用户名: 密码: 验证码:
甲状腺功能与抑郁障碍关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲状腺功能异常与抑郁障碍密切相关,甲状腺功能亢进或减退都可导致抑郁障碍;甲减与抑郁症具有相似的临床表现,两者都可引起认知障碍。甲状腺功能异常引发抑郁障碍的机制尚不完全清楚,为探讨甲状腺功能与抑郁障碍的关系我们进行了以下研究:
     1、在动物实验部分采用旷野试验及蔗糖试验评价甲状腺功能减退大鼠的行为改变,18F-FDG micro PET显像评价脑葡萄糖代谢的变化,分析行为表现与特定脑区代谢活性的关系。结果发现,甲减大鼠体重、蔗糖偏好度、旷野实验中排便粒数和直立跨格数明显低于对照组:双侧尾状核/豆状核、扣带回皮质、伏隔核、额叶联合部及运动皮质葡萄糖代谢减低,尾状核/豆状核及伏隔核代谢变化与蔗糖偏好度变化显著相关。
     2、131I治疗后出现亚临床甲减的患者中抑郁症的发病率(23.5%)显著高于甲状腺功能正常者(7.3%);对亚临床甲减组中TSH超过10mIU/L的部分患者用左旋甲状腺素进行治疗,结果HAMD得分显著降低,说明替代治疗可使这部分患者受益。
     3、选择临床确诊的Graves'病患者,通过量表评分及临床资料分析,探讨甲亢伴发抑郁、焦虑的危险因素,并对SF-36量表在甲亢患者中的适用性进行评价。结果表明,FT3、FT4、TRAb和眼症是Graves'病伴发抑郁的危险因素,FT3、心率和甲状腺肿大是Graves’病伴发焦虑的危险因素;SF-36量表能准确反映甲亢患者的生存质量。
     4、用SPECT脑血流显像评价抑郁及甲减患者局部脑血流变化,用Go/No go实验评价认知功能。结果发现抑郁患者双侧尾状核、右侧扣带回血流显著降低,甲减患者双侧前额叶、中央前回、中央后回、海马、顶上小叶及扣带回血流显著降低。两组HAMD得分均显著高于对照组,抑郁组HAMD得分与双侧扣带回及尾状核相对rCBF显著负相关,而甲减组HAMD得分与扣带回相对rCBF显著负相关;抑郁及甲减患者均存在认知障碍,抑郁组Go/No go认知试验正确率与前额叶皮质相对rCBF显著正相关,甲减组Go/No go认知试验正确率与前额叶及海马相对rCBF显著正相关。
     结论:甲减大鼠脑局部葡萄糖代谢降低,代谢异常与抑郁症状密切相关,甲状腺激素缺乏通过影响边缘系统的功能导致抑郁障碍;甲减与抑郁均引起局部脑血流异常,两者存在部分重叠,甲减与抑郁患者的情感、认知障碍具有相似的神经机制;亚临床甲减增加了抑郁症的发病率,甲状腺激素替代治疗能够改善亚临床甲减患者的抑郁症状;FT3、FT4、TRAb和眼症是Graves'病伴发抑郁的危险因素,FT3、心率和甲状腺肿大是Graves'病伴发焦虑的危险因素,SF-36量表能准确反映甲亢患者的生存质量。
Thyroid dysfunction is closely related to depressive disorder, both hyperthyroidism and hypothyroidism can lead to depressive disorder; hypothyroidism and depression have similar clinical manifestations, both of them can cause cognitive defects. The mechanism under which thyroid disfunction leads to depressive disorder is still unclear, the following study was performed in order to explore the relationship between thyroid function and depressive disorder:
     1. The open field test and sucrose preference test were performed to evaluate the behavioural changes of the hypothyroid rats, F-FDG micro PET imaging was conducted to evaluate the changes in glucose metabolism of the brain, and the relationship between the behavioural manifestations and the brain metabolism were analyzed. Body weight, sucrose preference, feces boli and rearing in the open field test decreased significantly in the hypothyroid rats compared to the control rats; the glucose metabolism decreased bilaterally and significantly in caudate/putamen, cortex cingulate, nucleus accumbens, cortex frontal association and cortex motor in the hypothyriod rats; the metabolic changes in caudate/putamen and nucleus accumbens correlated significantly with changes in sucrose preference.
     2. Depression occured more frequently in patients with subclinical hypothyroidism (23.5%) after131I treatment than in euthyroid patients (7.3%). L-thyroxine treatment was performed in some patients with TSH level higher than10mlU/L in the subclinical hypothyroidism group, significant decrease in HAMD score was observed which demonstated the beneficial effects of substitutive treatment.
     3. Scale evaluation and clinical data analysis were conducted in patients with Graves' diseae in an attempt to explore the risk factors of depression and anxiety in hyperthyroidism, usefulness of SF-36was evaluated in GD patients. Results showed that depression and anxiety were more prevalent in patients with Graves'disease, FT3, FT4, TRAb and eye symptoms were risk factors for depression, FT3, heart rate and thyroid swelling were risk factors for anxiety, SF-36was a suitable tool in the evaluation of life quality in GD patients.
     4. Regional brain blood flow changes in patients with depression and hypothyroidsm were compared using SPECT, cognitive function was evaluated with Go/No go test. Relative rCBF decreased significantly in bilateral caudate and right cingulate for depressive patients and in bilateral prefrontal cortex, anterior central gyrus, posterior central gyrus, hippocampus, superior parietal lobule and cingulate for hypothyroid patients. Both depressive and hypothyroid patients had significant higher HAMD scores than contol patients, HAMD score in the depressive group correlated negatively with rCBF in bileteral cingulate and caudate, while HAMD score in the hypothyroid group correlated negatively with rCBF in bilateral cingulate; cognitive defects were observed in both depressive and hypothyroid groups, Go/No go score correlated positively with relative rCBF in prefrontal cortex in the depressive group, while correlated positively with prefrontal cortex and hippocampus in the hypothyroid group.
