用户名: 密码: 验证码:
基于运动起始视觉响应的在线实用化脑—机接口
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑-机接口技术是新发展起来的,多通道人机交互的一种新形式。与之前的人机交互形式不同的是,脑-机接口不依赖于人的正常输出通道(外周神经和肌肉组织等),使人脑能够直接和外部环境进行信息交互。尽管脑-机接口系统的概念在很早就被实现,然而在迈向实用化的过程中还有很多问题有待解决。比如系统配置的复杂性,在线系统的自适应性,界面设计是否能满足日常环境需求等,都是实用化中需要考虑的问题。
     运动起始视觉诱发电位(motion onset visual evoked potential,mVEP)近年来首次被本实验室引入到脑-机接口的研究中。在此基础上,本文系统地研究了mVEP的生理特性,比如不应期效应,刺激模式以及对比度对基于mVEP的脑-机接口系统的影响,为系统设计提供了基础。论文还针对N200成分在不同对比度下的稳定性提出了相应的导联选择方案,使得基于mVEP的脑-机接口系统在低对比度下也能获得稳定的性能。
     脑电信号的特征提取和模式分类是脑-机接口系统的核心。本文对现有二分类的支持向量机(SVM)做出了改进,使其能够更好地实现对脑-机接口中不平衡样本的分类。本文中还提出了基于判决时间期望和基于判决准确率期望的两种自适应决策准则,有效地提高了在线脑-机接口的性能。本文提出了基于一类SVM的的异步脑-机接口算法,并通过对后验概率模型的推广,实现了对“空闲状态”的概率估计和检测。
     基于论文中的研究和算法,我们开发出了首个基于mVEP的在线单导联的脑-机接口。12位受试者使用该系统的平均信息传输率达到42.1比特/分钟。此外,我们还在此基础上开发了一套网页浏览和搜索系统。实验中所有12位受试者都能够实现对该系统自如的操作,证明了该系统能够应用于实际的场景,嵌入并适应不同的界面,最终实现高效率的脑机交互
     最后,我们采用独立分量分析深入分析了选择性注意下的mVEP成分,并验证了基于mVEP的独立脑-机接口的可行性。
Brain-computer interface (BCI) is a newly developed approach of the multi-modal human-computer interaction. Different from the previous human-computer interaction, BCI could provide a non-muscular output, which allows direct interaction between human brain and the outside environment. Although the proof-of-concept of BCI systems was implemented decades ago, several major challenges are still to be addressed when moving towards a practical online BCI system, such as ease of the system setup, the adaptability of an online system, and the design of the user interface when presented in a real-world application.
     Motion onset visual evoked potential (mVEP) has been introduced into BCI research recently by our group. Based on our previous studies, this paper intensively studied the properties that could affect the performance of the mVEP-based BCI, such as the refractory effect, the stimulus pattern, and the background contrast. Specifically, based on the robust N200 component in varied contrast, and the corresponding strategy of channel selection, the proposed mVEP-based BCI system could achieve a stable accuracy even in a low contrast.
     Feature extraction and classification of the EEG are critical factors in the online BCI. In order to classify the unbalanced dataset in the ERP-based BCI, an improvement was made to the current binary support vector machine (SVM). Also, based on the expectation of the decision time and accuracies, two adaptive decision criteria were proposed, which was shown to effectively improve the performance of the online BCI. What is more, an algorithm based on one-class SVM was proposed in this study for asynchronous BCI. By generalizing a previous probability model, our approach provides an promising way to estimate and detect the‘idle state’within a statistical framework.
     Furthermore, the first online BCI system based on mVEP was presented in this study. Using the EEG signal recorded from only a single channel, an average information transfer rate of 42.1 bits/min was achieved among 12 subjects. In addition, an online application for web searching and browsing was developed based on this paradigm. The promising results, that all of the 12 subjects were able to operate the system with high performance, validate the feasibility of a practical mVEP-based BCI, which could be embedded in screen elements and accommodate diverse interfaces, to provide a better human-computer interaction with higher efficiency and more friendly interface.
     Moreover, by employing the independent component analysis, this study analyzed the cognitive component of selective attention under mVEP setting. The preliminary results suggest the feasibility of an independent BCI based on mVEP.
引文
[1] Hewett T, Baecker R, Card S, et al. ACM SIGCHI curricula for human-computer interaction. Retrieved April, 1996, 1: 2004
    [2] Norman D, Draper S. User Centered System Design; New Perspectives on Human-Computer Interaction. L. Erlbaum Associates Inc. Hillsdale, NJ, USA, 1986.
