, Xia Y-S, Zhang T-L, et al., Fluorescence-detecting cationic surfactants using luminescent CdTe quantum dots as probes. Anal Bioanal Chem,2007,388:1191-1197
    [45]Cordes D B, Gamsey S,Singaram B, Fluorescent Quantum Dots with Boronic Acid Substituted Viologens To Sense Glucose in Aqueous Solution. Angewandte Chemie International Edition,2006,45:3829-3832
    [46]Yildiz I, Tomasulo M,Raymo F M, A mechanism to signal receptor-substrate interactions with luminescent quantum dots. Proceedings of the National Academy of Sciences,2006, 103:11457-11460
    [47]Liang J-G, Ai X-P, He Z-K, et al., Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst,2004,129:619-622
    [48]Wang X,Guo X Q, Ultrasensitive Pb(2+) detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst,2009,134: 1348-1354
    [49]Xue M, Wang X, Wang H, et al., Hydrogen bond breakage by fluoride anions in a simple CdTe quantum dot/gold nanoparticle FRET system and its analytical application. Chem Commun,2011,47:4986-4988
    [50]Qiu T, Zhang B, Hu Z Y, et al., Detection of DNA based on fluorescence resonance energy transfer of polyelectrolyte-protected CdTe quantum dots as energy donors. Analyst,2012, 137:2608-2613
    [51]Altun E, Semelka R C.Cakit C, Nephrogenic Systemic Fibrosis and Management of High-risk Patients. Acad Radiol,2009,16:897-905
    [52]Florea M, Kudithipudi S, Rei A, et al., A Fluorescence-Based Supramolecular Tandem Assay for Monitoring Lysine Methyltransferase Activity in Homogeneous Solution. Chem Eur J, 2012,18:3521-3528
    [53]Yin C, Gao F, Huo F, et al., Applying the Yb3+ ion as a simple and sensitive probe to detect phosphate-containing derivatives in aqueous solution. Chem Commun,2004,934-935
    [54]Wang M, Zhang D Q, Zhang G X, et al., Fluorescence turn-on detection of DNA and label-free fluorescence nuclease assay based on the aggregation-induced emission of silole. Anal Chem,2008,80:6443-6448
    [55]Xu J P, Fang Y, Song Z Q et al., BSA-tetraphenylethene derivative conjugates with aggregation-induced emission properties:Fluorescent probes for label-free and homogeneous detection of protease and alpha 1-antitrypsin. Analyst,2011,136:2315-2321
    [56]Liu X F, Tang Y L, Wang L H, et al., Optical detection of mercury(II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides. Adv Mater,2007,19:1662-1662
    [57]Ren X S,Xu Q H, Label-Free DNA Sequence Detection with Enhanced Sensitivity and Selectivity Using Cationic Conjugated Polymers and PicoGreen. Langmuir,2009,25:43-47
    [58]Sharma J, Yeh H C, Yoo H, et al., Silver nanocluster aptamers:in situ generation of intrinsically fluorescent recognition ligands for protein detection. Chem Commun,2011,47: 2294-2296
    [59]Hu L, Han S, Parveen S, et al., Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens Bioelectron,2012,32:297-299
    [60]Leung C H, Chan D S H, Man B Y W, et al., Simple and Convenient G-Quadruplex-Based Turn-On Fluorescence Assay for 3'-> 5'Exonuclease Activity. Anal Chem,2011,83: 463-466
    [61]Zheng D M, Zou R X,Lou X H, Label-Free Fluorescent Detection of Ions, Proteins, and Small Molecules Using Structure-Switching Aptamers, SYBR Gold, and Exonuclease I. Anal Chem,2012,84:3554-3560
    [62]王振常.医学影像学.北京:人民出版社,2012.
    [63]Schober O, Rahbar K,Riemann B, Multimodality molecular imaging-from target description to clinical studies. Eur J Nucl Med Mol Imaging,2009,36:302-314
    [64]Marti-Bonmati L, Sopena R, Bartumeus P, et al., Multimodality imaging techniques. Contrast Media & Molecular Imaging,2010,5:180-189
    [65]Bai M,Bornhop D J, Recent Advances in Receptor-Targeted Fluorescent Probes for In Vivo Cancer Imaging. Curr Med Chem,2012,19:4742-4758
    [66]Lacivita E, Leopoldo M, Berardi F, et al., Activatable Fluorescent Probes:A New Concept in Optical Molecular Imaging. Curr Med Chem,2012,19:4731-4741
    [67]Ozawa T, Yoshimura H,Kim S B, Advances in Fluorescence and Bioluminescence Imaging. Anal Chem,2013,85:590-609
    [68]van Beek E J R,Hoffman E A, Functional imaging:CT and MRI. Clin Chest Med,2008,29: 195-216
    [69]Bartling S H, Stiller W, Semmler W, et al., Small animal computed tomography Imaging. Current Medical Imaging Reviews,2007,3:45-59
    [70]Dawson P, Functional imaging in CT. Eur J Radiol,2006,60:331-340
    [71]Schambach S J, Bag S, Schilling L, et al., Application of micro-CT in small animal imaging. Methods,2010,50:2-13
    [72]Jun Y W, Lee J H,Cheon J, Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed,2008,47:5122-5135
    [73]Fenster A, Downey D B,Cardinal H N, Three-dimensional ultrasound imaging. Phys Med Biol,2001,46:R67-R99
    [74]Frinking P J A, Bouakaz A, Kirkhom J, et al., Ultrasound contrast imaging:Current and new potential methods. Ultrasound Med Biol,2000,26:965-975
    [75]Klibanov A L, Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv Drug Deliver Rev,1999,37:139-157
    [76]Nelson T R,Pretorius D H, Three-dimensional ultrasound imaging. Ultrasound Med Biol, 1998,24:1243-1270
    [77]Dayton P A,Ferrara K W, Targeted imaging using ultrasound. J Magn Reson Imaging,2002, 16:362-377
    [78]Schutt E G, Klein D H, Mattrey R M, et al., Injectable microbubbles as contrast agents for diagnostic ultrasound imaging:The key role of perfluorochemicals. Angew Chem Int Ed, 2003,42:3218-3235
    [79]Klibanov A L, Microbubble contrast agents-Targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol,2006,41:354-362
    [80]Bar-Shalom R, Valdivia A Y,Blaufox M D, PET imaging in oncology. Semin Nucl Med,2000, 30:150-185
    [81]Phelps M E, PET:The merging of biology and imaging into molecular imaging. J Nucl Med, 2000,41:661-681
    [82]Hustinx R, Benard F,Alavi A, Whole-body FDG-PET imaging in the management of patients with cancer. Semin Nucl Med,2002,32:35-46