     In conclusion, hypothyroidism can lead to decrease in regional brain glucose metabolism in rats, abnormal brain metabolism relates closely to depressive symptoms, thyroid hormone deficiency can influnce the function of emotional circuit which subsequently causes depressive disorder; both depression and hypothyroidism can lead to abnormality in regional brain blood flow, and some of the abnormal regions overlap in the two diseases which means similar neural mechanism underlies the mood and cognitive disorders in depressive and hypothyroid patients; subclinical hypothyroidism increases the incidence of depression, L-thyroxine substitution can improve the depressive symptoms in patients with subclinical hypothyroidism; FT3, FT4, TRAb and eye symptoms are risk factors of depression in Graves' disease, FT3, heart rate and thyroid swelling are risk factors of anxiety in Graves'disease, SF-36can reflect the life quality of patients with Graves" disease.
引文
[1]Nestler E. J., Barrot M., DiLeone R. J., et al. Neurobiology of depression[J]. Neuron, 2002,34(1):13-25.
    [2]Manji H. K., Drevets W. C. Charney D. S. The cellular neurobiology of depression[J]. Nat Med,2001,7(5):541-547.
    [3]Charney D. S. Psychobiological mechanisms of resilience and vulnerability:implications for successful adaptation to extreme stress[J]. Am J Psychiatry,2004,161(2):195-216.
    [4]GillespieC. F. Nemeroff C. B. Hypercortisolemia and depression[J]. Psychosom Med,2005, 67 Suppl 1:S26-28.
    [5]徐林.抑郁症的神经可塑性机制[J].中南大学学报(医学版),2008,33(4):5.
    [6]Caspi A., Sugden K., Moffitt T. E., et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene[J]. Science,2003,301 (5631):386-389.
    [7]Yang J., Li W., Liu X., et al. Enriched environment treatment counteracts enhanced addictive and depressive-like behavior induced by prenatal chronic stress [J]. Brain Res, 2006,1125(1):132-137.
    [8]Schildkraut J. J. The catecholamine hypothesis of affective disorders:a review of supporting evidence[J]. Am J Psychiatry,1965,122(5):509-522.
    [9]Law A. J. Deakin J. F. Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses[J]. Neuroreport,2001,12(13):2971-2974.
    [10]杨春,李文媛,张广芬,et al. AMPA受体介导氯胺酮抗抑郁大鼠海马BDNF及TrkB变化[J].临床麻醉学杂志,2011,27(11)
    [11]Belozertseva I. V., Kos T., Popik P., et al. Antidepressant-like effects of mGluRl and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests [J]. Eur Neuropsychopharmacol,2007,17(3):172-179.
    [12]Kinney G. G., O'Brien J. A., Lemaire W., et al. A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models[J]. J Pharmacol Exp Ther,2005, 313(1):199-206.
    [13]Kramer M. S., Winokur A., Kelsey J., et al. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression[J]. Neuropsychopharmacology,2004,29(2):385-392.
    [14]MacQueen G. M., Campbell S., McEwen B. S., et al. Course of illness, hippocampal function, and hippocampal volume in major depression[J]. Proc Natl Acad Sci U S A,2003, 100(3):1387-1392.
    [15]Vythilingam M., Heim C., Newport J., et al. Childhood trauma associated with smaller hippocampal volume in women with major depression[J]. Am J Psychiatry,2002, 159(12):2072-2080.
    [16]Fuchs E.Gould E. Mini-review:in vivo neurogenesis in the adult brain:regulation and functional implications[J]. Eur J Neurosci,2000,12(7):2211-2214.
    [17]Czeh B., Welt T., Fischer A. K., et al. Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation:effects on stress hormone levels and adult hippocampal neurogenesis[J]. Biol Psychiatry,2002,52 (11):1057-1065.
    [18]Shirayama Y., Chen A. C., Nakagawa S., et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression[J]. J Neurosci,2002, 22(8):3251-3261.
    [19]Hisaoka K., Nishida A., Koda T., et al. Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells[J]. J Neurochem,2001,79(1):25-34.
    [20]Chen A. C., Shirayama Y., Shin K. H., et al. Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect[J]. Biol Psychiatry,2001,49(9):753-762.
    [21]Mervaala E., Fohr J., Kononen M., et al. Quantitative MRI of the hippocampus and amygdala in severe depression[J]. Psychol Med,2000,30(1):117-125.
    [22]Basterzi A. D., Aydemir C., Kisa C., et al. IL-6 levels decrease with SSRI treatment in patients with major depression[J]. Hum Psychopharmacol,2005,20(7):473-476.
    [23]Tuglu C., Kara S. H., Caliyurt 0., et al. Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder[J]. Psychopharmacology (Berl),2003,170(4):429-433.
    [24]Raison C. L., Capuron L.Miller A. H. Cytokines sing the blues:inflammation and the pathogenesis of depression[J]. Trends Immunol,2006,27(1):24-31.
    [25]Maes M., Ringel K., Kubera M., et al. Increased autoimmune activity against 5-HT:a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression[J]. J Affect Disord, 2012,136(3):386-392.
    [26]Felger J. C., Alagbe 0., Hu F., et al. Effects of interferon-alpha on rhesus monkeys: a nonhuman primate model of cytokine-induced depression[J]. Biol Psychiatry,2007, 62(11):1324-1333.
    [27]O'Connor J. C., Lawson M. A., Andre C., et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice[J]. Mol Psychiatry,2009,14(5):511-522.
    [28]Sanchez M. M., Alagbe O., Felger J. C., et al. Activated p38 MAPK is associated with decreased CSF 5-HIAA and increased maternal rejection during infancy in rhesus monkeys[J]. Mol Psychiatry,2007,12(10):895-897.
    [29]Chiou S. H., Chen S. J., Peng C. H., et al. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell[J]. Biochem Biophys Res Commun,2006, 343(2):391-400.
    [30]Raadsheer F. C., Hoogendijk W. J., Stam F. C., et al. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients[J]. Neuroendocrinology,1994,60 (4):436-444.
    [31]Rubin R. T., Phillips J. J., McCracken J. T., et al. Adrenal gland volume in major depression:relationship to basal and stimulated pituitary-adrenal cortical axis function[J]. Biol Psychiatry,1996,40(2):89-97.
