用户名: 密码: 验证码:
人脐带源间充质干细胞在造血干细胞共移植治疗中应用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的本研究旨在建立一种分离、培养扩增脐带源间充质干细胞(human umbilical cord derived mesenchymal stem cell,hUC-MSC)的方法,通过对其基本生物学特性以及在促进造血细胞归巢,提高造血干细胞植入与造血重建、调节移植免疫中作用的研究,在临床前水平验证hUC-MSC支持造血的功能,以期找到一条通过hUC-MSC与造血干细胞共移植治疗来提高造血干细胞移植成功率的有效途径,以满足临床上日益增多的移植需求。
     方法研究分四个部分:1.首先建立hUC-MSC分离和培养扩增的方法并通过细胞形态学,细胞增殖和传代培养生长曲线的绘制,成纤维样细胞集落形成实验,流式细胞仪检测细胞周期与免疫表型分析对其基本生物学特性进行研究。2.通过RT-PCR检测hUC-MSC支持造血、促进造血归巢与植入相关分子表达;通过造血干祖细胞集落培养了解hUC-MSC维系造血的能力;通过示踪技术检测移植后24h,hUC-MSCs在NOD/SCID小鼠的体内分布以及其引导造血细胞在小鼠体内归巢的情况。3.通过流式细胞仪检测hUC-MSC对脐带血T细胞及各亚型早期激活标志—CD69表达的影响和MTT法检测hUC-MSC对脐带血T细胞增殖的影响以了解其对T细胞免疫功能的调节作用。4.最后通过建立hUC-MSC与脐带血共移植NOD/SCID小鼠的动物模型,分析移植存活率和造血植入程度(人CD45+细胞嵌合率),在临床前动物实验水平了解hUC-MSC对造血干细胞移植的影响。
     结果通过本法分离、培养的原代hUC-MSC于接种后24-48h内贴壁, 6-10d后可见成纤维细胞样克隆形成(Unit-fibroblast like colony-forming,CFU-F),集落计数平均每459±76个脐带单个核细胞可形成1个CFU-F, 2-3w后即可传代。传代细胞增殖较快,对数生长期细胞倍增时间约为32h,经连续传代培养扩增29d后细胞总数可达(9.82±0.79)×109。细胞生长周期分析示超过80%的hUC-MSC处于G0/G1期。免疫表型分析显示hUC-MSC表达CD13、CD29、CD44和CD105,不表达CD34、CD38、CD45。对组织相容性表型的分析显示hUC-MSC不表达HLA-II抗原,不表达或低表达HLA-I抗原。RT-PCR检测结果提示hUC-MSC表达SCF, Flt3L, IL-3, IL-6, G-CSF, GM-CSF等造血生子因子以及SDF-1/CXCR-4、CD11a/ICAM-1、CD49d/VCAM-1等造血归巢与植入相关分子。造血前体细胞集落培养显示hUC-MSC可维持脐带血造血前体细胞长达6周以上的集落形成能力。示踪技术显示hUC-MSC在植入NOD/SCID小鼠体内24h后主要分布于骨髓中,肝、脾亦有少量分布,而在心脏、肺脏、肾脏、脑组织、外周血中未检出;在hUC-MSC共移植情况下,流式细胞仪检测和荧光显微镜下细胞计数均发现人脐带血MNC在小鼠骨髓中的含量与单独脐带血移植相比较有显著提高(145±59/1×105vs298±72/1×105;755±158/5×105vs1598±227/5×105个骨髓有核细胞;n=9,P<0.05)。流式细胞仪检测在hUC-MSC共培养情况下,经丝裂原刺激后,脐带血T淋巴细胞CD69表达与对照组(22. 6±5.2%)的阳性率相比较,下降至7.8±3.5%(p<0.01),而且这种抑制对不同亚型T细胞(CD4+/CD8+)均起作用。MTT检测提示在hUC-MSC共培养条件下,丝裂原刺激T细胞增殖受到抑制,抑制的程度与hUC-MSC的剂量正相关。hUC-MCS与脐带血共移植NOD/SCID小鼠动物模型研究显示hUC-MSC的共移植治疗可使小鼠存活率由单独脐带血单个核细胞移植的44.4%提高到88.9%(p<0.05);流式细胞仪检测提示hUC-MSC的造血共移植使得人CD45+细胞的小鼠嵌合率较单独脐带血单个核细胞移植的8.97±1.85%明显提高至35.72±15.41%(p<0.05)。
     结论
     1.成功建立了从人足月脐带中分离培养扩增hUC-MSC的方法,操作简单、易行,所得细胞完全能够满足临床治疗的需要;
     2.hUC-MSC具有间充质干细胞的基本生物学特性和表型特征,而其高增殖潜能的特点尤为突出。
     3.初步探讨了3种hUC-MSC保存的有效方法,为建立脐带间充质干细胞库提供可能的实施方案;
     4.hUC-MSC具有维持造血前体细胞长期存活,延缓分化,达到支持长期造血的能力;
     5.hUC-MSC具有促进造血干祖细胞有效归巢与植入,加速造血重建的作用;
     6.hUC-MSC对T淋巴细胞激活和增殖具有抑制作用,这种作用为非特异性的,呈剂量依赖性,提示了hUC-MSC的调节移植免疫的潜能,这为hUC-MSC应用于异基因造血干细胞移植预防和治疗移植排斥和移植物抗宿主病,提供了实验依据;
     7.共移植动物模型进一步证实了hUC-MSC促进造血植入,支持造血重建,提高移植存活率的能力。
