用户名: 密码: 验证码:
缺血后处理对缺血再灌注后海马CA1区神经细胞内蛋白聚集的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一过性的全脑缺血在临床上主要在短暂的呼吸心跳骤停、心肺分流手术等情况下发生。在大鼠模拟人的一过性脑缺血模型中,研究人员发现海马CA1区的损伤并非在脑血流停止时即已形成,而是在再灌注后,由于CA1区细胞的死亡,从而导致了大鼠的出现记忆及空间认知功能的障碍。同样,在临床研究中研究人员也发现海马CA1区的病变可导致人的认知功能下降。这些研究说明,在一过性缺血再灌注损伤发生后,抑制CA1区的神经细胞损伤或死亡可以有效地改善预后。
     蛋白聚集是一种发生在细胞内、外的由于异常蛋白发生聚积的一种细胞生物学现象。直到Hu等研究发现脑缺血再灌注后神经细胞内出现异常蛋白及错误折叠蛋白的聚集,同时这种毒性蛋白聚集的产物是导致神经细胞死亡的主要原因,人们才逐渐的发现异常蛋白的聚积在Parkinson’s病和Alzheimer’s病等神经退行性病变中发挥关键性的作用。尽管一些研究提出了钙离子超载及氧化应激等一些机制,但蛋白聚积仍然是缺血再灌注损伤最重要的病理生理机制之一。这些异常聚积的蛋白不能正常的工作,它们可以锚靠在细胞内的膜性结构上,如线粒体、内质网,导致细胞失去正常的功能甚至死亡。因此,抑制蛋白聚集物的形成,是降低缺血再灌注后海马CA1区神经细胞死亡的直接方式。
     近年来研究发现,缺血后处理对局灶或全脑缺血再灌注所致的神经细胞延迟性死亡的保护作用与其能够降低氧化应激反应、激活细胞内的信号传导途径密切相关。缺血后处理是在脑缺血结束后再灌注开始时对再灌注进行一系列指定的有规则的机械性的终止,然后才给予脑组织充分的再灌注。最近研究表明,缺血后处理也能对抗神经组织的缺血再灌注损伤,这就为临床应用提供了必要的理论依据。缺血后处理对脑缺血再灌注所致的神经细胞延迟性死亡的保护作用与其能够抑制炎症、降低氧化应激反应、激活细胞内的信号传导途径或抑制细胞凋亡有关,但是其对脑缺血再灌注过程中蛋白聚集的影响尚不清楚。
     实验目的:探讨缺血后处理对短暂性脑缺血再灌注后海马CA1区蛋白聚集的影响及其可能的机制。
     实验方法:制备大鼠全脑缺血再灌注模型,分为假手术组、缺血组及缺血后处理组。缺血后处理方法为缺血结束后恢复脑血流30s再阻断30s为1个循环,共3个循环。采用HE染色光镜下观察缺血再灌注后CA1区的神经细胞形态变化情况,存活的神经细胞在光镜下用细胞计数法计数;体外用荧光分光计法用20S-蛋白酶体荧光底物Succinyl-LLVY-AMC来测定蛋白酶体活性的改变;用分光光度计法测量蛋白氧化产物羟基含量而分析蛋白氧化水平;免疫组化及激光共聚焦显微镜观察泛素在CA1区神经细胞内的分步情况;免疫蛋白印迹实验(Western blot)分析蛋白集聚、蛋白酶体、热体克蛋白70、热休克蛋白40在不同脑缺血处理组细胞内的表达情况。
     实验结果:
     组织学检查结果显示,通过缺血后处理的干预存活的神经细胞在CA1区的比例从5.21%±1.21%上升至55.32%±5.34%。在激光共聚焦显微镜图片中,缺血后处理组中泛素标记的蛋白积聚明显较缺血组减少。Western blot分析显示,与假手术组相比,再灌注12h,24h,48h,缺血组的蛋白集聚分别增加了32.12±4.87,41.86±4.71,34.51±5.18倍。然而,在缺血后处理组,蛋白积聚水平在上述时间点上却降低了2.84±0.97,13.72±2.31,14.37±2.42倍。进一步的研究显示,在缺血再灌注损伤病理生理过程中,缺血后处理抑制了蛋白质羰基的衍生,从而提高了蛋白酶体的活性,进一步增加了分子伴侣Hsp70的表达,并抑制了Hsp40表达的下降。
     实验结论:
     在一过性脑缺血再灌注损伤中,缺血后处理能够显著的抑制大鼠海马CA1区神经细胞的损伤,这与其抑制异常蛋白的积聚有密切关系。
Transient global cerebral ischemia is a clinical outcome related to cardiac arrest,cardiopulmonary bypass surgery and other situations that deprives the oxygen and glucose inbrain during a short period. In the rat model simulating human transient global cerebralischemia, it was found that neurons in the hippocampus CA1region were severely damagedduring the period of reperfusion, which leaded to the impairment of rats’ memory or spatiallearning. Similarly, in human being, a clinical study showed that the lesion in CA1regioncould result in place learning deficit. These indicate that protection of neuronal injury or deathin the CA1region would improve the prognosis of the patients with transient ischemia andreperfusion.