    [32]Pariante C. M. Miller A. H. Glucocorticoid receptors in major depression:relevance to pathophysiology and treatment[J]. Biol Psychiatry,2001,49 (5):391-404.
    [33]Kim J. E., Liu B. P., Park J. H., et al. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury [J]. Neuron,2004,44(3):439-451.
    [34]GrandPre T., Li S. Strittmatter S. M. Nogo-66 receptor antagonist peptide promotes axonal regeneration[J]. Nature,2002,417(6888):547-551.
    [35]Whybrow P. C. Prange A. J., Jr. A hypothesis of thyroid-catecholamine-receptor interaction. Its relevance to affective illness[J]. Arch Gen Psychiatry,1981, 38(1):106-113.
    [36]Larsen P. R., Silva J. E.Kaplan M. M. Relationships between circulating and intracellular thyroid hormones:physiological and clinical implications[J]. Endocr Rev, 1981,2(1):87-102.
    [37]van Doorn J., Roelfsema F. van der Heide D. Concentrations of thyroxine and 3,5,3'-triiodothyronine at 34 different sites in euthyroid rats as determined by an isotopic equilibrium technique[J]. Endocrinology,1985,117(3):1201-1208.
    [38]Williams G. R. Neurodevelopmental and neurophysiological actions of thyroid hormone[J]. J Neuroendocrinol,2008,20(6):784-794.
    [39]Kathol R. G. Delahunt J. W. The relationship of anxiety and depression to symptoms of hyperthyroidism using operational criteria[J]. Gen Hosp Psychiatry,1986,8(1):23-28.
    [40]Chopra I. J., Solomon D. H.Huang T. S. Serum thyrotropin in hospitalized psychiatric patients:evidence for hyperthyrotropinemia as measured by an ultrasensitive thyrotropin assay[J]. Metabolism,1990,39(5):538-543.
    [41]Williams M. D., Harris R., Dayan C. M., et al. Thyroid function and the natural history of depression:findings from the Caerphilly Prospective Study (CaPS) and a meta-analysis[J]. Clin Endocrinol (Oxf),2009,70(3):484-492.
    [42]Kirkegaard C., Korner A. Faber J. Increased production of thyroxine and inappropriately elevated serum thyrotropin in levels in endogenous depression[J]. Biol Psychiatry,1990, 27(5):472-476.
    [43]Joffe R. T. Antithyroid antibodies in major depression [J]. Acta Psychiatr Scand,1987, 76(5):598-599.
    [44]Pilhatsch M., Winter C., Nordstrom K., et al. Increased depressive behaviour in mice harboring the mutant thyroid hormone receptor alpha 1[J]. Behav Brain Res,2010, 214(2):187-192.
    [45]Hennemann G., Docter R., Friesema E. C., et al. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability[J], Endocr Rev, 2001,22(4):451-476.
    [46]Prange A. J., Jr., Lara P. P., Wilson I. C., et al. Effects of thyrotropin-releasing hormone in depression[J]. Lancet,1972,2(7785):999-1002.
    [47]Zeng H., Schimpf B. A., Rohde A. D., et al. Thyrotropin-releasing hormone receptor 1-deficient mice display increased depression and anxiety-like behavior[J]. Mol Endocrinol,2007,21(11):2795-2804.
    [48]Jackson I. M. The thyroid axis and depression[J]. Thyroid,1998,8(10):951-956.
    [49]Prange A. J., Jr., Wilson I. C., Rabon A. M., et al. Enhancement of imipramine antidepressant activity by thyroid hormone[J]. Am J Psychiatry,1969,126(4):457-469.
    [50]Wheatley D. Potentiation of amitriptyline by thyroid hormone [J]. Arch Gen Psychiatry, 1972,26(3):229-233.
    [51]Altshuler L. L., Bauer M., Frye M. A., et al. Does thyroid supplementation accelerate tricyclic antidepressant response? A review and meta-analysis of the literature[J]. Am J Psychiatry,2001,158(10):1617-1622.
    [52]Cooper-Kazaz R., van der Deure W. M., Medici M., et al. Preliminary evidence that a functional polymorphism in type 1 deiodinase is associated with enhanced potentiation of the antidepressant effect of sertraline by triiodothyronine[J]. J Affect Disord,2009, 116(1-2):113-116.
    [53]Baumgartner A. Thyroxine and the treatment of affective disorders:an overview of the results of basic and clinical research[J]. Int J Neuropsychopharmacol,2000, 3 (2):149-165.
    [54]Ohgami H., Nagayama H., Akiyoshi J., et al. Contributing factors to changes of cerebral blood flow in major depressive disorder[J]. J Affect Disord,2005,87(1):57-63.
    [55]Benabarre A., Vieta E., Martin F., et al. Clinical value of 99mTc-HMPAO SPECT in depressed bipolar I patients[J]. Psychiatry Res,2004,132 (3):285-289.
    [56]Perico C. A., Skaf C. R., Yamada A., et al. Relationship between regional cerebral blood flow and separate symptom clusters of major depression:a single photon emission computed tomography study using statistical parametric mapping[J]. Neurosci Lett,2005, 384(3):265-270.
    [57]Klimke A., Larisch R., Janz A., et al. Dopamine D2 receptor binding before and after treatment of major depression measured by [1231]IBZM SPECT[J]. Psychiatry Res,1999, 90(2):91-101.
    [58]Schins A., Van Kroonenburgh M., Van Laere K., et al. Increased cerebral serotonin-2A receptor binding in depressed patients with myocardial infarction[J]. Psychiatry Res, 2005,139(2):155-163.
    [59]Malison R. T., Price L. H., Berman R., et al. Reduced brain serotonin transporter availability in major depression as measured by [1231]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography[J]. Biol Psychiatry,1998,44(11):1090-1098.
    [60]Staley J. K., Sanacora G., Tamagnan G., et al. Sex differences in diencephalon serotonin transporter availability in major depression[J]. Biol Psychiatry,2006,59(1):40-47.
    [61]de Win M. M., Reneman L., Reitsma J. B., et al. Mood disorders and serotonin transporter density in ecstasy users--the influence of long-term abstention, dose, and gender[J]. Psychopharmacology (Berl),2004,173(3-4):376-382.