    [3] Allison B, Wolpaw E, Wolpaw J. Braincomputer interface systems: progress and prospects. Expert review of medical devices, 2007, 4(4): 463-474
    [4] Celesia G, Peachey N. Visual evoked potentials and electroretinograms. Electroencephalography Basic principles, clinical applications, and related fields, 1993, 911–936
    [5] Vidal J. Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering, 1973, 2(1): 157-180
    [6] Vidal J. Real-time detection of brain events in EEG. Proceedings of the IEEE, 1977, 65(5): 633-641
    [7] Lee P, Hsieh J, Wu C, et al. Brain computer interface using flash onset and offset visual evoked potentials. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 2008, 119(3): 605
    [8] Middendorf M, McMillan G, Calhoun G, et al. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 211-214
    [9] Cheng M, Gao X, Gao S, et al. Design and implementation of a brain-computer interface with high transfer rates. IEEE Transactions on Biomedical Engineering, 2002, 49(10): 1181-1186
    [10]谢勤岚,杨仲乐,陈亚光.基于模拟事件相关电位的脑—计算机接口.计算机工程与应用, 2003, 39(020): 119-121
    [11] Martens S, Hill N, Farquhar J, et al. Overlap and refractory effects in a brain–computer interface speller based on the visual P300 event-related potential. Journal of Neural Engineering, 2009, 6(2): 026003
    [12] Guo F, Hong B, Gao X, et al. A brain--computer interface using motion-onset visual evoked potential. Journal of Neural Engineering, 2008, 5(4): 477-485
    [13] Hong B, Guo F, Liu T, et al. N200-speller using motion-onset visual response. Clinical Neurophysiology, 2009, 120(9): 1658-1666
    [14] Heinrich S. A primer on motion visual evoked potentials. Documenta Ophthalmologica, 2007, 114(2): 83-105
    [15] Kuba M, KubováZ. Visual evoked potentials specific for motion onset. Documenta Ophthalmologica, 1992, 80(1): 83-89
    [16] Kuba M, KubováZ, Kremlá?ek J, et al. Motion-onset VEPs: characteristics, methods, and diagnostic use. Vision Research, 2007, 47(2): 189-202
    [17] G pfert E, Müller R, Simon E. The human motion onset VEP as a function of stimulation area for foveal and peripheral vision. Documenta Ophthalmologica, 1990, 75(2): 165-173
    [18] Schellart N, Trindade M, Reits D, et al. Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Research, 2004, 44(2): 119-134
    [19] Hollants-Gilhuijs M, De Munck J, Kubova Z, et al. The development of hemispheric asymmetry in human motion VEPs. Vision Research, 2000, 40(1): 1-11
    [20] Mangun G, Hillyard S. 3 Mechanisms and models of selective attention. Electrophysiology of mind: Event-related brain potentials and cognition, 1996, 40
    [21] Mangun G. Neural mechanisms of visual selective attention. Psychophysiology, 1995, 32(1): 4-18
    [22] Mason S, Bashashati A, Fatourechi M, et al. A comprehensive survey of brain interface technology designs. Annals of Biomedical Engineering, 2007, 35(2): 137-169
    [23] Blankertz B, Müller K, Curio G, et al. The BCI competition: Progress and perspectives in detection and discrimination of EEG single trials. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1044-1051
    [24] Blankertz B, Müller K, Krusienski D, et al. The BCI competition III. Fraunhofer FIRST IDA, http://ida first fraunhofer de/projects/bci/competition_iii, 2005,
    [25] Kaper M, Meinicke P, Grossekathoefer U, et al. BCI Competition 2003—Data Set IIb: Support Vector Machines for the P 300 Speller Paradigm. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1073-1076
    [26] Spencer K, Dien J, Donchin E. Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology, 2001, 38(02): 343-358
    [27] Krusienski D J, Sellers E W, McFarland D J, et al. Toward enhanced P300 speller performance. Journal of Neuroscience Methods, 2008, 167(1): 15-21
    [28] Lee P, Wu C, Hsieh J, et al. Visual evoked potential actuated brain computer interface: a brain-actuated cursor system. Electronics letters, 2005, 41(15): 832–834
    [29] Wang Y, Wang R, Gao X, et al. A practical VEP-based brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2): 234-240
    [30] Schroder M, Lal T, Hinterberger T, et al. Robust EEG channel selection across subjects for brain-computer interfaces. EURASIP Journal on Applied Signal Processing, 2005, 19: 3103
    [31] Lou B, Hong B, Gao X, et al. Bipolar electrode selection for a motor imagery based brain--computer interface. Journal of Neural Engineering, 2008, 5: 342-349
    [32] Liu T, Goldberg L, Gao S, et al. An online brain–computer interface using non-flashing visual evoked potentials. Journal of Neural Engineering, 7(036003
    [33] Donchin E, Spencer K M, Wijesinghe R. The mental prosthesis: assessing the speed of a P300-basedbrain-computer interface. Rehabilitation Engineering, IEEE Transactions on [see also IEEE Trans on Neural Systems and Rehabilitation], 2000, 8(2): 174-179
    [34] Zhang H, Guan C, Wang C. Asynchronous P300-Based Brain--Computer Interfaces: A Computational Approach With Statistical Models. Biomedical Engineering, IEEE Transactions on, 2008, 55(6): 1754-1763
    [35] Lenhardt A, Kaper M, Ritter H J. An Adaptive P300-Based Online Brain–Computer Interface. IEEE Trans on Rehabilitation Engineering, 2008, 16(2): 121-130
    [36] Hong B, Lou B, Guo J, et al. Adaptive active auditory brain computer interface, 2009. Conf Proc IEEE Eng Med Biol Soc.