     Protein aggregation is a biological phenomenon in which abnormal proteins accumulateand clump together either intra-or extracellularly. Until Hu et al found that abnormal proteinsaccumulated in the neurons destined to die after transient cerebral ischemia [6], proteinaggregation had been thought to play a pivotal role in neurodegenerative disease such asParkinson’s disease and Alzheimer’s disease. Currently, as well as other mechanisms such ascalcium overload and oxidative stress, protein aggregation is also regarded as one of theimportant pathological features of cerebral ischemia and reperfusion. Although theseaggregated proteins cannot function normally, they could stick to the intracellular membranestructures and result in cell losing its normal function and dying in the end. Therefore,aggregated proteins should be rescued or eliminated in order to keep neurons alive andfunction normally.
     Recently, it had been reported that ischemic postconditioning has protective effects onneuronal injury or death caused by focal or global ischemia and reperfusion[9,10]. Ischemicpostconditioning is defined as a series of rapid intermittent interruptions of blood flow in theearly phase of reperfusion that mechanically alters the hydrodynamics of reperfusion. It could be performed before re-establishment of blood supply to brain, which makes it become afeasible method used potentially in clinical practice. Despite studies showed that ischemicpostconditioning could rescue neuronal injury or death via inhibiting inflammation,suppressing oxidative stress or preventing apoptosis, the effects of ischemic postconditioningon protein aggregation are still unclear. Studying the alteration of protein aggregation wouldcontribute further to clarify the protective mechanism of ischemic postconditioning. Therefore,in the current study, we investigated the role of ischemic postconditioning in proteinaggregation by using rat model of transient global ischemia.
     Objective:
     To investigate the effect of ischemic postconditioning on protein aggregation caused bytransient ischemia and reperfusion and to clarify its underlying mechanism.
     Methods:
     Two-vessel-occluded transient global ischemia rat model was used. The rats in ischemicpostconditioning group were subjected to three cycles of30-s/30-s reperfusion/clamping after15min of ischemia. Neuronal death in the CA1region was observed by hematoxylin-eosinstaining, and number of live neurons was assessed by cell counting under a light microscope.Succinyl-LLVY-AMC was used as substrate to assay proteasome activity in vitro. Proteincarbonyl content was spectrophotometrically measured to analyze protein oxidization.Immunochemistry and laser scanning confocal microscopy were used to observe thedistribution of ubiquitin in the CA1neurons. Western Blot was used to analyze thequantitative alterations of protein aggregates, proteasome, Hsp70and Hsp40in cellularfractions under different ischemic conditions. Results
     Histological examination showed that the percentage of live neurons in the CA1regionwas elevated from5.21%±1.21%to55.32%±5.34%after administration of ischemicpostconditioning (P=0.0087). Western Blot analysis showed that the protein aggregates inthe ischemia group was32.12±4.87,41.86±4.71and34.51±5.18times higher than that in thesham group at reperfusion12h,24h and48h, respectively. However, protein aggregates werealleviated significantly by ischemic postconditioning to2.84±0.97,13.72±2.13and14.37±2.42times at each indicated time point (P=0.000032,0.0000051and0.0000082). Laser scanning confocal images showed ubiquitin labeled protein aggregates could not bediscerned in the ischemic postconditioning group. Further study showed that ischemicpostconditioning suppressed the production of carbonyl derivatives, elevated proteasomeactivity that was damaged by ischemia and reperfusion, increased the expression of chaperoneHsp70, and maintained the quantity of chaperone Hsp40.
     Conclusion:
     Ischemic postconditioning could rescue significantly neuronal death in the CA1regioncaused by transient ischemia and reperfusion, which is closely associated with suppressing theformation of protein aggregation.
引文
[1] Raasi S, Wolf DH. Ubiquitin receptors and ERAD: A netw ork of pathways to theproteasome[J]. Semin Cell Dev Biol,2007,18(6):78-91.
    [2] Helmuth L. Protein clumps hijack cell's clearance system[J]. Science,2001,292(5521):1467-1468.
    [3] Hu BR, Martone ME, Jones YZ, et a1. Protein aggregation after transient cerebralischemia[J]. Neuroscience,2000,20(9):3191-3199.
    [4] Kudinov AR, Kudinova NV, Kezlia EV, et al. Compensatory mechanisms to healneuroplasticity impairment under Alzheiemer's disease neurodegeneration. I: The roleof amyloid beta and its' precursor protein[J]. Biomed Khim,2012,58(4):385-399.
    [5] Soto C. Protein misfolding and disease; protein refolding and therapy[J]. FEBS Lett,2001,498(2-3):204-207.
    [6] Kelly JW. Alternative conformations of amyloidogenic proteins govern theirbehavior[J]. Curr Opin Struct Biol,1996,6(1):11-17.
    [7] Conway KA, Lee SJ, Rochet JC, et al. Acceleration of oligomerization, notfibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy[J]. Proc Natl acadsci,2000,97(2):571-576.
    [8] BucciantiniM, GiannoniE, Chiti F, et al. Inherent toxicity of aggregates implies acommon mechanism for protein misfolding diseases[J]. Nature,2002,416(6880):507-511.
    [9] Agorogiannis EI, Agorogiannis GI, Papadimitriou A, et al. Protein misfolding inneurodegenerative diseases[J]. Neuropathol Appl Neurobiol,2004,30(3):215-224.
    [10] Arispe N, Pollard HB, Rojas E. Giant multilevel cation channels formed by Alzheimerdisease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc Natl AcadSci,1993,89(22):10940-10944.
    [11] Lin H, Bhatia R, Lal R. Amyloid beta protein forms ion channels: implications forAlzheimer's disease pathophysiology[J]. FASEB J,2001,15(13):2433-2444.
    [12] Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: new insights intoprotein folding, misfolding diseases and biological evolution[J]. J Mol Cell,2003,81(11):678-699.