    [62]Newberg A. B., Amsterdam J. D., Wintering N., et al.1231-ADAM binding to serotonin transporters in patients with major depression and healthy controls:a preliminary study[J]. J Nucl Med,2005,46(6):973-977.
    [63]Scheinberg P., Stead E. A., Jr., Brannon E. S., et al. Correlative observations on cerebral metabolism and cardiac output in myxedema[J]. J Clin Invest,1950, 29(9):1139-1146.
    [64]Sokoloff L., Wechsler R. L., Mangold R., et al. Cerebral blood flow and oxygen consumption in hyperthyroidism before and after treatment[J]. J Clin Invest,1953, 32(3):202-208.
    [65]Krausz Y., Freedman N., Lester H., et al. Regional cerebral blood flow in patients with mild hypothyroidism[J]. J Nucl Med,2004,45(10):1712-1715.
    [66]Schraml F. V., Beason-Held L. L., Fletcher D. W., et al. Cerebral accumulation of Tc-99m ethyl cysteinate dimer (ECD) in severe, transient hypothyroidism[J]. J Cereb Blood Flow Metab,2006,26(3):321-329.
    [67]Constant E. L., de Volder A. G., Ivanoiu A., et al. Cerebral blood flow and glucose metabolism in hypothyroidism:a positron emission tomography study[J]. J Clin Endocrinol Metab,2001,86(8):3864-3870.
    [68]Bauer M., London E. D., Rasgon N., et al. Supraphysiological doses of levothyroxine alter regional cerebral metabolism and improve mood in bipolar depression[J]. Mol Psychiatry,2005,10(5):456-469.
    [69]Bauer M., Silverman D. H., Schlagenhauf F., et al. Brain glucose metabolism in hypothyroidism:a positron emission tomography study before and after thyroid hormone replacement therapy[J]. J Clin Endocrinol Metab,2009,94(8):2922-2929.
    [70]Akaike M., Kato N., Ohno H., et al. Hyperactivity and spatial maze learning impairment of adult rats with temporary neonatal hypothyroidism[J]. Neurotoxicol Teratol,1991, 13(3):317-322.
    [71]Darbra S., Garau A., Balada F., et al. Perinatal hypothyroidism effects on neuromotor competence, novelty-directed exploratory and anxiety-related behaviour and learning in rats[J]. Behav Brain Res,2003,143(2):209-215.
    [72]Friedhoff A. J., Miller J. C., Armour M., et al. Role of maternal biochemistry in fetal brain development:effect of maternal thyroidectomy on behaviour and biogenic amine metabolism in rat progeny[J]. Int J Neuropsychopharmacol,2000,3(2):89-97.
    [73]Negishi T., Kawasaki K., Sekiguchi S., et al. Attention-deficit and hyperactive neurobehavioural characteristics induced by perinatal hypothyroidism in rats[J]. Behav Brain Res,2005,159(2):323-331.
    [74]Sala-Roca J., Marti-Carbonell M. A., Garau A., et al. Effects of chronic dysthyroidism on activity and exploration[J]. Physiol Behav,2002,77(1):125-133.
    [75]Takahashi S. Pathological studies on the heart of Graves' disease[J]. Acta Sch Med Univ Kioto,1955,32 (2):59-86.
    [76]Rial R. V., Tur J. A., Palmer A. M., et al. Altered responsiveness to ambiental stimuli in altered thyroidal states[J]. Physiol Behav,1987,41 (2):119-123.
    [77]Wilcoxon J. S., Nadolski G. J., Samarut J., et al. Behavioral inhibition and impaired spatial learning and memory in hypothyroid mice lacking thyroid hormone receptor alpha[J]. Behav Brain Res,2007,177(1):109-116.
    [78]Redei E. E., Solberg L. C., Kluczynski J. M., et al. Paradoxical hormonal and behavioral responses to hypothyroid and hyperthyroid states in the Wistar-Kyoto rat[J]. Neuropsychopharmacology,2001,24(6):632-639.
    [79]Sapronov N. S. Fedotova Y.0. The effect of L-tryptophan on conditioned reflex learning and behavior in rats with experimental pathology of the thyroid gland [J]. Neurosci Behav Physiol,2002,32(3):237-241.
    [80]Rivlin R. S., Osnos M., Rosenthal S., et al. Abnormalities in taste preference in hypothyroid rats[J]. Am J Physiol,1977,232(1):E80-84.
    [81]Brosvic G. M., Doty R. L., Rowe M. M., et al. Influences of hypothyroidism on the taste detection performance of rats:a signal detection analysis[J]. Behav Neurosci,1992, 106(6):992-998.
    [82]McConnell R. J., Menendez C. E., Smith F. R., et al. Defects of taste and smell in patients with hypothyroidism[J]. Am J Med,1975,59(3):354-364.
    [83]Brosvic G. M. Hoey N. E. Taste detection and discrimination performance of rats following selective desalivation[J]. Physiol Behav,1990,48(5):617-623.
    [84]Lamberg B. A. Glucose metabolism in thyroid disease[J]. Acta Med Scand,1965, 178(3):351-362.
    [85]Gordon B. H., Wong G. Y., Liu J., et al. Abnormal taste preference for saccharin in hypothyroid rats[J]. Physiol Behav,1992,52(2):385-388.
    [86]Hu H., Su L., Xu Y. Q., et al. Behavioral and [F-18] f luorodeoxyglucose micro positron emission tomography imaging study in a rat chronic mild stress model of depression[J]. Neuroscience,2010,169(1):171-181.
    [87]Pothion S., Bizot J. C., Trovero F., et al. Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress[J]. Behav Brain Res,2004, 155(1):135-146.
    [88]Willner P., Towell A., Sampson D., et al. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant[J]. Psychopharmacology (Berl),1987,93(3):358-364.
    [89]Wallace D. L., Vialou V., Rios L., et al. The influence of DeltaFosB in the nucleus accumbens on natural reward-related behavior [J]. J Neurosci,2008,28(41):10272-10277.