Objective To establish the methods of isolation and expansion of (human umbilical cord derived mesenchymal stem cell, hUC-MSC). By studying the basic biological characteristics of hUC-MSC and its effects on the homing, engraftment, reconstrution of hematopoiesis and its immunomodulatory function after cotransplantation with the hematopoietic stem/progenitor cells to confirm its capacity of hematpoietic-support which should open the horizons for hUC-MSC cotransplantation with hematopoietic stem/progenitor cells to improve the clinical outcome of transplatantions.
     Methods The study was divided into four parts: 1. hUC-MSCs were isolated and expanded from human umbilical cord after enzyme digested. The basic biological characteristics of hUC-MSC were investigated by the morphology investigation, growth curve drawing of proliferation and passage cultures, unit-fibroblast like colony-forming (CFU-F) assay. Cell cycle analysis and immunophenotype were also detected by flow cytometre (FCM). 2. RT-PCR technique was used to detect the gene expression of hematopoietic growth factors, chemokine and adhesion molecules associated with homing and engraftment of hUC-MSC. Colony-forming assay of hematopoietic stem/progenitor cell was also performed to test the capability of hUC-MSC to maintain hematpoiesis. A cell tracing technique was used to detect the spatial localization of transplanted hUC-MSCs in nonobese diabetic/severe combined immundeficicency (NOD/SCID) mouse afer 24h transplantation. The homing of human hematopoietic cells mediated by hUC-MSC after 24h cotransplantation was also detected through tracing technique. 3. In order to study the immunomodulatory capacity of hUC-MSC, FCM technique was used to detect the CD69 expression, which serves as an ideal indicator of a T-cell early activation, on PHA+PMA activated T cells after 8 hours hUC-MSCs coculture. The effect of hUC-MSC on T-lymphocyte proliferation induced by PHA were also detected by MTT. 4. Lastly a NOD/SCID mouse model of hUC-MSC cotransplantation with human umbilical cord blood was developed to detect the survival rate of NOD/SCID mouse after cotransplantation and the extent of engraftment of umbilical cord blood cells (chimerism of human CD45+ cells) in the bone marrow of NOD/SCID mouse were also measured by FCM.