    [13] Lee WC, Yoshihara M, Littleton JT. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington'sdisease[J]. Proc Natl Acad Sci,2004,101(9):3224-3229.
    [14] Tanford C. Protein denaturation[J]. Adv Protein Chem,1968,23:121-282.
    [15] Shortle D. Staphylococcal nuclease: a showcase of m-value effects[J]. Adv ProteinChem,1995,46:217-245.
    [16] Neri D, Billeter M, Wider G, et al. NMR determination of residual structure in aureadenatured protein, the434-repressor[J]. Science,1992,257(5076):1559-1563.
    [17] Dalle-Donne I, Giustarini D, Colombo R, et al. Protein carbonylation in humandiseases. Trends Mol Med,2003,9(4):169-176.
    [18] Laskey R A, Honda B M, Mills A D, et al. Nucleosomes are assembled by an acidicprotein which binds histones and transfers them to DNA[J]. Nature,1978,275(5679):416-420.
    [19] Ellis J. Proteins as molecular chaperones[J]. Nature,1991,328(6129):378-379.
    [20] Greene MK, Maskos K, Landry SJ. Role of the J-domain in the cooperation of Hsp40with Hsp70. Proc Natl Acad Sci USA,1998,95(11):6108-6113.
    [21] Robert J. Evolution of heat shock protein and immunity[J]. Dev Comp Immunol,2003,27(6-7):449-464.
    [22] Oda Y, Hosokawa N, Wada I, et al. EDEM as an acceptor of terminally misfoldedglycoproteins released from calnexin. Science,2003,299(5611):1394-1397.
    [23] Montgomery DL, Morimoto RI, Gierasch LM. Mutations in the substrate bindingdomain of the Escherichia coli70kDa molecular chaperone, DnaK, which altersubstrate affinity or interdomain coupling. J Mol Biol,1999,286(3):915-932.
    [24] Bali M, Zhang B, Morano KA, et al. The Hsp90molecular chaperone complexregulates maltose induction and stability of the Saccharomyces MAL genetranscription activator Mal63p. J Biol Chem,2003,278(48):47441-47448.
    [25] Masahide Yamamoto, Yoshiaki Takahashi, Kouichi Inano, et al. Characterization ofthe Hydrophobic Region of Heat Shock Protein90[J]. Japanese Biochemical Society,1991,110(1):141-145.
    [26] Braley R, Piper PW. The C-terminus of yeast plasma membrane Ht-ATPase isessential for the regulation of this enzyme by heat shock protein Hsp30, but not forstress activation. FEBS Lett,1997,418(1-2):123-126.
    [27] Anfinsen CB. Principles that govern the folding of protein chains[J]. Science,1973,181(4096):223-230.
    [28] Wolynes PG, Onuchic JN, Thirumalai D. Navigating the folding routes[J]. Science,1995,267(5204):1619-1620.
    [29] Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain tofolded protein[J]. Science,2002,295(5561):1852-1858.
    [30] Frydman J. Folding of newly translated proteins in vivo: the role of molecularchaperones[J]. Annu Rev Biochem,2001,70:603-647.
    [31] Gething MJ, Sambrook J. Protein folding in the cell[J]. Nature,1992,355(6355):33-45.
    [32] Lindquist S, Craig EA. The heat-shock proteins[J]. Annu Rev Genet,1988,22:631-677.
    [33] Teter SA, Houry WA, Ang D, et al. Polypeptide flux through bacterial Hsp70: DnaKcooperates with trigger factor in chaperoning nascent chains[J]. Cell,1999,97(6):755-765.
    [34] Deuerling E, Schulze-Specking A, Tomoyasu T, et al. Trigger factor and DnaKcooperate in folding of newly synthesized proteins[J]. Nature,1999,400(6745):693-696.
    [35] Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain tofolded protein[J]. Science,2002,295(5561):1852-1858.
    [36] Siegers K, Waldmann T, Leroux MR, et al. Compartmentation of protein folding invivo: sequestration of non-native polypeptide by the chaperonin-GimC system[J].Embo J,1999,18(1):75-84.
    [37] Ben-Zvi AP, Goloubinoff P. Review: mechanisms of disaggregation and refolding ofstable protein aggregates by molecular chaperones[J]. J Struct Biol,2001,135(2):84-93.
    [38] Goloubinoff P, Mogk A, Zvi AP, et al. Sequential mechanism of solubilization andrefolding of stable protein aggregates by a bichaperone network[J]. Proc Natl AcadSci,1999,96(24):13732-13737.
    [39] Voisine C, Pedersen JS, Morimoto RI. Chaperone networks: Tipping the balance inprotein folding diseases[J]. Neurobiol Dis,2010,40(1):12-20.
    [40] Raasi S, Wolf DH. Ubiquitin receptors and ERAD: A network of pathways to theproteasome[J]. Semin Cell Dev Biol,2007,18(6):78-91.
    [41]倪晓光,赵平.泛素-蛋白酶体途径的组成和功能[J].生理科学进展,2006,37(3):255-258.
    [42] Vijay-Kumar S, Bugg CE, Cook WJ. Structure of ubiquitin refined at1.8A resolution[J]. J Mol Biol,1987,194(3):531-544.
    [43] Kuo ML, den Besten W, Bertwistle D, et al. N-terminal polyubiquitination anddegradation of the Arf tumor suppressor[J]. Genes Dev,2004,18(15):1862-1874.