    [90]Tonissaar M., Herm L., Rinken A., et al. Individual differences in sucrose intake and preference in the rat:circadian variation and association with dopamine D2 receptor function in striatum and nucleus accumbens[J]. Neurosci Lett,2006,403(1-2):119-124.
    [91]Faure A., Richard J. M. Berridge K. C. Desire and dread from the nucleus accumbens: cortical glutamate and subcortical GABA differentially generate motivation and hedonic impact in the rat[J]. PLoS One,2010,5(6):el1223.
    [92]Szczypka M. S., Kwok K., Brot M. D., et al. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice[J]. Neuron,2001,30(3):819-828.
    [93]Monzani F., Del Guerra P., Caraccio N., et al. Subclinical hypothyroidism: neurobehavioral features and beneficial effect of L-thyroxine treatment[J]. Clin Investig,1993,71 (5):367-371.
    [94]Joffe R. T., Sokolov S. T. Singer W. Thyroid hormone treatment of depression[J]. Thyroid, 1995,5(3):235-239.
    [95]Sawka A. M., Gerstein H. C., Marriott M. J., et al. Does a combination regimen of thyroxine (T4) and 3,5,3'-triiodothyronine improve depressive symptoms better than T4 alone in patients with hypothyroidism? Results of a double-blind, randomized, controlled trial[J]. J Clin Endocrinol Metab,2003,88(10):4551-4555.
    [96]Bono G., Fancellu R., Blandini F., et al. Cognitive and affective status in mild hypothyroidism and interactions with L-thyroxine treatment [J]. Acta Neurol Scand,2004, 110(1):59-66.
    [97]Chueire V. B., Romaldini J. H. Ward L. S. Subclinical hypothyroidism increases the risk for depression in the elderly[J]. Arch Gerontol Geriatr,2007,44(1):21-28.
    [98]中华医学会内分泌学分会《中国甲状腺疾病诊治指南》编写组.甲状腺疾病诊治指南——甲状腺功能减退症[J].中华内科杂志,2007,46(11):5.
    [99]Haggerty J. J., Jr., Stern R. A., Mason G. A., et al. Subclinical hypothyroidism:a modifiable risk factor for depression?[J]. Am J Psychiatry,1993,150(3):508-510.
    [100]Gold M. S., Pottash A. L. Extein I. Hypothyroidism and depression. Evidence from complete thyroid function evaluation[J]. JAMA,1981,245(19):1919-1922.
    [101]Correia N., Mullally S., Cooke G., et al. Evidence for a specific defect in hippocampal memory in overt and subclinical hypothyroidism[J]. J Clin Endocrinol Metab,2009, 94(10):3789-3797.
    [102]Jorde R., Waterloo K., Storhaug H., et al. Neuropsychological function and symptoms in subjects with subclinical hypothyroidism and the effect of thyroxine treatment[J]. J Clin Endocrinol Metab,2006,91 (1):145-153.
    [103]Engum A., Bjoro T., Mykletun A., et al. An association between depression, anxiety and thyroid function--a clinical fact or an artefact?[J]. Acta Psychiatr Scand,2002, 106(1):27-34.
    [104]Gussekloo J., van Exel E., de Craen A. J., et al. Thyroid status, disability and cognitive function, and survival in old age[J]. JAMA,2004,292(21):2591-2599.
    [105]Park Y. J., Lee E. J., Lee Y. J., et al. Subclinical hypothyroidism (SCH) is not associated with metabolic derangement, cognitive impairment, depression or poor quality of life (QoL) in elderly subjects[J]. Arch Gerontol Geriatr,2010,50(3):e68-73.
    [106]McDermott M. T. Ridgway E. C. Subclinical hypothyroidism is mild thyroid failure and should be treated[J]. J Clin Endocrinol Metab,2001,86(10):4585-4590.
    [107]Chu J. W. Crapo L. M. The treatment of subclinical hypothyroidism is seldom necessary[J]. J Clin Endocrinol Metab,2001,86(10):4591-4599.
    [108]Owen P. J. Lazarus J. H. Subclinical hypothyroidism:the case for treatment [J]. Trends Endocrinol Metab,2003,14(6):257-261.
    [109]Vanderpump M. Subclinical hypothyroidism:the case against treatment[J]. Trends Endocrinol Metab,2003,14(6):262-266.
    [110]Surks M. I., Ortiz E., Daniels G. H., et al. Subclinical thyroid disease:scientific review and guidelines for diagnosis and management[J]. JAMA,2004,291(2):228-238.
    [111]Fatourechi V. Subclinical thyroid disease[J]. Mayo Clin Proc,2001,76(4):413-416; quiz 416-417.
    [112]Targum S. D., Greenberg R. D., Harmon R. L., et al. Thyroid hormone and the TRH stimulation test in refractory depression[J]. J Clin Psychiatry,1984,45 (8):345-346.
    [113]Kong W. M., Sheikh M. H., Lumb P. J., et al. A 6-month randomized trial of thyroxine treatment in women with mild subclinical hypothyroidism[J]. Am J Med,2002, 112(5):348-354.
    [114]Vanderpump M. P., Tunbridge W. M., French J. M., et al. The incidence of thyroid disorders in the community:a twenty-year follow-up of the Whickham Survey[J]. Clin Endocrinol (Oxf),1995,43(1):55-68.
    [115]Fowler P. B. Natural history of autoimmune thyroiditis[J]. Br Med J (Clin Res Ed), 1981,282(6269):1072.
    [116]蔡敏芳.甲状腺机能减退致抑郁障碍12例分析[J].赣南医学院学报,2002,22(5):2.
    [117]陈丹,肖卫民,黄雄,et al甲亢治疗中甲状腺素水平与抑郁症关系的临床观察[J].医学研究通讯,2005,34(8):2.
    [118]关青,贾存玮,王军辉,et al心理干预对老年甲状腺功能减退抑郁患者康复的影响[J].中华行为医学与脑科学杂志,2009,18(10):2.
    [119]焦杨,蓝长安胡华.甲状腺功能异常对患者焦虑、抑郁情绪的影响[J].重庆医科大学学报,2008,33(4):4.