    [83]Nordberg A, PET imaging of amyloid in Alzheimer's disease. Lancet Neurology,2004,3: 519-527
    [84]Kelloff G, Hoffinan J M, Johnson B, et al., Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res,2005,11: 2785-2808
    [85]Ametamey S M, Honer M,Schubiger P A, Molecular imaging with PET. Chem Rev,2008, 108:1501-1516
    [86]Keidar Z, Israel O,Krausz Y, SPECT/CT in tumor imaging:Technical aspects and clinical applications. Semin Nucl Med,2003,33:205-218
    [87]Taki J,Matsunari I, Metabolic imaging using SPECT. Eur J Nucl Med Mol Imaging,2007,34: S34-S48
    [88]Gomes C M, Abrunhosa A J, Ramos P, et al., Molecular imaging with SPECT as a tool for drug development. Adv Drug Deliver Rev,2011,63:547-554
    [89]Li Z B, Cai W B, Cao Q Z, et al.,64Cu-Labeled "Tetrameric and octameric RGD peptides for small-animal PET of Tumor alpha(v)beta(3) integrin expression. Journal of Nuclear Medicine,2007,48:1162-1171
    [90]Ambrosini V, Campana D, Allegri V, et al.,68Ga-DOTA-NOC PET/CT Detects Somatostatin Receptors Expression in von Hippel-Lindau Cerebellar Disease. Clin Nucl Med,2011,36: 64-65
    [91]Mathe D, Gulyas B, Szigeti K, et al., Imaging the CB1 Receptor Radioligand 1251SD7015 in Mouse Brain using In-vivo SPECT and Ex-vivo Autoradiography. Eur J Nucl Med Mol Imaging,2011,38:S147-S148
    [92]Kirmira M, Tsivian M, Mouraviev V, et al., Utilization of 111In-Capromab pendetide SPECT-CT for detecting seminal vesicle invasion with recurrent prostate cancer after primary in situ therapy. Int J Urol,2009,16:971-975
    [93]Spanu A, Schillaci O, Meloni G B, et al., The usefulness of 99mTc-tetrofosmin SPECT scintimammography in the detection of small size primary breast carcinomas. Int J Oncol, 2002,21:831-840
    [94]Liu Z, Kiessling F,Gatjens J, Advanced Nanomaterials in Multimodal Imaging:Design, Functionalization, and Biomedical Applications. Journal of Nanomaterials,2010,2010: 894303
    [95]Kim J, Piao Y,Hyeon T, Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev,2009,38:372-390
    [96]Hahn M A, Singh A K, Sharma P, et al., Nanoparticles as contrast agents for in-vivo bioimaging:current status and future perspectives. Anal Bioanal Chem,2011,399:3-27
    [97]Swierczewska M, Lee S,Chen X Y, Inorganic Nanoparticles for Multimodal Molecular Imaging. Molecular Imaging,2011,10:3-16
    [98]Vivero-Escoto J L, Huxford-Phillips R C,Lin W B, Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev,2012,41:2673-2685
    [99]Kostarelos K, Bianco A,Prato M, Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol,2009,4:627-633
    [100]Zhou J, Liu Z,Li F Y, Upconversion nanophosphors for small-animal imaging. Chem Soc Rev,2012,41:1323-1349
    [101]Xu W, Kattel K, Park J Y, et al., Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Phys Chem Chem Phys,2012,14:12687-12700
    [102]Liu Y, Ai K,Lu L, Nanoparticulate X-ray Computed Tomography Contrast Agents:From Design Validation to in Vivo Applications. Acc Chem Res,2012,
    [103]Lusic H.Grinstaff M W, X-ray-Computed Tomography Contrast Agents. Chem Rev,2012,
    [104]Gerion D, Herberg J, Bok R, et al., Paramagnetic silica-coated nanocrystals as an advanced MRI contrast agent. J Phys Chem C,2007,111:12542-12551
    [105]Jin T, Yoshioka Y, Fujii F, et al., Gd(3+)-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. Chem Commun,2008, 5764-5766
    [106]Yang H, Santra S, Walter G A, et al., Gd-III-functionalized fluorescent quantum dots as multimodal imaging probes. Adv Mater,2006,18:2890-+
    [107]Prinzen L, Miserus R-J J H M, Dirksen A, et al., Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots. Nano Letters,2007,7:93-100
    [108]Oostendorp M, Douma K, Hackeng T M, et al., Quantitative molecular magnetic resonance imaging of tumor angiogenesis using cNGR-labeled paramagnetic quantum dots. Cancer Res, 2008,68:7676-83
    [109]Cai W, Chen K, Li Z-B, et al., Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med,2007,48:1862-1870
    [110]Chen K, Li Z-B, Wang H, et al., Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. European Journal of Nuclear Medicine and Molecular Imaging,2008,35:2235-2244
    [111]Schipper M L, Cheng Z, Lee S-W, et al., MicroPET-based biodistribution of quantum dots in living mice. J Nucl Med,2007,48:1511-1518
    [112]Banerjee S S,Chen D-H, A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology,2009,20:
    [113]Gallagher J J, Tekoriute R, O'Reilly J-A, et al., Bimodal magnetic-fluorescent nanostructures for biomedical applications. J Mater Chem,2009,19:4081-4084
    [114]Gunn J, Wallen H, Veiseh O, et al., A multimodal targeting nanoparticle for selectively labeling T cells. Small,2008,4:712-715
    [115]Maxwell D J, Bonde J, Hess D A, et al., Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stein cells. Stem Cells,2008,26: 517-524
    [116]Cheng C M, Chu P Y, Chuang K H, et al., Hapten-derivatized nanoparticle targeting and imaging of gene expression by multimodality imaging systems. Cancer Gene Ther,2009,16: 83-90
    [117]Hirata N, Tanabe K, Narita A, et al., Preparation and fluorescence properties of fluorophore-labeled avidin-biotin system immobilized on Fe3O4 nanoparticles through functional indolequinone linker. Bioorgan Med Chem,2009,17:3775-3781
    [118]Yeo K M, Gao C J, Ahn K-H, et al., Superparamagnetic iron oxide nanoparticles with photoswitchable fluorescence. Chem Commun,2008,4622-4624
    [119]Quarta A, Di Corato R, Manna L, et al., Multifunctional nanostructures based on inorganic nanoparticles and oligothiophenes and their exploitation for cellular studies. J Am Chem Soc, 2008,130:10545-10555