    [44] Cadwell K, Coscoy L. Ubiquitination on nonlysine residues by a viral E3ubiquitinligase[J]. Science,2005,309(5731):127-130.
    [45] Madsen L, Schulze A, Seeger M, et al. Ubiquitin domain proteins in disease[J]. BMCBiochem,2007,8(Suppl1): S1.
    [46]许娆,刘萱,曹诚.蛋白酶体相关翻译后修饰的研究进展[J].生物技术通讯,2007,18(6):985-988.
    [47] Jentsch S, Pyrowolakis G. Ubiquitin and its kin: how close are the family ties?[J].Trends Cell Biol,2000,10(8):335-342.
    [48] Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin andubiquitin-like proteins[J]. Ann Rev Cell Dev Biol,2006,22:159-180.
    [49] Ha BH, Kim EE. Structures of proteases for ubiqutin and ubiquitin-like modifiers[J].BMB Rep,2008,41(6):435-443.
    [50]肖兰博,李力力,曹亚.泛素在信号转导中的作用[J].生命的化学,2007,27(6):527-530.
    [51] Shih SC, Prag G, Francis SA, et al. A ubiquitin-binding motif required forintramolecular monoubiquitylation, the CUE domain[J]. EMBO J,2003,22(6):1273-1281.
    [52] Mosesson Y, Shtiegman K, Katz M, et al. Endocytosis of receptor tyrosine kinases isdriven by monoubiquitylation, not polyubiquitylation[J]. J Biol Chem,2003,278(24):21323-21326.
    [53] Hoege C, Pfander B, Moldovan GL, et al. RAD6-dependent DNA repair is linked tomodification of PCNA by ubiquitin and SUMO[J]. Nature,2002,419(6903):135-141.
    [54] Deng L, Wang C, Spencer E, et al. Activation of the IkappaB kinase complex byTRAF6requires a dimeric ubiquitin-conjugating enzyme complex and a uniquepolyubiquitin chain[J]. Cell,2000,103(2):351-361.
    [55] Kirkin V, McEwan DG, Novak I, et al. A role for ubiquitin in selective autophagy[J].Mol Cell,2009,34(3):259-269.
    [56] Yang Y, Kitagaki J, Wang H, et al. Targeting the ubiquitin-proteasome system forcancer therapy[J]. Cancer Sci,2009,100(1):24-28.
    [57] Koegl M, Hoppe T, Schlenker S, et al. A novel ubiquitination factor, E4, is involved inmultiubiquitin chain assembly[J]. Cell,1999,96(5):635-644.
    [58] Hoeller D, Hecker CM, Wagner S, et al. E3-independent monoubiquitination ofubiquitin-binding proteins[J]. Mol Cell,2007,26(2):891-898.
    [59] Pelzer C, Kassner I, Matentzoglu K, et al. UBE1L2, a novel E1enzyme specific forubiquitin[J]. J Biol Chem,2007,282(32):23010-23014.
    [60] Chiu YH, Sun Q, Chen ZJ. E1–L2activates both ubiquitin and FAT10[J]. Mol Cell,2007,27(6):1014-1023.
    [61] Jin J, Li X, Gygi SP, et al. Dual E1activation systems for ubiquitin differentiallyregulate E2enzyme charging[J]. Nature,2007,447(7148):1135-1138.
    [62] Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms[J]. BiochimBiophys Acta,2004,1695(1-3):55-72.
    [63] Semple CA. The comparative proteomics of ubiquitination in mouse[J]. Genome Res,2003,13(6B):1389-1394.
    [64]程翌,郑国荣.泛素连接酶E3和肿瘤关系的研究进展[J].实用医学杂志,2009,25(8):1341-1342.
    [65] Tasaki T, Kwon YT. The mammalian N-end rule pathway: new insights into itscomponents and physiological roles[J]. Trends Biochem Sci,2007,32(11):520-528.
    [66] Mogk A, Schmidt R, Bukau B. The N-end rule pathway for regulated proteolysis:prokaryotic and eukaryotic strategies[J]. Trends Cell Biol,2007,17(4):165-172.
    [67] Ditzel M, Wilson R, Tenev T. Degradation of DIAP1by the N-end rule pathway isessential for regulating apoptosis[J]. Nat Cell Biol,2003,5(5):467-473.
    [68] Wang G, Yang J, Huibregtse JM. Functional domains of the Rsp5ubiquitin-proteinligase[J]. Mol Cell Biol,1999,19(1):342-352.
    [69] Yang Y, Lorick KL, Jensen JP, et al. Expression and evaluation of RING fingerproteins [J]. Methods Enzymol,2005,398(1):103-112.
    [70] Swaroop M, Gosink M, Sun Y. SAG/ROC2/Rbx2/Hrt2, a component of SCF E3ubiquitin ligase: genomic structure, a splicing variant, and two family pseudogenes[J].DNA Cell Biol,2001,20(7):425-434.
    [71] Jackson PK, Eldridge AG. The SCF ubiquitin ligase: an extended look[J]. Mol Cell,2002,9(5):923-925.
    [72] Hatakeyama S, Yada M, Matsumoto M, et al. U box proteins as a new family ofubiquitin-protein ligases[J]. J Biol Chem,2001,276(35):33111-33120.
    [73] Hatakeyama S, Matsumoto M, Yada M, et al. Interaction of U-box-type ubiquitin-protein ligases (E3s) with molecular chaperones[J]. Genes Cells,2004,9(6):533-548.
    [74] Hoppe T. Multiubiquitylation by E4enzymes:‘one size’ doesn’t fit all[J]. TrendsBiochem Sci,2005,30(4):183-187.