     Results The primary hUC-MSCs isolated and cultured by such method adhered to culture flask within 24-48h. Unit-fibroblast like colony-forming (CFU-F) can be seen after 6-10d, and about 459±76 mononuclear cells digested from umbilical cord can form a fibroblast-like colone. After a 2-3 weeks primary expansion, hUC-MSCs can be passaged. The passaged hUC-MSCs proliferated quite rapidly and the number of hUC-MSCs in logarithemic growth period can be doubled within 32h. After 29d sequential passages about 9.82±0.79)×109 hUC-MSCs can be hearvested. Cell cycle analysis of hUC-MSCs showed more than 80 % cells were in G0-G1 phase. The immunophenotypic analysis showed that hUC-MSCs express CD13, CD29, CD44 and CD105, but negative expression of CD34, CD38 and CD45. The MHC phenotypic analysis indicated negative expression of HLA class II and negative or less expression of HLA class I. RT-PCR showed hUC-MSCs express hematopoietic growth factors such as SCF, Flt3L, IL-3, IL-6, G-CSF, GM-CSF, and also express chemokine receptor CXCR-4 and its ligend, stromal derived factor (SDF-1) and other adhesion molecules, CD11a/ICAM-1, CD49d /VCAM-1 associated with homing and engrftment. Colony-forming assay of hematopoietic stem/progenitor cell showed that hUC-MSC can maintain capability of hematpoietic colony-forming more than 6 weeks. Tracing technique showed the spatial localization of transplanted hUC-MSCs in NOD/SCID mouse afer 24h transplantation were mainly in marrow , less in liver and spleen, but no in peripheral blood, lung, kidney, heart and brain. The data showed that cotransplantation of hUC-MSCs together with umbilical cord blood (UCB) resulted in a significant increse of human UCB mononuclear cells (MNCs) in NOD/SCID mouse bone marrow nucleated cells as compared with the infusion of UCB alone through FCM technique and fluorescent microscope (145±59 / 1×105 vs 298±72 / 1×105; 755±158/ 5×105 vs 1598±227/ 5×105; n=9, p<0.05). FCM showed hUC-MSC could inhibit CD69 expression on PHA and PMA activated T cells from 22. 6±5.2% to 7.8±3.5% (p<0.01), further more such inhibitation affected both CD4+ and CD8+ T-cell subsets. A dose dependence of inhibitory effect of hUC-MSC on T-lymphocyte proliferation induced by PHA was also found by MTT. The NOD/SCID mouse model of cotransplantation showed the survival rate of NOD/SCID mouse after cotransplantation was improved from 44.4% to 88.9% as compared with MNCs transplantation alone, and the extent of engraftment of umbilical cord blood cells (chimerism of human CD45+ cells) in the bone marrow of NOD/SCID mouse were also increased from 8.97±1.85% to 35.72±15.41% measured by FCM.
     Conclusion
     1. A simple method to isolate and culture-expand hUC-MSCs from human umbilical cord was established successfully. The number of hearvested hUC-MSCs was appropriate for therapeutic purpose.
     2. hUC-MSC had the basic biological and phenotypic characteristics of MSC, and its capacity of high proliferation was quite outstanding.
     3. Three methods to preserve hUC-MSCs were primally explored which might do favor to establishing bank of hUC-MSC in the future.
     4. hUC-MSC had the capacity of hematpoietic-support in a long term through maintaining suvival and preventing differentiation of hematpoietic stem/progenitor cells.
     5. hUC-MSC could augment the homing and engraftment of hematpoietic stem/progenitor cells which would accelerate the reconstrution of hematopoiesis.
     6. hUC-MSC had a dose dependent inhibitory effect on T lymphocyte activation and proliferation, and such effect was not selective. These results indicated the immunomodulatory capacity of hUC-MSC which should open the horizons for hUC-MSCs used in much more allogeneic hemotopoietic stem cell transplantations to prevent and treat engraftment rejection and GVHD.
     7. The NOD/SCID mouse model of cotransplantation confirmed the capacity of hUC-MSC to augment the engraftment and reconstrution of hematopoiesis following a significant improvement of transplantation outcome.
引文
1.D. Baksh, L. Song, R. S. Tuan. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med. 8(3), 301-316, 2004.
    2.Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical use. Exp Hematol 2000;28:875-884.
    3.Minguell JJ, Conget P, Erices A. Biology and clinical utilization of mesenchymal progenitor cells. Braz J Med Biol Res 2000;33:881-887.
    4. Hu Y, Liao LM, Wang QY, et al. Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 2003; 141: 342-349.
    5.In’t Anker PS, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 2003; 88: 845-852.
    6.Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004; 103: 1669-1675.
    7.McElreavey KD, Irvine AI,Ennis KT et al. Isolation, culture and characterization of fibroblast-like cells derived from the Wharton`s jelly portionof human umbilical cord. Biochem Soc Trans 1991;19:29(s).
    8.Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchyal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 2003;21:105-110.
    9.Rao MS, Matton MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev 2001; 122: 713-734.
    10.Rahul Sarugaser, David Lickorish et al. Human umbilical cord perivascular(HUCPV) cells: a source of mesenchymal progenitors.Stem Cell 2005;23:220-229.
    11.Kemp KC, Hows J, Donaldson C. Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma. 2005; 46: 1531-1544.