    [37] Allison B, Wolpaw E, Wolpaw J. Brain-computer interface systems: progress and prospects. Expert Rev Med Devices, 2007, 4(4): 463-474
    [38] Mason S, Birch G, Found N, et al. A brain-controlled switch for asynchronous control applications. IEEE Transactions on Biomedical Engineering, 2000, 47(10): 1297-1307
    [39] Scherer R, Muller G, Neuper C, et al. An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 979-984
    [40] Townsend G, Graimann B, Pfurtscheller G. Continuous EEG classification during motor imagery-simulation of an asynchronous BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 12(2): 258-265
    [41] Kelly S, Lalor E, Finucane C, et al. Visual spatial attention control in an independent brain-computer interface. IEEE Transactions on Biomedical Engineering, 2005, 52(9): 1588-1596
    [42] Allison B, McFarland D, Schalk G, et al. Towards an independent brain-computer interface using steady state visual evoked potentials. Clinical neurophysiology, 2008, 119(2): 399-408
    [43] Zhang D, Maye A, Gao X, et al. An independent brain--computer interface using covert non-spatial visual selective attention. Journal of Neural Engineering, 7: 016010
    [44] Covington J, Polich J. P300, stimulus intensity, and modality. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 1996, 100(6): 579-584
    [45] Guan C, Thulasidas M, Wu J. High performance P300 speller for brain-computer interface. Biomedical Circuits and Systems, 2004 IEEE International Workshop on, 2004, S3
    [46] Kaper M, Meinicke P, Grosskathoefer U, et al. Support vector machines for the P300 speller paradigm. IEEE Trans Biomed Eng, 2004, 51(6): 1073-1076
    [47]郭飞.基于运动其实视觉响应和认知正相晚成分的脑-机接口: [硕士学位论文].北京:清华大学, 2009
    [48] Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 2004, 134(1): 9-21
    [49] Chang C, Lin C. LIBSVM: a library for support vector machines. 2001.
    [50] Sutton S, Braren M, Zubin J, et al. Evoked-potential correlates of stimulus uncertainty. Science, 1965, 150(3700): 1187
    [51] Donchin E, Smith D. The contingent negative variation and the late positive wave of the average evoked potential. Electroencephalography and Clinical Neurophysiology, 1970, 29(2): 201-203
    [52] Woods D, Hillyard S, Courchesne E, et al. Electrophysiological signs of split-second decision-making. Science, 1980, 207(4431): 655-657
    [53] Kremláek J, Kuba M, Kubova Z, et al. Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Documenta Ophthalmologica, 2004, 109(2): 169-175
    [54] Hinrichs H, Scholz M, Munte T, et al. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 1994, 372: 543
    [55] Casella G, Berger R. Statistical inference. Duxbury Pacific Grove, CA, 2002.