    [120]Pittet M J, Swirski F K, Reynolds F, et al., Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nature Protocols,2006,1:73-79
    [121]Kircher M F, Mahmood U, King R S, et al., A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res, 2003,63:8122-8125
    [122]Trehin R, Figueiredo J-L, Pittet M J, et al., Fluorescent nanoparticle uptake for brain tumor visualization. Neoplasia,2006,8:302-311
    [123]Dong W J, Li Y S, Niu D C, et al., Facile Synthesis of Monodisperse Superparamagnetic Fe3O4 Core@hybrid@Au Shell Nanocomposite for Bimodal Imaging and Photothermal Therapy. Adv Mater,2011,23:5392-+
    [124]Kim D, Yu M K, Lee T S, et al., Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology,2011,22:
    [125]Cai H D, Li K G, Shen M W, et al., Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem,2012,22:15110-15120
    [126]Lee N, Cho H R, Oh M H, et al., Multifunctional Fe3O4/TaOx Core/Shell Nanoparticles for Simultaneous Magnetic Resonance Imaging and X-ray Computed Tomography. J Am Chem Soc,2012,134:10309-10312
    [127]Hu D H, Sheng Z H, Zhang P F, et al., Hybrid gold-gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo. Nanoscale,2013,5:1624-1628
    [128]He R, You X, Shao J, et al., Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation. Nanotechnology,2007,18:
    [129]Kim J S, Rieter W J, Taylor K M L,et al., Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. J Am Chem Soc,2007,129:8962-+
    [130]Rieter W J, Kim J S, Taylor K M L, et al., Hybrid silica nanoparticles for multimodal Imaging. Angew Chem Int Ed,2007,46:3680-3682
    [131]Santra S, Bagwe R P, Dutta D, et al., Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications. Adv Mater,2005,17:2165-2169
    [132]Lee J-H, Jun Y-W, Yeon S-I, et al., Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed,2006, 45:8160-8162
    [133]Yang J, Lee J, Kang J, et al., Magnetic sensitivity enhanced novel fluorescent magnetic silica nanoparticles for biomedical applications. Nanotechnology,2008,19:
    [134]Li L, Choo E S Q Liu Z, et al., Double-layer silica core-shell nanospheres with superparamagnetic and fluorescent functionalities. Chem Phys Lett,2008,461:114-117
    [135]Ren C, Li J, Liu Q, et al., Synthesis of Organic Dye-Impregnated Silica Shell-Coated Iron Oxide Nanoparticles by a New Method. Nanoscale Research Letters,2008,3:496-501
    [136]Wang Q, Liu Y, Lin C, et al., Layer-by-layer growth of superparamagnetic, fluorescent barcode nanospheres. Nanotechnology,2007,18:
    [137]Lin K M, Hsu C-H, Chang W-S W, et al., Human breast tumor cells express multimodal imaging reporter genes. Molecular Imaging and Biology,2008,10:253-263
    [138]Schladt T D, Koll K, Prufer S, et al., Multifunctional superparamagnetic MnO@SiO2 core/shell nanoparticles and their application for optical and magnetic resonance imaging. J Mater Chem,2012,22:9253-9262
    [139]Sharma P, Bengtsson N E, Walter G A, et al., Gadolinium-Doped Silica Nanoparticles Encapsulating Indocyanine Green for Near Infrared and Magnetic Resonance Imaging. Small, 2012, n/a-n/a
    [140]Seo S-B, Yang J, Lee E-S, et al., Nanohybrids via a polycation-based nanoemulsion method for dual-mode detection of human mesenchymal stem cells. J Mater Chem,2008,18: 4402-4407
    [141]Yang J, Lim E-K, Lee H J, et al., Fluorescent magnetic nanohybrids as multimodal imaging agents for human epithelial cancer detection. Biomaterials,2008,29:2548-2555
    [142]Zhang B, Cheng J, Gong X, et al., Facile fabrication of multi-colors high fluorescent/superparamagnetic nanoparticles. J Colloid Interf Sci,2008,322:485-490
    [143]Hatakeyama M, Mochizuki Y, Kita Y, et al., Characterization of a magnetic carrier encapsulating europium and ferrite nanoparticles for biomolecular recognition and imaging. J Magn Magn Mater,2009,321:1364-1367
    [144]Yang S, Liu H.Zhang Z, Design and fabrication of hollow, magnetic and fluorescent CdS-magnetite-poly(styrene-co-methyl methacrylate) microspheres. New J Chem,2009,33: 620-625
    [145]Tu C, Yang Y.Gao M, Preparations of bifunctional polymeric beads simultaneously incorporated with fluorescent quantum dots and magnetic nanocrystals. Nanotechnology, 2008,19:
    [146]Xie M, Hu J, Long Y-M, et al., Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates. Biosens Bioelectron,2009,24:1311-1317
    [147]Zhang P, Dou H, Li W, et al., Fabrication of fluorescent and magnetic multifunctional polystyrene microbeads with carboxyl ends. Chem Lett,2007,36:1458-1459
    [148]Wilson R, Spiller D G, Prior I A, et al., Magnetic microspheres encoded with photoluminescent quantum dots for multiplexed detection. J Mater Chem,2007,17: 4400-4406
    [149]Wang S, Jarrett B R, Kauzlarich S M, et al., Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J Am Chem Soc,2007,129:3848-3856
    [150]Kim H, Achermann M, Balet L P, et al., Synthesis and characterization of Co/CdSe core/shell nanocomposites:Bifunctional magnetic-optical nanocrystals. J Am Chem Soc, 2005,127:544-546
    [151]Wu S-H, Lin Y-S, Hung Y, et al., Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. Chembiochem,2008, 9:53-57
    [152]Lu C-W, Hung Y, Hsiao J-K, et al., Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Letters,2007,7:149-154
    [153]Makovec D, Campelj S, Bele M, et al., Nanocomposites containing embedded superparamagnetic iron oxide nanoparticles and rhodamine 6G Colloid Surface A,2009,334: 74-79
    [154]Lee K, Moon H-Y, Park C, et al., Magnetic resonance imaging of macrophage activity in atherosclerotic plaques of apolipoprotein E-deficient mice by using polyethylene glycolated magnetic fluorescent silica-coated nanoparticles. Current Applied Physics,2009,9:S15-S18
    [155]Ichiyanagi Y, Moritake S, Taira S, et al., Functional magnetic nanoparticles for medical application. J Magn Magn Mater,2007,310:2877-2879