    12.Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Bioche Cell Biol 2004; 36: 568-584.
    13.Jorgensen C, Djouad F, Apparailly F, et al. Engineering mesenchymal stem cells for immunotherapy. Gene Ther 2002; 10: 928-931.
    14.Castro Malaspina H, Gay RE, Resnick G, et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 1980; 56: 289-301.
    15.Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. J Immunol 1981; 126: 1614-1619.
    16.Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics,self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;79:1699-1709.
    17.Gronthos S., Zannettino A.C., Hay S.J., Shi S., Graves S.E., Kortesidis A., Simmons P.J., Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow, J. Cell Sci., 116: 1827-1835, 2003.
    18.Suva D., Garavaglia G., Menetrey J., Chapuis B.,Hoffmeyer P., Bernheim L., Kindler V., Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells, J. Cell Physiol, 198: 110-118, 2004.
    19.Frank MH, Sayegh MH. Immunomodulatory functions of mesenchymal stem cells. Lancet 2004; 363: 1411-1412.
    1.Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73, 1999.
    2. Panzenbock B, Bantunek P, Mapara MY, et al. Growth and differentiation of human stem cell factor/erythroid progenitor cell in vitro. Blood 1998; 92: 3685-368.
    3. Teshima T, Reddy P, Lowler KP, et al. Flt3 ligand therapy for recipients of allogeneic bone marrow transplants expands host CD8+ a dendritic cells and reduces experimental acute graft-versus-host disease. Blood 2002; 99: 1825-2832.
    4. Scott CL, Robb L, Papaevangebion B, et al. Reassessment of interations between hematopoietic receptors using common beta-chain and interleukin-3-specific receptors for erythropoietin, granulocyte colony-stimulating factor or stem cell factor. Blood 2000; 96: 1588-1590.
    5. Lazzari L, Lucchi S, Rebulla P, et al. Long-term expansion and maintenance of cord blood hematopoietic stem cells using thrombpoietin, Flt-3 ligand, interleukin(IL)-6, IL-11 in a serum-free culture system. Br J Haematol 2001; 112: 397-404.
    6.Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-1 alpha. J Cell Physiol 166:585–592, 1996.
    7.Satomura K, Derubeis AR, Fedarko NS, Ibaraki-O’Connor K, Kuznetsov SA, Rowe DW, Young MF, Gehron Robey P. Receptor tyrosine kinase expression in human bone marrow stromal cells. J Cell Physiol 177:426–438, 1998.
    8.Chichester CO, Ferna′ndez M, Minguell JJ. Extracellular matriz gene expresio′n by human bone marrow stroma and by marrow fibroblast. Cell Adhes Commun 1:93–99, 1993.
    9.Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the integrinsLFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/ stromal migration and engraftment of NOD/SCID mice. Blood. 2000;95:3289-3296.
    10.Spencer A, Jackson J, Baulch-Brown C. Enumeration of bone marrow “homing” haemopoietic stem cells from G-CSF-mobilised normal donors and influence on engraftment following allogeneic transplantation. Bone Marrow Transplant. 2001; 28:1019-1022.
    11. Voermans C, Kooi ML, Rodenhuis S, et al. In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood. 2001;97:799-804.
    12. Ji JF, He BP, Dheen ST, Tay SS. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells. 2004;22:415-427.
    13. Noort WA, Kruisselbrink AB, in’t Anker PS, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol. 2002;30:870-878.
    14.Devine SM, Bartholomew AM, Mahmud N, et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol. 2001;29:244-255.
    15.Wynn RF, Hart CA, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004;104:2643-2645.
    16.Morad Bensidhoum, Alain Chapel, ET AL. Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood. 2004;103:3313-3319.
    17.Abkowitz J, Robinson A, Kale S, et al. Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood. 2003;102:1249-1253.
    18.Prockop DJ, Azizi SA, Phinney DG, Kopen GC, Schwarz EJ. Potential use of marrow stromal cells as therapeutic vectors for diseases of the central nervous system. Prog Brain Res. 2000; 128:293-297.
    19.Reese JS, Koc ON, Gerson SL. Human mesenchymal stem cells provide stromalsupport for efficient CD34+ transduction. J Hematother Stem Cell Res 8:515–523, 1999.
    20.Cheng L, Qasba P, Vanguri P, Thiede MA. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol 184:58–69,2000.