    [75] Lehman NL. The ubiquitin proteasome system in neuropathology[J]. ActaNeuropathol,2009,118(3):329-347.
    [76]丁祺,旭东.泛素化/去泛素化系统介导的蛋白质降解与肿瘤关系的研究[J].中国医药指南,2009,7(9):46-49.
    [77]刘媛,张志刚.泛素羧基末端水解酶-1的研究进展[J].国际病理科学与临床杂志,2008,28(6):544-549.
    [78]王素霞,刘媛,吴慧娟,等.去泛素化酶的研究及其进展[J].临床与实验病理学杂志,2008,24(6):734-737.
    [79] Baek SH, Park KC, Lee JI, et al. A novel family of ubiquitin-specific proteases inchick skeletal muscle with distinct N-and C-terminal extensions[J]. Biolchem J,1998,334(Pt3):677-684.
    [80] Johnston SC, Riddle SM, Cohen RE, et al. Structural basis for the specificity ofubiquitin C-terminal hydrolases[J]. EMBO J,2000,18(14):3877-3887.
    [81] Evans PC, Smith TS, Lai MJ, et al. A novel type of deubiquitinating enzyme[J]. J BiolChem,2003,278(25):23180-2318.
    [82] Scheel H, Tomiuk S, Hofmann K, et al. Elucidation of ataxin-3and ataxin-7functionby integrative bioinformatics[J]. Hum Mol Genet,2003,12(21):2845-2852.
    [83] Tran HJ, Allen MD, L we J, et al. Structure of the Jab1/MPN domain and itsimplications for proteasome function[J]. Biochemistry,2003,42(39):11460-11465.
    [84] Lehman NL. The ubiquitin proteasome system in neuropathology[J]. ActaNeuropathol,2009,118(3):329-347.
    [85] Adrain C, Creagh EM, Cullen SP, et al. Caspasedependent inactivation of proteasomefunction during programmed cell death in Drosophila and man[J]. J Biol Chem,279(35):36923-36935.
    [86] Tanaka K. The proteasome: Overview of structure and functions[J]. Proc Jpn Acad SerB Phys Biol Sci,2009,85(1):12-36.
    [87] Groll M, Huber R. Substrate access and processing by the20S proteasome coreparticle[J]. Int J Biochem Cell Biol,2003,35(5):606-616.
    [88] Dahlmann B. Proteasomes[J]. Essays Biochem,2005,41:31-48.
    [89] Diapankar Nandi, Pankaj Tahiliani, Anujith Kumar. The ubiquitin-proteasomesystem[J]. J Biosci,2006,31(1):137-155.
    [90] Kisselev AF, Songyang Z, Goldberg AL. Why does threonine, and not serine, functionas the active site nucleophile in proteasomes[J]? J Biol Chem,2000,275(20):14831-14837.
    [91] Bochtler M, Ditzel L, Groll M, et al. The proteasome[J]. Annu Rev Biophys BiomolStruct,1999,28:295-317.
    [92] Marques AJ, Glanemann C, Ramos PC, et al. The C-terminal extension of the beta7subunit and activator complexes stabilize nascent20S proteasomes and promote theirmaturation[J]. J Biol Chem,2007,282(48):34869-34876.
    [93] Heinemeyer W, Fischer M, Krimmer T, et al. The active sites of the eukaryotic20Sproteasome and their involvement in subunit precursor processing[J]. J Biol Chem,1997,272(40):25200-25209.
    [94] Arendt CS, Hochstrasser M. Identification of the yeast20S proteasome catalyticcenters and subunit interactions required for active-site formation[J]. Proc Natl AcadSci,1997,94(14):7156-7161.
    [95] Higashitsuji H, Liu Y, Mayer RJ, et al. The oncoprotein gankyrin negatively regulatesboth p53and RB by enhancing proteasomal degradation[J]. Cell Cycle,2005,4(10):1335-1337.
    [96] Rosenzweig R, Osmulski PA, Gaczynska M, et al. The central unit within the19Sregulatory particle of the proteasome[J]. Nat Struct Mol Biol,2008,15(6):573-580.
    [97] Deveraux Q, van Nocker S, Mahaffey D, et al. Inhibition of ubiquitin-mediatedproteolysis by the Arabidopsis26S protease subunit S5a[J]. J Biol Chem,1995,270(50):29660-29663.
    [98] Schreiner P, Chen X, Husnjak K, et al. Ubiquitin docking at the proteasome through anovel pleckstrin-homology domain interaction[J]. Nature,2008,453(7194):548-552.
    [99] Husnjak K, Elsasser S, Zhang N, et al. Proteasome subunit Rpn13is a novel ubiquitinreceptor[J]. Nature,2008,453(7194):481-488.
    [100] Saeki Y, Tanaka K. Cell biology: two hands for degradation[J]. Nature,2008,453(7194):460-461.
    [101] Verma R, Aravind L, Oania R, et al. Role of Rpn11metalloprotease indeubiquitination and degradation by the26S proteasome[J]. Science,2002,298(5593):611-615.
    [102] Hu M, Li P, Song L, et al. Structure and mechanisms of the proteasome-associateddeubiquitinating enzyme USP14[J]. EMBO J,2005,24(21):3747-3756.
    [103] Hamazaki J, Iemura S, Natsume T, et al. A novel proteasome interacting proteinrecruits the deubiquitinating enzyme UCH37to26S proteasomes[J]. EMBO J,2006,25(19):4524-4536.