    [156]Yoon T J, Kim J S, Kim B Q et al., Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angew Chem Int Ed,2005,44:1068-1071
    [157]Ma Z, Dosev D, Nichkova M, et al., Synthesis and characterization of multifunctional silica core-shell nanocomposites with magnetic and fluorescent functionalities. J Magn Magn Mater,2009,321:1368-1371
    [158]Heitsch A T, Smith D K, Patel R N, et al., Multifunctional particles:Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells. J Solid State Chem,2008, 181:1590-1599
    [159]Nagao D, Yokoyama M, Yamauchi N, et al., Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell. Langmuir,2008,24:9804-9808
    [160]Salgueirino-Maceira V, Correa-Duarte M A, Arturo Lopez-Quintela M, et al., Advanced Hybrid Nanoparticles. Journal of Nanoscience and Nanotechnology,2009,9:3684-3688
    [161]Nagao D, Yokoyama M, Saeki S, et al., Preparation of composite particles with magnetic silica core and fluorescent polymer shell. Colloid Polym Sci,2008,286:959-964
    [162]Li L, Li H, Chen D, et al., Preparation and Characterization of Quantum Dots Coated Magnetic Hollow Spheres for Magnetic Fluorescent Multimodal Imaging and Drug Delivery. Journal of Nanoscience and Nanotechnology,2009,9:2540-2545
    [163]Du G, Liu Z, Wang D, et al., Characterization of Magnetic Fluorescence Fe3O4/CdSe Nanocomposites. Journal of Nanoscience and Nanotechnology,2009,9:1304-1307
    [164]Selvan S T, Patra P K, Ang C Y, et al., Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed,2007, 46:2448-2452
    [165]Wang D S, He J B, Rosenzweig N, et al., Superparamagnetic Fe2O3 Beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Letters,2004,4: 409-413
    [166]Zhang Y, Wang S-N, Ma S, et al., Self-assembly multifunctional nanocomposites with Fe3O4 magnetic core and CdSe/ZnS quantum dots shell. Journal of Biomedical Materials Research Part A,2008,85A:840-846
    [167]Dosev D, Nichkova M, Dumas R K, et al., Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard. Nanotechnology,2007,18:
    [168]He H, Xie M Y, Ding Y, et al., Synthesis of Fe3O4@LaF3:Ce,Tb nanocomposites with bright fluorescence and strong magnetism. Appl Surf Sci,2009,255:4623-4626
    [169]Lu H C, Yi G S, Zhao S Y, et al., Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-con version fluorescence and bio-affinity properties. J Mater Chem,2004,14:1336-1341
    [170]Ma Z Y, Dosev D, Nichkova M, et al., Synthesis and bio-functionalization of multifunctional magnetic Fe3O4@Y2O3:Eu nanocomposites. J Mater Chem,2009,19: 4695-4700
    [171]Cho S J, Jarrett B R, Louie A Y, et al., Gold-coated iron nanoparticles:a novel magnetic resonance agent for T-1 and T-2 weighted imaging. Nanotechnology,2006,17:640-644
    [172]Larson T A, Bankson J, Aaron J, et al., Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology,2007,18:
    [173]Gao J, Zhang B, Gao Y, et al., Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction:A simple preparation for multifunctional nanostructures. J Am Chem Soc,2007,129:11928-11935
    [174]Tian Z-Q, Zhang Z-L, Gao J, et al., Color-tunable fluorescent-magnetic core/shell multifunctional nanocrystals. Chem Commun,2009,4025-4027
    [175]Bridges M D, Amant B S S, McNeil R B, et al., High-Dose Gadodiamide for Catheter .Angiography and CT in Patients With Varying Degrees of Renal Insufficiency:Prevalence of Subsequent Nephrogenic Systemic Fibrosis arid Decline in Renal Function. Am J Roentgenol, 2009,192:1538-1543
    [176]Huang C-C, Su C-H, Li W-M, et al., Bifunctional Gd2O3/C Nanoshells for MR Imaging and NIR Therapeutic Applications. Adv Funct Mater,2009,19:249-258
    [177]Xing H Y, Bu W B, Zhang S J, et al., Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials,2012,33:1079-1089
    [178]Zhu X J, Zhou J, Chen M, et al., Core-shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials,2012,33: 4618-4627
    [179]Yong K-T, Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology,2009,20:
    [180]Zhang X, Brynda M, Britt R D, et al., Synthesis and characterization of manganese-doped silicon nanoparticles:Bifunctional paramagnetic-optical nanomaterial. J Am Chem Soc,2007, 129:10668-+
    [181]Santra S, Yang H S, Holloway P H, et al., Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots:A multifunctional probe for bioimaging. J Am Chem Soc,2005,127:1656-1657
    [182]Lommens P, Loncke F, Smet P F, et al., Dopant incorporation in colloidal quantum dots:A case study on Co(2+) doped ZnO. Chem Mater,2007,19:5576-5583
    [183]Kumar R, Nyk M, Ohulchanskyy T Y, et al., Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals. Adv Funct Mater,2009,19:853-859
    [184]Louis C, Bazzi R, Marquette C A, et al., Nanosized hybrid particles with double luminescence for biological labeling. Chem Mater,2005,17:1673-1682
    [185]Taylor K M L, Jin A,Lin W, Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angew Chem Int Ed,2008,47: 7722-7725
    [186]Chen G Y, Ohulchanskyy T Y, Law W C, et al., Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale,2011,3:2003-2008
    [187]Ren W L, Tian G, Zhou L J, et al., Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale,2012,4:3754-3760
    [188]Wu Y L, Xu X Z, Tang Q, et al., Anew type of silica-coated Gd-2(CO3)(3):Tb nanoparticle as a bifunctional agent for magnetic resonance imaging and fluorescent imaging. Nanotechnology,2012,23:
    [189]Zhang F, Huang X L, Zhu L, et al., Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles. Biomaterials,2012,33: 5414-5422
    [190]Zhou L J, Gu Z J, Liu X X, et al., Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J Mater Chem,2012,22:966-974