    [56] Wolpaw J, Birbaumer N, McFarland D, et al. Brain–computer interfaces for communication and control. Clinical Neurophysiology, 2002, 113(6): 767-791
    [57] Salvaris M, Sepulveda F. Visual modifications on the P300 speller BCI paradigm. Journal of Neural Engineering, 2009, 6(4): 046011
    [58] Rakotomamonjy A, Guigue V. BCI competition III: Dataset II-ensemble of SVMs for BCI P300 speller. IEEE Transactions on Biomedical Engineering, 2008, 55(3): 1147-1154
    [59] KubováZ, Kuba M. Motion onset VEPs improve the diagnostics of multiple sclerosis and optic neuritis. Sborník vědeckych pracíLéka skéfakulty Karlovy univerzity v Hradci KrálovéSupplementum, 1995, 38(2): 89
    [60] Bach M, Ullrich D. Contrast dependency of motion-onset and pattern-reversal VEPs: Interaction of stimulus type, recording site and response component. Vision research, 1997, 37(13): 1845-1849
    [61] Hoffmann U, Vesin J, Ebrahimi T, et al. An efficient P300-based brain–computer interface for disabled subjects. Journal of Neuroscience Methods, 2008, 167(1): 115-125
    [62] Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of educational psychology, 1933, 24(6): 417-441
    [63] Krusienski D J, Sellers E W, Cabestaing F, et al. A comparison of classification techniques for the P300 speller. Journal of Neural Engineering, 2006, 3(4): 299–305
    [64] Vapnik V, Vapnik V. Statistical learning theory. Wiley New York, 1998.
    [65] McFarland D, Sarnacki W, Wolpaw J. Brain-computer interface (BCI) operation: optimizing information transfer rates. Biological psychology, 2003, 63(3): 237-251
    [66] Thulasidas M, Guan C, Wu J. Robust Classification of EEG Signal for Brain-Computer Interface. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14(1): 24
    [67] Birbaumer N, Kubler A, Ghanayim N, et al. The thought translation device (TTD) for completely paralyzedpatients. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 190-193
    [68] Farwell L A, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 1988, 70(6): 510-523
    [69] Japkowicz N, Stephen S. The class imbalance problem: A systematic study. Intelligent Data Analysis, 2002, 6(5): 429-449
    [70]王金艳,冯建武,刘万里.一种不平衡支持向量机的校正方法.计算机应用, 2007, 27(012): 2896-2898
    [71] Akbani R, Kwek S, Japkowicz N. Applying support vector machines to imbalanced datasets. Machine Learning: ECML 2004, 2004, 39-50
    [72] Chew H, Crisp D, Bogner R, et al. Target detection in radar imagery using support vector machines with training size biasing, 2000.
    [73] Kubat M, Matwin S. Addressing the curse of imbalanced data sets: One-sided sampling, 1997.
    [74] Ling C, Li C. Data mining for direct marketing: Problems and solutions, 1998.
    [75] Cohen J, Polich J. On the number of trials needed for P300. International Journal of Psychophysiology, 1997, 25(3): 249-255
    [76] Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers, 1999,
    [77] Sch lkopf B, Platt J, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution. Neural computation, 2001, 13(7): 1443-1471
    [78] Polich J. Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 2007, 118(10): 2128-2148
    [79] Wang J, Jin Y, Xiao F, et al. Attention-sensitive visual event-related potentials elicited by kinetic forms. Clinical Neurophysiology, 1999, 110(2): 329-341
    [80] Torriente I, Valdes-Sosa M, Ramirez D, et al. Visual evoked potentials related to motion-onset are modulated by attention. Vision research, 1999, 39(24): 4122-4139
    [81] O'Craven K, Rosen B, Kwong K, et al. Voluntary attention modulates fMRI activity in human MT-MST. Neuron, 1997, 18(4): 591-598
    [82] Mangun G. Neural mechanisms of visual selective attention. Psychophysiology, 2007, 32(1): 4-18
    [83] Anllo-Vento L, Hillyard S. Selective Attention to the Color and Direction of Moving Stimuli Electrophysiological Correlates of Hierarchical Feature Selection. Perception and Psychophysics, 1996, 58(2): 191-206
    [84] Harter M, Aine C, Schroeder C. Hemispheric differences in the neural processing of stimulus location and type: Effects of selective attention on visual evoked potentials. Neuropsychologia, 1982, 20(4): 421-438
    [85] Herault J, Jutten C. Space or time adaptive signal processing by neural network models, 1986.
    [86] Jutten C, Herault J. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal processing, 1991, 24(1): 1-10
    [87] Comon P, Jutten C, Herault J. Blind separation of sources, Part II: Problems statement. Signal processing, 1991, 24(1): 11-20
    [88] Comon P. Independent component analysis, a new concept? Signal processing, 1994, 36(3): 287-314
    [89] Makeig S, Bell A, Jung T, et al. Independent component analysis of electroencephalographic data. Advances in neural information processing systems, 1996, 145-151
    [90] Sutter E. The brain response interface: communication through visually-induced electrical brain responses. Journal of Microcomputer Applications, 1992, 15(1): 31-45
    [91] Matsumoto R, Ikeda A, Nagamine T, et al. Subregions of human MT complex revealed by comparative MEG and direct electrocorticographic recordings. Clinical Neurophysiology, 2004, 115(9): 2056-2065

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700