    [120]张海三,张红星赵晶媛.甲状腺疾病门诊初诊患者焦虑抑郁状况调查[J].临床心身疾病杂志,2009,15(5):2.
    [121]Geffken G. R., Ward H. E., Staab J. P., et al. Psychiatric morbidity in endocrine disorders[J]. Psychiatr Clin North Am,1998,21(2):473-489.
    [122]Trzepacz P. T., McCue M., Klein I., et al. A psychiatric and neuropsychological study of patients with untreated Graves'disease[J]. Gen Hosp Psychiatry,1988,10(1):49-55.
    [123]Fahrenfort J. J., Wilterdink A. M.van der Veen E. A. Long-term residual complaints and psychosocial sequelae after remission of hyperthyroidism[J]. Psychoneuroendocrinology,2000,25(2):201-211.
    [124]Scheffer C., Heckmann C., Mijic T., et al. [Chronic distress syndrome in patients with Graves' disease][J]. Med Klin (Munich),2004,99 (10):578-584.
    [125]Abraham-Nordling M., Torring 0., Hamberger B., et al. Graves'disease:a long-term quality-of-life follow up of patients randomized to treatment with antithyroid drugs, radioiodine, or surgery[J]. Thyroid,2005,15(11):1279-1286.
    [126]Abraham-Nordling M., Wallin G., Lundell G., et al. Thyroid hormone state and quality of life at long-term follow-up after randomized treatment of Graves'disease[J]. Eur J Endocrinol,2007,156(2):173-179.
    [127]Al-Adhami A., Craig W. Krukowski Z. Quality of life after surgery for Graves' disease[J]. Thyroid,2012,
    [128]Choi Y. J., Lim H. T., Lee S. J., et al. Assessing Graves' ophthalmopathy-specif ic quality of life in Korean patients[J]. Eye (Lond),2012,26 (4):544-551.
    [129]Elberling T. V., Rasmussen A. K., Feldt-Rasmussen U., et al. Impaired health-related quality of life in Graves' disease. A prospective study[J]. Eur J Endocrinol,2004, 151 (5):549-555.
    [130]Gerding M. N., Terwee C. B., Dekker F. W., et al. Quality of life in patients with Graves'ophthalmopathy is markedly decreased:measurement by the medical outcomes study instrument[J]. Thyroid,1997,7(6):885-889.
    [131]Kashkouli M. B., Heidari I., Pakdel F., et al. Change in quality of life after medical and surgical treatment of graves'ophthalmopathy [J]. Middle East Afr J Ophthalmol,2011, 18(1):42-47.
    [132]Lee H., Roh H. S., Yoon J. S., et al. Assessment of quality of life and depression in Korean patients with Graves' ophthalmopathy [J]. Korean J Ophthalmol,2010, 24(2):65-72.
    [133]Ljunggren J. G., Torring 0., Wallin G., et al. Quality of life aspects and costs in treatment of Graves'hyperthyroidism with antithyroid drugs, surgery, or radioiodine: results from a prospective, randomized study[J]. Thyroid,1998,8(8):653-659.
    [134]Park J. J., Sullivan T. J., Mortimer R. H., et al. Assessing quality of life in Australian patients with Graves'ophthalmopathy [J]. Br J Ophthalmol,2004,88(1):75-78.
    [135]Scerrino G., Morfino G., Paladino N. C., et al. Does thyroid surgery for Graves' disease improve health-related quality of life?[J]. Surg Today,2012,
    [136]Tehrani M., Krummenauer F., Mann W. J., et al. Disease-specific assessment of quality of life after decompression surgery for Graves'ophthalmopathy[J]. Eur J Ophthalmol, 2004,14(3):193-199.
    [137]Terwee C., Wakelkamp I., Tan S., et al. Long-term effects of Graves'ophthalmopathy on health-related quality of life[J]. Eur J Endocrinol,2002,146(6):751-757.
    [138]Terwee C. B., Dekker F. W., Prummel M. F., et al. Graves'ophthalmopathy through the eyes of the patient:A state of the art on health-related quality of life assessment [J]. Orbit,2001,20(4):281-290.
    [139]Terwee C. B. Wiersinga W. M. Graves' quality of life[J]. Ophthalmology,2007, 114(7):1416-1417; author reply 1417-1418.
    [140]Warmuz-Stangierska I., Czarnywojtek A., Stangierski R., et al. [Quality of life in Graves'ophthalmopathy (continuation of research)][J]. Przegl Lek,2004,61 (8):857-859.
    [141]Wiersinga W. M. Quality of life in Graves'ophthalmopathy[J]. Best Pract Res Clin Endocrinol Metab,2012,26(3):359-370.
    [142]Bianchi G. P., Zaccheroni V., Solaroli E., et al. Health-related quality of life in patients with thyroid disorders[J]. Qual Life Res,2004,13(1):45-54.
    [143]Gulseren S., Gulseren L., Hekimsoy Z., et al. Depression, anxiety, health-related quality of life, and disability in patients with overt and subclinical thyroid dysfunction[J]. Arch Med Res,2006,37(1):133-139.
    [144]Razvi S., Ingoe L. E., McMillan C. V., et al. Health status in patients with sub-clinical hypothyroidism[J]. Eur J Endocrinol,2005,152(5):713-717.
    [145]Li L., Wang H. M. Shen Y. Chinese SF-36 Health Survey:translation, cultural adaptation, validation, and normalisat ion[J]. J Epidemiol Community Health,2003,57(4):259-263.
    [146]Hemingway H., Nicholson A., Stafford M., et al. The impact of socioeconomic status on health functioning as assessed by the SF-36 questionnaire:the Whitehall II Study [J]. Am J Public Health,1997,87(9):1484-1490.
    [147]Hemingway H., Stafford M., Stansfeld S., et al. Is the SF-36 a valid measure of change in population health? Results from the Whitehall II Study[J]. BMJ,1997, 315(7118):1273-1279.
    [148]McHorney C. A., Ware J. E., Jr., Lu J. F., et al. The MOS 36-item Short-Form Health Survey (SF-36):III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups [J]. Med Care,1994,32(1):40-66.
    [149]Ware J. E., Jr. Sherbourne C. D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection[J]. Med Care,1992,30(6):473-483.