    [191]Zeng S J, Tsang M K, Chan C F, et al., PEG modified BaGdF5:Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials,2012,33:9232-9238
    [192]Refsum H, Ueland P M, Nygard O, et al., Homocysteine and cardiovascular disease. Annu Rev Med,1998,49:31-62
    [193]Seshadri S, Beiser A, Selhub J, et al., Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. New Engl J Med,2002,346:476-483
    [194]Frantzen F, Faaren A L, Alfheim I, et al., Enzyme conversion immunoassay for determining total homocysteine in plasma or serum. Clin Chem,1998,44:311-316
    [195]Chassaing C, Gonin J, Wilcox C S, et al., Determination of reduced and oxidized homocysteine and related thiols in plasma by thiol-specific pre-column derivatization and capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B,1999, 735:219-227
    [196]Nekrassova O, Lawrence N S.Compton R G, Analytical determination of homocysteine:a review. Talanta,2003,60:1085-1095
    [197]Lu C, Zu Y B.Yam V W W, Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles. Anal Chem,2007,79:666-672
    [198]Rusin O, St Luce N N, Agbaria R A, et al., Visual detection of cysteine and homocysteine. J Am Chem Soc,2004,126:438-439
    [199]Wang W H, Escobedo J O, Lawrence C M, et al., Direct detection of homocysteine. J Am Chem Soc,2004,126:3400-3401
    [200]Wang W H, Rusin O, Xu X Y, et al., Detection of homocysteine and cysteine. J Am Chem Soc,2005,127:15949-15958
    [201]Chen H L, Zhao Q, Wu Y B, et al., Selective phosphorescence chemosensor for homocysteine based on an iridium(III) complex. Inorg Chem,2007,46:11075-11081
    [202]Lu C,Zu Y B, Specific detection of cysteine and homocysteine:recognizing one-methylene difference using fluorosurfactant-capped gold nanoparticles. Chem Commun,2007, 3871-3873
    [203]Zhang M, Yu M X, Li F Y, et al., A highly selective fluorescence turn-on sensor for Cysteine/Homocysteine and its application in bioimaging. J Am Chem Soc,2007,129: 10322-10323
    [204]Lee K S, Kim T K, Lee J H, et al., Fluorescence turn-on probe for homocysteine and cysteine in water. Chem Commun,2008,6173-6175
    [205]Chen X, Zhou Y, Peng X J, et al., Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev,2010,39:2120-2135
    [206]Mandal S, Gole A, Lala N, et al., Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds. Langmuir,2001,17:6262-6268
    [207]Aryal S, Remant B K C, Dharmaraj N, et al., Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2006,63:160-163
    [208]Li Z P, Duan X R, Liu C H, et al., Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. Anal Biochem,2006,351: 18-25
    [209]Lim I I S, Ip W, Crew E, et al., Homocysteine-mediated reactivity and assembly of gold nanoparticles. Langmuir,2007,23:826-833
    [210]Mocanu A, Cernica I, Tomoaia G, et al., Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloid Surface A,2009,338:93-101
    [211]Manoth M, Manzoor K, Patra M K, et al., Dendrigraft polymer-based synthesis of silver nanoparticles showing bright blue fluorescence. Mater Res Bull,2009,44:714-717
    [212]Tan S, Erol M, Attygalle A, et al., Synthesis of Positively Charged Silver Nanoparticles via Photoreduction of AgNO3 in Branched Polyethyleneimine/HEPES Solutions. Langmuir, 2007,23:9836-9843
    [213]Xu H.Suslick K S, Water-Soluble Fluorescent Silver Nanoclusters. Adv Mater,2010,22: 1078-1082
    [214]Huang C Z,Li Y F, Resonance light scattering technique used for biochemical and pharmaceutical analysis. Anal Chim Acta,2003,500:105-117
    [215]Creighton T E, Encyclopedia of Molecular Biology, Wiley, New York,1999, vol.2, p.1147.
    [216]Kusakari Y, Nishikawa S, Ishiguro S-i, et al., Histidine-like immunoreactivity in the rat retina. Curr Eye Res,1997,16:600-604
    [217]Guo Nan C, Xiao Ping W, Jian Ping D, et al., A study on electrochemistry of histidine and its metabolites based on the diazo coupling reaction. Talanta,1999,49:319-330
    [218]Kovach P M,Meyerhoff M E, Development and application of a histidine-selective biomembrane electrode. Anal Chem,1982,54:217-220
    [219]Rao M L, Stefan H, Scheid C, et al., Serum amino acids, liver status, and antiepileptic drug therapy in epilepsy. Epilepsia,1993,34:347-354
    [220]Watanabe M, Suliman M E, Qureshi A R, et al., Consequences of low plasma histidine in chronic kidney disease patients:associations with inflammation, oxidative stress, and mortality. Am J ClinNutr,2008,87:1860-1866
    [221]Shojaei M, Mirmohseni A,Farbodi M, Application of a quartz crystal nanobalance and principal component analysis for the detection and determination of histidine. Anal Bioanal Chem,2008,391:2875-2880
    [222]Tcherkas Y V, Kartsova L A,Krasnova I N, Analysis of amino acids in human serum by isocratic reversed-phase high-performance liquid chromatography with electrochemical detection. J Chromatogr A,2001,913:303-308
    [223]Tateda N, Matsuhisa K, Hasebe K, et al., High-performance liquid chromatographic method for rapid and highly sensitive determination of histidine using postcolumn fluorescence detection with o-phthaldialdehyde. J Chromatogr B,1998,718:235-241
    [224]Hermann K,Abeck D, Determination of histidine and urocanic acid isomers in the human skin by high-performance capillary electrophoresis. J Chromatogr B,2000,749:41-47
    [225]Latorre R M, Saurina J,Hernandez-Cassou S, Determination of amino acids in overlapped capillary electrophoresis peaks by means of partial least-squares regression. J Chromatogr A, 2000,871:331-340
    [226]Zhang L Y,Sun M X, Determination of histamine and histidine by capillary zone electrophoresis with pre-column naphthalene-2,3-dicarboxaldehyde derivatization and fluorescence detection. J Chromatogr A,2004,1040:133-140