    [104] Yao T, Song L, Xu W, et al. Proteasome recruitment and activation of the Uch37deubiquitinating enzyme by Adrm1[J]. Nat Cell Biol,2006,8(9):994-1002.
    [105] Hanna J, Meides A, Zhang DP, et al. A ubiquitin stress response induces alteredproteasome composition[J]. Cell,2007,129(4):747-759.
    [106] Dubiel W, Pratt G, Ferrell K, et al. Purification of an11S regulator of the multicatalyticprotease[J]. J Biol Chem,1992,267(31):22369-22377.
    [107] Stohwasser R, Salzmann U, Giesebrecht J, et al. Kinetic evidences for facilitation ofpeptide channelling by the proteasome activator PA28[J]. Eur J Biochem,2000,267(20):6221-6230.
    [108] Ustrell V, Hoffman L, Pratt G, et al. PA200, a nuclear proteasome activator involved inDNA repair[J]. EMBO J,2002,21(13):3516-3525.
    [109] Iwanczyk J, Sadre-Bazzaz K, Ferrell K, et al. Structure of the Blm10-20S proteasomecomplex by cryo-electron microscopy. Insights into the mechanism of activation ofmature yeast proteasomes[J]. J Mol Biol,2006,363(3):648-659.
    [110] Tanahashi N, Kawahara H, Murakami Y, et al. The proteasome-dependent proteolyticsystem[J]. Mol Biol Rep,1999,26(1-2):3-9.
    [111] Sakai N, Sawada MT, Sawada H. Non-traditional roles of ubiquitin-proteasomesystem in fertilization and gametogenesis[J]. Int J Biochem Cell Biol,2004,36(5):776-784.
    [112] Lynn Bedford, Simon Paine, Paul W Sheppard, et al. Assembly, Structure andFunction of the26S proteasome[J]. Trends Cell Biol,2010,20(7):391-401.
    [113] Witt S, Kwon YD, Sharon M, et al. Proteasome assembly triggers a switch requiredfor active-site maturation[J]. Structure,2006,14(7):1179-1188.
    [114] Barone FC, White RF, Spera PA, et al. Ischemic preconditioning and brain tolerance:temporal histological and functional outcomes, protein synthesis requirement, andinterleukin-1receptor antagonist and early gene expression[J]. Stroke,1998,29(9):1937-1950.
    [115] Sharon M, Taverner T, Ambroggio XI, et al. Structural Organization of the19SProteasome Lid: Insights from MS of Intact Complexes[J]. PLoS Biol,2006,4(8):e267.
    [116] WójcikC, DeMartino GN. Intracellular localization of proteasomes[J]. Int J BiochemCell Biol,2003,35(5):579-589.
    [117] Reits EA, Benham AM, Plougastel B, et al. Dynamics of proteasome distribution inliving cells[J]. EMBO J,1997,16(20):6087-6094.
    [118] Enenkel C, Lehmann A, Kloetzel PM. Subcellular distribution of proteasomesimplicates a major location of protein degradation in the nuclear envelope-ER networkin yeast[J]. EMBO J,1998,17(21):6144-6154.
    [119] Wilkinson CR, Wallace M, Morphew M, et al. Localization of the26S proteasomeduring mitosis and meiosis in fission yeast[J]. EMBO J,1998,17(22):6465-6476.
    [120] Wang HR, Kania M, Baumeister W, et al. Import of human and Thermoplasma20Sproteasomes into nuclei of HeLA cells requires functional NLS sequences[J]. Eur JCell. Biol,1997,73(2):105-113.
    [121] Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome System of Protein Degradationand Processing[J]. Biochemistry (Mosc),2009,74(13):1411-1442.
    [122] Lin L, DeMartino GN, Greene WC. Cotranslational biogenesis of NF-kappaB p50bythe26S proteasome[J]. Cell,1998,92(6):819-828.
    [123] Bercovich Z, Rosenberg-Hasson Y, Ciechanover A, et al. Degradation of ornithinedecarboxylase in reticulocyte lysate is ATP-dependent but ubiquitin-independent[J]. JBiol Chem,1989,264(27):15949-15952.
    [124] Jin Y, Lee H, Zeng SX, et al. MDM2promotes p21waf1/cip1proteasomal turnoverindependently of ubiquitylation[J]. EMBO J,2003,22(23):6365-6377.
    [125] Asher G, Tsvetkov P, Kahana C, et al. A mechanism of ubiquitin-independentproteasomal degradation of the tumor suppressors p53and p73[J]. Genes Dev,2005,19(3):316-321.
    [126] Pande AH, Moe D, Jamnadas M, et al. The pertussis toxin S1subunit is a thermallyunstable protein susceptible to degradation by the20S proteasome[J]. Biochemistry,2006,45(46):13734-13740.
    [127] Ito T, Fujio Y, Takahashi K, et al. Degradation of NFAT5, a transcriptional regulator ofosmotic stress-related genes, is a critical event for doxorubicin-induced cytotoxicity incardiac myocytes[J]. J Biol Chem,2007,282(2):1152-1160.
    [128] Lim SK, Gopalan G. Aurora-A kinase interacting protein1(AURKAIP1) promotesAurora-A degradation through an alternative ubiquitin-independent pathway[J].Biochem J,2007,403(1):119-127.
    [129] Tarcsa E, Szymanska G, Lecker S, et al. Ca2+-free calmodulin and calmodulindamaged by in vitro aging are selectively degraded by26S proteasomes withoutubiquitination[J]. J Biol Chem,2000,275(27):20295-20301.