    [150]Chen A. Y., Frankowski R., Bishop-Leone J., et al. The development and validation of a dysphagia-specific quality-of-life questionnaire for patients with head and neck cancer:the M. D. Anderson dysphagia inventory [J]. Arch Otolaryngol Head Neck Surg,2001, 127(7):870-876.
    [151]Jenkinson C., Coulter A.Wright L. Short form 36 (SF36) health survey questionnaire: normative data for adults of working age[J]. BMJ,1993,306(6890):1437-1440.
    [152]Pinar R. Reliability and construct validity of the SF-36 in Turkish cancer patients[J]. Qual Life Res,2005,14(1):259-264.
    [153]Failde I.Ramos I. Validity and reliability of the SF-36 Health Survey Questionnaire in patients with coronary artery disease[J]. J Clin Epidemiol,2000,53(4):359-365.
    [154]Koh E. T., Leong K. P., Tsou I. Y., et al. The reliability, validity and sensitivity to change of the Chinese version of SF-36 in oriental patients with rheumatoid arthritis[J]. Rheumatology (Oxford),2006,45(8):1023-1028.
    [155]Riley E. D., Bangsberg D. R., Perry S., et al. Reliability and validity of the SF-36 in HIV-infected homeless and marginally housed individuals[J], Qual Life Res,2003, 12(8):1051-1058.
    [156]Jenkinson C., Peto V. Coulter A. Making sense of ambiguity:evaluation in internal reliability and face validity of the SF 36 questionnaire in women presenting with menorrhagia[J]. Qual Health Care,1996,5(1):9-12.
    [157]Bunevicius R., Velickiene D. Prange A. J., Jr. Mood and anxiety disorders in women with treated hyperthyroidism and ophthalmopathy caused by Graves'disease[J]. Gen Hosp Psychiatry,2005,27(2):133-139.
    [158]McHorney C. A., Ware J. E., Jr. Raczek A. E. The MOS 36-Item Short-Form Health Survey (SF-36):II. Psychometric and clinical tests of validity in measuring physical and mental health constructs[J]. Med Care,1993,31 (3):247-263.
    [159]Ruta D. A., Hurst N. P., Kind P., et al. Measuring health status in British patients with rheumatoid arthritis:reliability, validity and responsiveness of the short form 36-item health survey (SF-36) [J]. Br J Rheumatol,1998,37 (4):425-436.
    [160]Biondi B., Palmieri E. A., Klain M., et al. Subclinical hyperthyroidism:clinical features and treatment options[J]. Eur J Endocrinol,2005,152(1):1-9.
    [161]Bartalena L. Prevention of Graves'ophthalmopathy [J]. Best Pract Res Clin Endocrinol Metab,2012,26(3):371-379.
    [162]Caballero Mora F. J., Martos Moreno G. A., Gutierrez Partida B., et al. [Graves' ophthalmopathy][J]. An Pediatr (Bare),2012,77(5):355-356.
    [163]DeBellis A., Conzo G., Cennamo G., et al. Time course of Graves' ophthalmopathy after total thyroidectomy alone or followed by radioiodine therapy:a 2-year longitudinal study[J]. Endocrine,2012,41 (2):320-326.
    [164]Eckstein A., Schittkowski M. Esser J. Surgical treatment of Graves'ophthalmopathy [J]. Best Pract Res Clin Endocrinol Metab,2012,26(3):339-358.
    [165]Hegedus L., Bonnema S. J., Smith T. J., et al. Treating the thyroid in the presence of Graves'ophthalmopathy [J]. Best Pract Res Clin Endocrinol Metab,2012,26(3):313-324.
    [166]Khalilzadeh 0., Noshad S., Rashidi A., et al. Graves' ophthalmopathy:a review of immunogenetics[J]. Curr Genomics,2011,12(8):564-575.
    [167]Prabhu R. S., Liebman L., Wojno T., et al. Clinical outcomes of radiotherapy as initial local therapy for Graves' ophthalmopathy and predictors of the need for post-radiotherapy decompressive surgery[J]. Radiat Oncol,2012,7:95.
    [168]Regalbuto C., Le Moli R., Muscia V., et al. Severe Graves' ophthalmopathy after percutaneous ethanol injection in a nontoxic thyroid nodule[J]. Thyroid,2012, 22(2):210-213.
    [169]Szanyi J., Kremlacek J., Kubova Z., et al. A pilot study to monitor Graves' ophthalmopathy with a combination of pattern-reversal and motion-onset visual evoked potentials[J]. J Clin Apher,2012,27(6):295-301.
    [170]Wiersinga W. M. Graves' ophthalmopathy and dermopathy. Preface[J]. Best Pract Res Clin Endocrinol Metab,2012,26(3):227.
    [171]Yang M. Perros P. Management plan and delivery of care in Graves'ophthalmopathy patients[J]. Best Pract Res Clin Endocrinol Metab,2012,26(3):303-311.
    [172]Cappelli C., Gandossi E., Castellano M., et al. Prognostic value of thyrotropin receptor antibodies (TRAb) in Graves'disease:a 120 months prospective study[J]. Endocr J,2007,54(5):713-720.
    [173]Cigrovski-Berkovic M., Solter D. Solter M. Why does the patient with Graves'disease remain euthyroid/mildly hyperthyroid following total thyroidectomy--the role of thyrotropin receptor antibodies (TRAb) and vestigial remnants of the thyroglossal tract[J]. Acta Clin Croat,2008,47 (3):171-174.
    [174]Garcia-Mayor R. V., Paramo C., Luna Cano R., et al. Antithyroid drug and Graves' hyperthyroidism. Significance of treatment duration and TRAb determination on lasting remission[J]. J Endocrinol Invest,1992,15(11):815-820.
    [175]Kami jo K. Study on cutoff value setting for differential diagnosis between Graves' disease and painless thyroiditis using the TRAb (Elecsys TRAb) measurement via the fully automated electrochemiluminescence immunoassay system[J]. Endocr J,2010, 57(10):895-902.