    [227]Zinellu A, Sotgia S, Pisanu E, et al., Quantification of histidine,1-methylhistidine and 3-methylhistidine in plasma and urine by capillary electrophoresis UV-detection. J Sep Sci, 2010,33:3781-3785
    [228]Amini M K, Shahrokhian S.Tangestaninejad S, PVC-Based Mn(Ⅲ) Porphyrin Membrane-Coated Graphite Electrode for Determination of Histidine. Anal Chem,1999,71: 2502-2505
    [229]Wu T, Zhou X G, Zhang H, et al., Bi2S3 Nanostructures:A New Photocatalyst. Nano Research,2010,3:379-386
    [230]Fabbrizzi L, Francese G, Licchelli M, et al., Fluorescent sensor of imidazole and histidine. Chem Commun,1997,581-582
    [231]Hortala M A, Fabbrizzi L, Marcotte N, et al., Designing the Selectivity of the Fluorescent Detection of Amino Acids:A Chemosensing Ensemble for Histidine. J Am Chem Soc, 2002,125:20-21
    [232]Zhang Y, Yang, Liu F, et al., Fluorescent Sensor for Imidazole Derivatives Based on Monomer-Dimer Equilibrium of a Zinc Porphyrin Complex in a Polymeric Film. Anal Chem,2004,76:7336-7345
    [233]Ma D L, Wong W L, Chung W H, et al., A highly selective luminescent switch-on probe for histidine/histidine-rich proteins and its application in protein staining. Angew Chem Int Ed, 2008,47:3735-3739
    [234]Pu F, Huang Z Z, Ren J S, et al., DNA/Ligand/lon-Based Ensemble for Fluorescence Turn on Detection of Cysteine and Histidine with Tunable Dynamic Range. Anal Chem,2010,82: 8211-8216
    [235]Wu P,Yan X-P, Ni2+-modulated homocysteine-capped CdTe quantum dots as a turn-on photoluminescent sensor for detecting histidine in biological fluids. Biosens Bioelectron, 2010,26:485-490
    [236]Zhou Y,Yoon J, Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem Soc Rev,2012,
    [237]Folmer-Andersen J F, Lynch V M,Anslyn E V, "Naked-Eye" detection of histidine by regulation of Cu(II) coordination modes. Chem Eur J,2005,11:5319-5326
    [238]Liu Y, Fan M, Zhang S, et al., Basic amino acid induced isomerization of a spiropyran: towards visual recognition of basic amino acids in water. New J Chem,2007,31:1878-1881
    [239]Xiong D J, Chen M L,Li H B, Synthesis of para-sulfonatocalix 4 arene-modified silver nanoparticles as colorimetric histidine probes. Chem Commun,2008,880-882
    [240]Bae D R, Han W S, Lim J M, et al., Lysine-Functionatized Silver Nanoparticles for Visual Detection and Separation of Histidine and Histidine-Tagged Proteins. Langmuir,2010,26: 2181-2185
    [241]Greaney M J, Nguyen M A, Chang C C, et al., Indicator displacement assays for amino acids using Ni-NTA tethered to PAMAM dendrimers on controlled pore glass. Chem Commun,2010,46:5337-5339
    [242]Zhu L,Anslyn E V, Facile quantification of enantiomeric excess and concentration with indicator-displacement assays:An example in the analyses of alpha-hydroxyacids. J Am Chem Soc,2004,126:3676-3677
    [243]Leung D,Anslyn E V, Transitioning enantioselective indicator displacement assays for alpha-amino acids to protocols amenable to high-throughput screening. J Am Chem Soc, 2008,130:12328-12333
    [244]Leung D, Folmer-Andersen J F, Lynch V M, et al., Using enantioselective indicator displacement assays to determine the enantiomeric excess of alpha-amino acids. J Am Chem Soc,2008,130:12318-12327
    [245]Lou X, Zhang L, Qin J, et al., Colorimetric Sensing of α-Amino Acids and Its Application for the "Label-Free" Detection of Protease. Langmuir,2010,26:1566-1569
    [246]Su J, Sun Y-Q, Huo F-J, et al., Naked-eye determination of oxalate anion in aqueous solution with copper ion and pyrocatechol violet. Analyst,2010,135:2918-2923
    [247]Huo F-J, Yang Y-T, Su J, et al., Indicator approach to develop a chemosensor for the colorimetric sensing of thiol-containing water and its application for the thiol detection in plasma. Analyst,2011,
    [248]Wiskur S L, Ait-Haddou H, Lavigne J J, et al., Teaching Old Indicators New Tricks. Acc Chem Res,2001,34:963-972
    [249]Nguyen B T,Anslyn E V, Indicator-displacement assays. Coordin Chem Rev,2006,250: 3118-3127
    [250]Chaga G S, Twenty-five years of immobilized metal ion affinity chromatography:past, present and future. J Biochem Bioph Meth,2001,49:313-334
    [251]Ueda E K M, Gout P W,Morganti L, Current and prospective applications of metal ion-protein binding. J Chromatogr A,2003,988:1-23
    [252]Yoe J H,Jones A L, Colorimetric Determination of Iron with Disodium-1,2-dihydroxybenzene-3,5-disulfonate. Industrial & Engineering Chemistry Analytical Edition,1944,16:111-115
    [253]Masoud M S, Kassem T S, Shaker M A, et al., Studies on transition metal murexide complexes. J Therm Anal Calorim,2006,84:549-555
    [254]Fraser K A,Harding M M, The crystal and molecular structure of bis(histidino)nickel(II) monohydrate. Journal of the Chemical Society A:Inorganic, Physical, Theoretical,1967, 415-420
    [255]Valenti L E, De Pauli C P.Giacomelli C E, The binding of Ni(II) ions to hexahistidine as a model system of the interaction between nickel and His-tagged proteins. J Inorg Biochem, 2006,100:192-200
    [256]Moore S, Pancreatic DNase. In The enzymes; Boyer, P. D.; Eds.; VCH:New York,1981; Vol.14, pp 281-296. Pancreatic DNase. In The enzymes; Boyer, P. D.; Eds.; VCH:New York, 1981; Vol.14, pp 281-296.,1981,
    [257]Mannherz H G, Peitsch M C, Zanotti S, et al., A new function for an old enzyme:the role of DNase I in apoptosis. Curr Top Microbiol,1995,198:161-74
    [258]Napirei M, Karsunky H, Zevnik B, et al., Features of systemic lupus erythematosus in Dnasel-deficient mice. Nat Genet,2000,25:177-181
    [259]Tamkovich S N, Cherepanova A V, Kolesnikova E V, et al., Circulating DNA and DNase Activity in Human Blood. Ann Ny Acad Sci,2006,1075:191-196
    [260]Spandidos D A, Ramandamis G, Garas J, et al., Serum deoxyribonucleases in patients with breast cancer. Eur J Cancer,1980,16:1615-1619