    [130] Benaroudj N, Tarcsa E, Cascio P, et al. The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes[J]. Biochimie,2001,83(3-4):311-318.
    [131] Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasomepathway in normal and disease states[J]. J Am Soc Nephrol,2006,17(7):1807-1819.
    [132] Breitschopf K, Zeiher AM, Dimmeler S. Ubiquitin-mediated degradation of theproapoptotic active form of bid. A functional consequence on apoptosis induction[J]. JBiol Chem,2000,275(28):21648-21652.
    [133] Carlucci A, Adornetto A, Scorziello A, et al. Proteolysis of AKAP121regulatesmitochondrial activity during cellular hypoxia and brain ischaemia[J]. Embo J,2008,27(7):1073-1084.
    [134] Crosas B, Hanna J, Kirkpatrick DS, et al. Ubiquitin chains are remodeled at theproteasome by opposing ubiquitin ligase and deubiquitinating activities[J]. Cell,2006,127(7):1401-1413.
    [135] Dong C, Upadhya SC, Ding L, et al. Proteasome inhibition enhances the induction andimpairs the maintenance of late-phase long-term potentiation[J]. Learn Mem,2008,15(5):335-347.
    [136] Fonseca R, Vabulas RM, Hartl FU, et al. A balance of protein synthesis andproteasome-dependent degradation determines the maintenance of LTP[J]. Neuron,2006,52(2):239-245.
    [137] Liu CL, Ge PF, Zhang F, et al. Co-translational protein aggregation after transientcerebral ischemia[J]. Neuroscience,2005,134(4):1273-1284.
    [138] Jolitha AB, Subramanyam MV, Asha Devi S. Modification by vitamin E and exerciseof oxidative stress in regions of aging rat brain: studies on superoxide dismutaseisoenzymes and protein oxidation status[J]. Exp Gerontol,2006,41(8):753-763.
    [139] Ge PF, Luo TF, Zhang JZ, et al. Ischemic preconditioning induces chaperone Hsp70expression and inhibits protein aggregation in the CA1neurons of rats[J]. NeurosciBull,2008,24(5):288-296.
    [140] Hu BR, Martone ME, Jones YZ, et al. Protein aggregation after transient cerebralischemia[J]. J Neurosci,2000,20(9):3191-3199.
    [141] Norris EH, Giasson BI. Role of oxidative damage in protein aggregation associatedwith Parkinson's disease and related disorders[J]. Antioxid Redox Signal,2005,7(5-6):672-684.
    [142] Ge P, Luo Y, Liu C, et al. Protein Aggregation and Proteasome Dysfunction after BrainIschemia[J]. Stroke,2007,38(12):3230-3236.
    [143] Hartl FU. Molecular chaperones in cellular protein folding[J]. Nature,1996,381(6583):571-579.
    [144] Ohtsuka K, Hata M. Molecular chaperone function of mammalian Hsp70and Hsp40-a review[J]. Int J Hyperthermia,2000,16(3):231-245.
    [145] Taraszewska A, Zelman, IB, Ogonowska W, et al. The pattern of irreversible brainchanges after cardiac arrest in humans[J]. Folia Neuropathol,2002,40(3):133-141.
    [146] Tanabe M, Watanabe T, Ishibashi M, et al. Hippocampal ischemia in a patient whoexperienced transient global amnesia after undergoing cerebral angiography[J]. Caseillustration J Neurosurg,1999,91(2):347.
    [147] Ge P, Luo Y, Wang H, et al. Anti-protein aggregation is a potential target forpreventing delayed neuronal death after transient ischemia[J]. Med Hypotheses,2009,73(6):994-995.
    [148] Zhao H, Sapolsky RM, Steinberg GK. Interrupting reperfusion as a stroke therapy:ischemic postconditioning reduces infarct size after focal ischemia in rats[J]. J CerebBlood Flow Metab,2006,26(9):1114-1121.
    [149] Liu KX, Li YS, Huang WQ, et al. Immediate postconditioning during reperfusionattenuates intestinal injury[J]. Intensive Care Med,2009,35(5):933-942.
    [150] Zhang W, Wang B, Zhou S, et al. The effect of ischemic post-conditioning onhippocampal cell apoptosis following global brain ischemia in rats[J]. J Clin Neurosci,2012,19(4):570-573.
    [151] Guo JY, Yang T, Sun XG, et al. Ischaemic postconditioning attenuates liver warmischaemia-reperfusion injury through Akt-eNOS-NO-HIF pathway[J]. J Biomed Sci,2011,18:79. doi:10.1186/1423-0127-18-79.
    [152] Zhou C, Tu J, Zhang Q, et al. Delayed ischemic postconditioning protectshippocampal CA1neurons by preserving mitochondrial integrity via Akt/GSK3βsignaling[J]. Neurochem Int,2011,59(6):749-758.
    [153] Prasad SS, Russell M, Nowakowska M. Neuroprotection induced in vitro by ischemicpreconditioning and postconditioning: modulation of apoptosis and PI3K-Aktpathways[J]. J Mol Neurosci,2011,43(3):428-442.
    [154] Zhang W, Miao Y, Zhou S, et al. Neuroprotective effects of ischemic postconditioningon global brain ischemia in rats through upregulation of hippocampal glutaminesynthetase[J]. J Clin Neurosci,2011,18(5):685-689.