    21.Fouillard L, Bensidhoum M, Bories D et al . Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma.Leukemia 2003;17:474-6.
    22.Wright DE, Wagers AJ, Pathak Gulati A, et al. Physiological migration of hematopoietic stem and progenitor cells. Science.
    23.Carton G, Herault O, Benboubker L, et al. Quantitive and qualitive analysis of the human primitive progenitor cell compartment after autologous stem cell transplantation. J Hematother Stem Cell Res. 2002;11:359-368.
    24.Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood. 2001;97: 2293-2299.
    25.Bianco P, Riminucci M, Gronthos S, Robey GR. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19: 180-182.
    26.Kahn J, Byk T, et al. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood. 2004;103:2942-2949.
    27.Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 2002;30:215-222.
    28.Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94:92-95.
    29.Broxmeyer H, Kohli L, Kim C, et al. Stromal cellderived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and Gai proteins and enhances engraftment of competitive, repopulating stem cells. J Leukoc Biol. 2003;73:630-638.
    30.Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia. 2002;16:1992-2003.
    31.Verfaillie CM. Adhesion receptors as regulators of the hematopoietic process. Blood. 1998;92:2609-2612.
    1. Mauri D, Wyss-Coray T, Gallati H, et al. Antigen-presenting T cells induce the development of cytotoxic CD4+ T cells: Involvement of the CD80-CD28 adhesion molecules. J Immunol 1995; 155: 118-127.
    2. King CL, Stupi RJ, Craighead N, et al. CD28 activation promotes Th2 subset differentiation by human CD4+ cells. Eur J Immunol 1995; 25: 587-595.
    3. Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2005; 11: 321-334.
    4. Klyushnenkova E, Mosca JD, Zernetkina V et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci. 2005; 12: 47-57.
    5. Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 2002;30:215-222.
    6. Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94:92-95.
    7. D. Baksh, L. Song, et al. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med. 2004;8(3) : 301-316.
    8. Frassoni F LM, Bacigalupo A, Gluckman E, et al. Expanded mesenchymal stem cells (MSC), coinfused with HLA identical hemopoietic stem cell transplants, reduce acute and chronic graft versus host disease: a matched pair analysis. Bone Marrow Transplant. 2002;29:75.
    9. Chung NG, Jeong DC, Park SJ, et al. Cotransplantation of marrow stromal cells may prevent lethal graft-versus-host disease in major histocompatibility complex mismatched murine hematopoietic stem cell transplantation. Int J Hematol 2004; 80:370-6.
    10. Kim DW, Chung YJ, Kim TG, Kim YL, Oh IH. Cotransplantation of third-party mesenchymal stromal cells can alleviate single-donor predominance and increase engraftment from double cord transplantation. Blood. 2004;103:1941-1948.
    11. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838-3843.
    12. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2002;101:3722-3729.
    13. K Le Blanc, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandi J Immunol 2003; 57: 11-20.
    14. Ziegler SF, Ramsdell F, Alderson MR. The activation antigen CD69. Stem Cells Dayt 1994;12:456 65.
    1.Ueda T, Tsuji K, Yoshino H, et al. Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J Clin Invest. 2000;105:1013-1021.
    2. Larochelle A-J, Vormoor H, Hanenberg J-C-Y, et al. Identification of primitive hematopoietic cells capable of repopulating NOD/SCID mice: implications for gene therapy. Nat Med. 1996;2:1329-1337.
    3.Conneally E, Cashman J, Petzer A, Eaves C. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc Natl Acad Sci U S A. 1997;94:9836-9841.
    4.Noort WA, Kruiselbrink AB,et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice.Exp Hematol. 2002 Aug;30(8):870-8.
    5.Lazarus HM, Haynesworth SE, Gerson SL et al . Ex vivo expansion and subsequent infusion of human bone marrow derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995;
    6.Koc ON, Gerson SL, Cooper BW et al . Rapid hematopoietic recovery after co-infusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Clin Oncol 2000;18:307-16.
    7.Horwitz EM, Prockop DJ, Fitzpatrick LA et al . Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5:309-13.
    8.Horwitz EM, Prockop DJ, Gordon PL et al . Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001;97:1227-31.
    9.Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant. 2005 May;11(5):389-98.