    [261]Kawai Y, Yoshida M, Arakawa K, et al., Diagnostic Use of Serum Deoxyribonuclease I Activity as a Novel Early-Phase Marker in Acute Myocardial Infarction. Circulation,2004, 109:2398-2400
    [262]Arakawa K, Kawai Y, Kumamoto T, et al., Serum deoxyribonuclease I activity can be used as a sensitive marker for detection of transient myocardial ischaemia induced by percutaneous coronary intervention. Eur Heart J,2005,26:2375-2380
    [263]Morikawa N, Kawai Y, Arakawa K, et al., Serum deoxyribonuclease I activity can be used as a novel marker of transient myocardial ischaemia:results in vasospastic angina pectoris induced by provocation test. Eur Heart J,2007,28:2992-2997
    [264]Nadano D, Yasuda T.Kishi K, Measurement of deoxyribonuclease I activity in human tissues and body fluids by a single radial enzyme-diffusion method. Clin Chem,1993,39: 448-52
    [265]Sato S, Fujita K, Kanazawa M, et al., Reliable ferrocenyloligonucleotide-immobilized electrodes and their application to electrochemical DNase I assay. Anal Chim Acta,2009, 645:30-35
    [266]Nakajima T, Takagi R, Tajima Y, et al., Development of a sensitive enzyme-linked immunosorbent assay for measurement of DNase I in human serum. Clin Chim Acta,2009, 403:219-222
    [267]Fujihara J, Tabuchi M, Inoue T, et al., Rapid measurement of deoxyribonuclease I activity with the use of microchip electrophoresis based on DNA degradation. Anal Biochem,2011, 413:78-79
    [268]Choi S J,Szoka F C, Fluorometric determination of deoxyribonuclease I activity with PicoGreen. Anal Biochem,2000,281:95-97
    [269]Ma C B, Tang Z W, Wang K M, et al., Real-time monitoring of restriction endonuclease activity using molecular beacon. Anal Biochem,2007,363:294-296
    [270]Huang S, Xiao Q, He Z K, et al., A high sensitive and specific QDs FRET bioprobe for MNase. Chem Commun,2008,5990-5992
    [271]Li X M, Song C, Zhao M P, et al., Continuous monitoring of restriction endonuclease cleavage activity by universal molecular beacon light quenching coupled with real-time polymerase chain reaction. Anal Biochem,2008,381:1-7
    [272]Ma C B, Tang Z W, Huo X Q, et al., Real-time monitoring of double-stranded DNA cleavage using molecular beacons. Talanta,2008,76:458-461
    [273]Suzuki M, Husimi Y, Komatsu H, et al., Quantum dot FRET Biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. J Am Chem Soc,2008,130:5720-5725
    [274]Zhao W A, Lam J C F, Chiuman W, et al., Enzymatic cleavage of nucleic acids on gold nanoparticles:A generic platform for facile colorimetric biosensors. Small,2008,4:810-816
    [275]Shen Q P, Nie Z, Guo M L, et al., Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator. Chem Commun,2009,929-931
    [276]Song G T, Chen C E, Ren J S, et al., A Simple, Universal Colorimetric Assay for Endonuclease/Methyltransferase Activity and Inhibition Based on an Enzyme-Responsive Nanoparticle System. Acs Nano,2009,3:1183-1189
    [277]Guhrs K H, Groth M,Grosse F, A label-free assay of exonuclease activity using a pyrosequencing technique. Analytical Biochemistry,2010,405:11-18
    [278]Cao R, Li B, Zhang Y, et al., Naked-eye sensitive detection of nuclease activity using positively-charged gold nanoparticles as colorimetric probes. Chem Commun,2011,47: 12301-12303
    [279]Garcia T, Revenga-Parra M, Sobrino B, et al., Electrochemical DNA base pairs quantification and endonuclease cleavage detection. Biosens Bioelectron,2011,27:40-45
    [280]Huang Y, Zhao S L, Chen Z F, et al., Ultrasensitive endonuclease activity and inhibition detection using gold nanoparticle-enhanced fluorescence polarization. Chem Commun,2011, 47:4763-4765
    [281]Huang Y, Zhao S L, Liang H, et al., Multiplex Detection of Endonucleases by Using a Multicolor Gold Nanobeacon. Chem Eur J,2011,17:7313-7319
    [282]Huang Y, Zhao S L, Shi M, et al., Intermolecular and Intramolecular Quencher Based Quantum Dot Nanoprobes for Multiplexed Detection of Endonuclease Activity and Inhibition. Anal Chem,2011,83:8913-8918
    [283]Yang X J, Pu F, Ren J S, et al., DNA-templated ensemble for label-free and real-time fluorescence turn-on detection of enzymatic/oxidative cleavage of single-stranded DNA. Chemical Communications,2011,47:8133-8135
    [284]Deng J, Jin Y, Chen G Z, et al., Label-free fluorescent assay for real-time monitoring site-specific DNA cleavage by EcoRI endonuclease. Analyst,2012,137:1713-1717
    [285]Deng J, Jin Y, Wang L, et al., Sensitive detection of endonuclease activity and inhibition using gold nanorods. Biosens Bioelectron,2012,34:144-150
    [286]Lee J,Min D H, A simple fluorometric assay for DNA exonuclease activity based on graphene oxide. Analyst,2012,137:2024-2026
    [287]Su X, Zhu X C, Zhang C, et al., In Situ, Real-Time Monitoring of the 3'to 5'Exonucleases Secreted by Living Cells. Anal Chem,2012,84:5059-5065
    [288]Zhou Z X, Du Y, Zhang L B, et al., A label-free, G-quadruplex DNAzyme-based fluorescent probe for signal-amplified DNA detection and turn-on assay of endonuclease. Biosensors & Bioelectronics,2012,34:100-105
    [289]Zhou Z, Zhu J, Zhang L, et al, G-quadruplex-Based Fluorescent Assay of S1 Nuclease Activity and K+. Anal Chem,2013,85:2431-2435
    [290]Ma Q A,Su X G, Near-infrared quantum dots:synthesis, functionalization and analytical applications. Analyst,2010,135:1867-1877
    [291]Kong D M, Ma Y E, Guo J H, et al., Fluorescent Sensor for Monitoring Structural Changes of G-Quadruplexes and Detection of Potassium Ion. Anal Chem,2009,81:2678-2684
    [292]Bouhoutsos-Brown E, Marshall C L,Pinnavaia T J, Structure-directing properties of sodium(+) ion in the solution ordering of guanosine 5'-monophosphate. Stoichiometry of aggregation, binding to ethidium, and modes of sodium(+) ion complexation. J Am Chem Soc,1982,104:6576-6584