    [155] Yuan Y, Guo Q, Ye Z, et al. Ischemic postconditioning protects brain fromischemia/reperfusion injury by attenuating endoplasmic reticulum stress-inducedapoptosis through PI3K-Akt pathway[J]. Brain Res,2011,1367:85-93.
    [156] Hu BR, Martone ME, Jones YZ, et al. Protein aggregation after transient cerebralischemia[J]. J Neurosci,2000,20(9):3191-3199.
    [157] Aguzzi A, O'Connor T. Protein aggregation diseases: pathogenicity and therapeuticperspectives[J]. Nat Rev Drug Discov,2010,9(3):237-248.
    [158] Hyun DH, Lee M, Halliwell B, et al. Proteasomal inhibition causes the formation ofprotein aggregates containing a wide range of proteins, including nitrated proteins[J]. JNeurochem,2003,86(2):363-373.
    [159] Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: new insights intoprotein folding, misfolding diseases and biological evolution[J]. J Mol Med,2003,81(11):678-699.
    [160] Lehotsky J, Murín R, Strapková A, et al. Time course of ischemia/reperfusion-inducedoxidative modification of neural proteins in rat forebrain[J]. Gen Physiol Biophys,2004,23(4):401-415.
    [161] Mathew SS, Bryant PW, Burch AD. Accumulation of oxidized proteins in Herpesvirusinfected cells[J]. Free Radic Biol Med,2010,49(3):383-391.
    [162] Norris EH, Giasson BI. Role of oxidative damage in protein aggregation associatedwith Parkinson's disease and related disorders[J]. Antioxid Redox Signal,2005,7(5-6):672-684.
    [163] Li Z, Liu B, Yu J, et al. Ischemic Postconditioning Rescues Brain Injury Caused byFocal Ischemia Reperfusion via Attenuating Proteins Oxidization[J]. Int J Med Sci,2012,40(3):954-966.
    [164] Hochrainer K, Jackman K, Anrather J, et al. Reperfusion Rather than Ischemia Drivesthe Formation of Ubiquitin Aggregates After Middle Cerebral Artery Occlusion[J].Stroke,2012,43(8):2229-2235.
    [165] Ge P, Zhang F, Zhao J, et al. Protein degradation pathways after brain ischemia[J].Curr Drug Targets,2012,13(2):159-165.
    [166] Liu CL, Martone ME, Hu BR. Protein ubiquitination in postsynaptic densities aftertransient cerebral ischemia[J]. J Cereb Blood Flow Metab,2004,4(11):1219-1225.
    [167] Merker K, Sitte N, Grune T. Hydrogen peroxide-mediated protein oxidation in youngand old human MRC-5fibroblasts[J]. Arch Biochem Biophys,2000,375(1):50-54.
    [168] McNaught KS, Bj rklund LM, Belizaire R, et al. Proteasome inhibition causes nigraldegeneration with inclusion bodies in rats[J]. Neuroreport,2002,13(11):1437-1441.
    [169] Asai A, Tanahashi N, Qiu JH, et al. Selective proteasomal dysfunction in thehippocampal CA1region after transient forebrain ischemia[J]. J Cereb Blood FlowMetab,2002,22(6):705-710.
    [170] Phillips JB, Williams AJ, Adams J, et al. Proteasome inhibitor PS519reducesinfarction and attenuates leukocyte infiltration in a rat model of focal cerebralischaemia[J]. Stroke,2000,31(7):1686-1693.
    [171] Henninger N, Sicard KM, Bouley J, et al. The proteasome inhibitor VELCADEreduces infarction in rat models of focal cerebral ischaemia[J]. Neurosci Lett,2006,398(3):300-305.
    [172] Ge P, Zhang J, Wang X, et al. Inhibition of autophagy induced by proteasome inhibitorincreases cell death in human SHG-44glioma cells[J]. Acta Pharmacologica Sinica,2009,30(7):1046-1052.
    [173] Liu C, Gao Y, Barrett J, et al. Autophagy and protein aggregation after brainischemia[J]. J Neurochem,2010,115(1):68-78.
    [174] Huang C, Yitzhaki S, Perry CN, et al. Autophagy Induced by Ischemic Precondit-ioning is Essential for Cardioprotection [J]. J Cardiovasc Transl Res,2010,3(4):365-373.
    [175] Nishikawa S, Brodsky JL, Nakatsukasa K. Roles of molecular chaperones inendoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD)[J].J Biochem (Tokyo),2005,137(5):551-555.
    [176] Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain tofolded protein[J]. Science,2002,295(5561):1852-1858.
    [177] Bukau B, Weissman J, Horwich A. Molecular chaperones and protein qualitycontrol[J]. Cell,2006,125(3):443-451.
    [178] Evans CG, Wisén S, Gestwicki JE. Heat shock proteins70and90inhibit early stagesof amyloid beta-(1-42) aggregation in vitro[J]. J Biol Chem,2006,281(44):33182-33191.
    [179] Mengesdorf T, Jensen PH, Mies G, et al. Down-regulation of parkin protein intransient focal cerebral ischemia: A link between stroke and degenerative disease[J]?Proc Natl Acad Sci USA,2002,99(23):15042-15047.
    [180] Xing B, Chen H, Zhang M, et al. Ischemic postconditioning inhibits apoptosis afterfocal cerebral ischemia/reperfusion injury in the rat[J]. Stroke,2008,39(8):2362-2369.
    [181] Xing B, Chen H, Zhang M, et al. Ischemic post-conditioning protects brain andreduces inflammation in a rat model of foal cerebral ischemia/reperfusion[J]. JNeurochem,2008,105(5):1737-1745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700