    [176]Massart C., Gibassier J.d' Herbomez M. Clinical value of M22-based assays for TSH-receptor antibody (TRAb) in the follow-up of antithyroid drug treated Graves' disease:comparison with the second generation human TRAb assay [J]. Clin Chim Acta,2009, 407(1-2):62-66.
    [177]Paschke R., Heinze H. G., Teuber J., et al. Extrathyroidal synthesis and biologic action of thyroid receptor antibody (TRAb) in Graves'disease[J]. Acta Endocrinol Suppl (Copenh),1987,281:352-354.
    [178]Takamura Y., Nakano K., Uruno T., et al. Changes in serum TSH receptor antibody (TRAb) values in patients with Graves'disease after total or subtotal thyroidectomy[J]. Endocr J,2003,50(5):595-601.
    [179]Takasu N.Matsushita M. Changes of TSH-Stimulation Blocking Antibody (TSBAh) and Thyroid Stimulating Antibody (TSAb) Over 10 Years in 34 TSBAb-Positive Patients with Hypothyroidism and in 98 TSAb-Positive Graves' Patients with Hyperthyroidism: Reevaluation of TSBAb and TSAb in TSH-Receptor-Antibody (TRAb)-Positive Patients[J]. J Thyroid Res,2012,2012:182176.
    [180]Wilson R., McKillop J. H., Henderson N., et al. The ability of the serum thyrotrophin receptor antibody (TRAb) index and HLA status to predict long-term remission of thyrotoxicosis following medical therapy for Graves' disease [J]. Clin Endocrinol (Oxf), 1986,25(2):151-156.
    [181]Wilson R., McKillop J. H.Thomson J. A. The prognostic value of thyrotropin receptor antibody (TRAb) levels in Graves' disease[J]. Ann Clin Biochem,1990,27 (Pt 6):601-602.
    [182]Zophel K., Wunderlich G., Kopprasch C., et al. [Predictive value of thyrotropin receptor antibodies using the second generation TRAb human assay after radioiodine treatment in Graves' disease][J]. Nuklearmedizin,2003,42(2):63-70.
    [183]Aksnes H. [Heart failure and convulsions in thyrotoxicosis. A young woman with Graves' disease][J]. Tidsskr Nor Laegeforen,1994,114 (25):2954-2955.
    [184]Berlin T., Lubina A., Levy Y., et al. Graves' disease presenting as right heart failure[J]. Isr Med Assoc J,2006,8(3):217-218.
    [185]Dave J. A.Ross I. L. Complete heart block in a patient with Graves' disease[J]. Thyroid, 2008,18(12):1329-1331.
    [186]O'Malley B. P., Northover B. J. Woods K. L. Heart failure in sinus rhythm as the sole manifestation of Graves' disease[J]. Postgrad Med J,1986,62(733):1051-1053.
    [187]Ursu H. I., Dumitriu L., Grigorie D., et al. Effects of radioiodine therapy in hyperthyroidism (thyroid function, thyroid volume, Graves' ophtalmopathy, thyrotoxic heart disease)[J]. Rom J Endocrinol,1993,31 (3-4):155-163.
    [188]朱永安,郭海峰郭国峰.抑郁症21世纪人类的隐性杀手[J].解放军健康,2006,(1):2.
    [189]贾艳滨,黄立安,徐伊,et al抑郁症状与SPECT局部脑血流灌注的相关探讨[J].中山大学学报(医学科学版),2007,28(3):5.
    [190]Abou-Saleh M. T., Al Suhaili A. R., Karim L., et al. Single photon emission tomography with 99m Tc-HMPAO in Arab patients with depression[J]. J Affect Disord,1999, 55(2-3):115-123.
    [191]Curran S. M., Murray C. M., Van Beck M., et al. A single photon emission computerised tomography study of regional brain function in elderly patients with major depression and with Alzheimer-type dementia[J]. Br J Psychiatry,1993,163:155-165.
    [192]Hanada H., Imanaga J., Yoshiiwa A., et al. The value of ethyl cysteinate dimer single photon emission computed tomography in predicting antidepressant treatment response in patients with major depression[J]. Int J Geriatr Psychiatry,2012,
    [193]Klemm E., Danos P., Grunwald F., et al. Temporal lobe dysfunction and correlation of regional cerebral blood flow abnormalities with psychopathology in schizophrenia and major depression--a study with single photon emission computed tomography[J]. Psychiatry Res,1996,68(1):1-10.
    [194]Masada T., Makabe T., Kunishio K., et al. [Depression following intracerebral hemorrhage and the evaluation of cerebral blood flow by single photon emission tomography][J]. Brain Nerve,2007,59(2):165-168.
    [195]Medved V., Petrovic R., Isgum V., et al. Similarities in the pattern of regional brain dysfunction in negative schizophrenia and unipolar depression:a single photon emission-computed tomography and auditory evoked potentials study[J]. Prog Neuropsychopharmacol Biol Psychiatry,2001,25(5):993-1009.
    [196]Philpot M. P., Banerjee S., Needham-Bennett H., et al.99mTc-HMPAO single photon emission tomography in late life depression:a pilot study of regional cerebral blood flow at rest and during a verbal fluency task[J]. J Affect Disord,1993,28(4):233-240.
    [197]Drevets W. C. Neuroimaging studies of mood disorders[J]. Biol Psychiatry,2000, 48(8):813-829.
    [198]李敏,李向东,黄智玉,et al抑郁症患者执行控制功能的事件相关电位研究[J].中国行为医学科学,2003,12(1):2.
    [199]Degl'Innocenti A., Agren H. Backman L. Executive deficits in major depression[J]. Acta Psychiatr Scand,1998,97(3):182-188.
    [200]Haddow J. E., Palomaki G. E., Allan W. C., et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child[J]. N Engl J Med, 1999,341(8):549-555.
    [201]方玲,钟建庭,赵治华,et al短期停用甲状腺激素对分化型甲状腺癌术后甲减患者认知功能的影响[J].军医进修学院学报,2010,31(5)
    [202]Desouza L. A., Ladiwala U., Daniel S. M., et al. Thyroid hormone regulates hi ppocampal neurogenesis in the adult rat brain[J]. Mol Cell Neurosci,2005,29(3):414-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700