    [293]Walmsley J A,Burnett J F, A New Model for the K+-Induced Macromolecular Structure of Guanosine 5'-Monophosphate in Solution. Biochemistry,1999,38:14063-14068
    [294]Neo J L, Kamaladasan K,Uttamchandani M, G-Quadruplex Based Probes for Visual Detection and Sensing. Curr Pharm Design,2012,18:2048-2057
    [295]Babendure J R, Adams S R,Tsien R Y, Aptamers Switch on Fluorescence of Triphenylmethane Dyes. J Am Chem Soc,2003,125:14716-14717
    [296]Bhasikuttan A C, Mohanty J,Pal H, Interaction of malachite green with guanine-rich single-stranded DNA:preferential binding to a G-quadruplex. Angew Chem Int Ed,2007,46: 9305-9307
    [297]Pan C Q,Lazarus R A, Ca2+-dependent activity of human DNase Ⅰ and its hyperactive variants. Protein Sci,1999,8:1780-1788
    [298]Simonsson T, G-quadruplex DNA structures-Variations on a theme. Biol Chem,2001,382: 621-628
    [299]Kreuder V, Dieckhoff J, Sittig M, et al., Isolation, characterisation and crystallization of deoxyribonuclease I from bovine and rat parotid gland and its interaction with rabbit skeletal muscle actin. Eur J Biochem,1984,139:389-400
    [300]Shimada O, Ishikawa H, Tosaka-Shimada H, et al., Detection of deoxyribonuclease I along the secretory pathway in Paneth cells of human small intestine. J Histochem Cytochem,1998, 46:833-840
    [301]Goldacre R J,Phillips J N, The ionization of basic triphenylmethane dyes. Journal of the Chemical Society (Resumed),1949,0:1724-1732
    [302]Kong D M, Ma Y E, Wu J, et al., Discrimination of G-Quadruplexes from Duplex and Single-Stranded DNAs with Fluorescence and Energy-Transfer Fluorescence Spectra of Crystal Violet. Chem Eur J,2009,15:901-909
    [303]Weissleder R,Mahmood U, Molecular imaging. Radiology,2001,219:316-333
    [304]Massoud T F,Gambhir S S, Molecular imaging in living subjects:seeing fundamental biological processes in a new light. Gene Dev,2003,17:545-580
    [305]Frangioni J V, In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol,2003,7: 626-634
    [306]Rao J H, Dragulescu-Andrasi A,Yao H Q, Fluorescence imaging in vivo:recent advances. Curr Opin Biotech,2007,18:17-25
    [307]Kobayashi H, Ogawa M, Alford R, et al., New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem Rev,2010,110:2620-2640
    [308]Sipkins D A, Cheresh D A, Kazemi M R, et al., Detection of tumor angiogenesis in vivo by alpha(v)beta(3)-targeted magnetic resonance imaging. Nat Med,1998,4:623-626
    [309]Paulus M J, Gleason S S, Kennel S J, et al., High resolution X-ray computed tomography: An emerging tool for small animal cancer research. Neoplasia,2000,2:62-70
    [310]Kalender W A, X-ray computed tomography. Phys Med Biol,2006,51:R29
    [311]Heimdal A, Stoylen A, Torp H, et al., Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiog,1998,11:1013-1019
    [312]Gambhir S S, Molecular imaging of cancer with positron emission tomography. Nature Reviews Cancer,2002,2:683-693
    [313]Johnson K A, Jones K, Holman B L, et al., Preclinical prediction of Alzheimer's disease using SPECT. Neurology,1998,50:1563-1571
    [314]Beekman F J,Vastenhouw B, Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol,2004,49:4579-4592
    [315]Louie A Y, Multimodality Imaging Probes:Design and Challenges. Chem Rev,2010,110: 3146-3195
    [316]Cheon J,Lee J-H, Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology. Acc Chem Res,2008,41:1630-1640
    [317]Koole R, Mulder W J M, van Schooneveld M M, et al., Magnetic quantum dots for multimodal imaging. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology,2009,1:475-491
    [318]Wang G,Su X, The synthesis and bio-applications of magnetic and fluorescent bifunctional composite nanoparticles. Analyst,2011,136:1783-1798
    [319]Zhou J, Liu Z,Li F, Upconversion nanophosphors for small-animal imaging. Chem Soc Rev, 2012,41:1323-1349
    [320]Kim J, Lee J E, Lee J, et al., Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc,2006,128:688-689
    [321]Lee J H, Jun Y W, Yeon S I, et al., Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed,2006, 45:8160-8162
    [322]Mulder W J M, Griffioen A W, Strijkers G J, et al., Magnetic and fluorescent nanoparticles for multimodality imaging. Nanomedicine,2007,2:307-324
    [323]Kim J, Kim H S, Lee N, et al., Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angew Chem Int Ed,2008,47:8438-8441
    [324]Lee J E, Lee N, Kim H, et al., Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery. J Am Chem Soc,2010,132: 552-557
    [325]Yong K T, Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology,2009,20:
    [326]Xie J P, Zheng Y QYing J Y, Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J Am Chem Soc,2009,131:888-889
    [327]Guo C L,Irudayaraj J, Fluorescent Ag Clusters via a Protein-Directed Approach as a Hg(II) Ion Sensor. Anal Chem,2011,83:2883-2889
    [328]Zhang B, Bioinspired synthesis of gadolinium-based hybrid nanoparticles as MRI blood pool contrast agents with high relaxivity. J Mater Chem,2012,
    [329]Raiser D,Deville J P, Study of XPS photoemission of some gadolinium compounds. J Electron Spectrosc,1991,57:91-97
    [330]Anishur Rahman A T M, Vasilev K,Majewski P, Ultra small Gd2O3 nanoparticles: Absorption and emission properties. J Colloid Interf Sci,2011,354:592-596
    [331]Cao X L, Li H W, Yue Y, et al., pH-Induced conformational changes of BSA in fluorescent AuNCs@BSA and its effects on NCs emission. Vib Spectrosc,2013,65:186-192
    [332]Ruoslahti E, Peptides as Targeting Elements and Tissue Penetration Devices for Nanoparticles. Advanced Materials,2012,24:3747-3756

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700