    10.Lee ST, Jang JH, Cheong J-W et al . Treatment of high-risk acute myelogenousleukaemia by yeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and ulture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol 2002;118:1128-31.
    1. Jose′ J. Minguell, Alejandro Erices, Paulette Conget. Mesenchymal Stem Cells . Exp Biol Med Vol. 226(6):507–520, 2001.
    2. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 88:287–298, 1997.
    3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147, 1998.
    4. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 95:13726–13731, 1998.
    5.K Le Blanc and MF Pittenger. Mesenchymal stem cells: progress toward promise. Cytotherapy Vol. 7(1), 36-45, 2005.
    6. D. Baksh, L. Song, R. S. Tuan. Adult mesenchymal stem cells: characterization,differentiation, and application in cell and gene therapy. J. Cell. Mol. Med. 8(3), 301-316, 2004.
    7. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical use. Exp Hematol 2000;28:875-884.
    8. Minguell JJ, Conget P, Erices A. Biology and clinical utilization of mesenchymal progenitor cells. Braz J Med Biol Res 2000;33:881-887.
    9. Rao MS, Mattson MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev 2001;122:713-734.
    10. McElreavey KD, Irvine AI,Ennis KT et al. Isolation, culture and characterization of fibroblast-like cells derived from the Wharton`s jelly portionof human umbilical cord. Biochem Soc Trans 1991;19:29(s).
    11. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchyal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 2003;21:105-110.
    12. Rahul Sarugaser, David Lickorish et al. Human umbilical cord perivascular(HUCPV) cells: a source of mesenchymal progenitors.Stem Cell 2005;23:220-229.
    13. Suva D.Garavaglia G, Menetrey J et al. Non-hematopoietichematopoietic human bone marrow contains longlasting,pluripotential mesenchymal stem stem cells. J Cell Physiol 2004;198:110-118.
    14. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics,self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;79:1699-1709.
    15. Hovatta O.Millola M.Gertow K et al. A culture system using human foreskin fibroblasts as feeder cells allows productiong of human embryonic stem cells.Hum Reprod 2003;18:1404-1409.
    16.Gronthos S., Zannettino A.C., Hay S.J., Shi S., Graves S.E., Kortesidis A., Simmons P.J., Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow, J. Cell Sci., 116: 1827-1835, 2003.
    17. Suva D., Garavaglia G., Menetrey J., Chapuis B.,Hoffmeyer P., Bernheim L., Kindler V., Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells, J. Cell Physiol, 198: 110-118, 2004.
    18. Weissman IL. Translating stem and progenitor cell biology to the clinic: Barriers and opportunities. Science 287:1442–1446, 2000.
    19. Pittenger MF, Mackay AM, Beck SC, et al. Multi-lineage potential of adult human mesenchymal stem cells. Science. 1999;284: 143-147.
    20. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999;96: 10711-10716.
    21. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105: 93-98.
    22. Bianco P, Robey PG. Stem cells in tissue engineering. Nature. 2001;414:118-121.
    23. Deng Y., Guo X., Yuan Q., Li S., Efficiency of adenoviral vector mediated CTLA4Ig gene delivery into mesenchymal stem cells, Chin Med. J. (Engl. ), 116: 1649- 1654, 2003.
    24. Haleem-Smith H., Derfoul A., Okafor C., Tuli R., Olse D., Hall D.J., Tuan R.S., Optimization of high efficiency transfecrtion of adult human mesenchymal stem cells,Molecular Biotechnology, Accepted, 2004.
    25. Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 2002;30:215-222.
    26. Mazzini L, Fagioli F, Boccaletti R, et al. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:158-161.
    27. Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94:92-95.
    28. Horwitz EM. Gordon Pl. Koo WK et al. Isolated allogeneic bone marrow-derived Mesenchymal cells engraft and stimulatte growth in children with osteogenesis imperfecta: implications for cell theraphy of bone. Proc Natl Acad Sci USA 2002;99:8932-8937.
    29 Abkowitz J, Robinson A, Kale S, et al. Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood. 2003;102:1249-1253.
    30 Wright DE, Wagers AJ, Pathak Gulati A, et al. Physiological migration of hematopoietic stem and progenitor cells. Science.
    31 Carton G, Herault O, Benboubker L, et al. Quantitive and qualitive analysis of the human primitive progenitor cell compartment after autologous stem cell transplantation. J Hematother Stem Cell Res. 2002;11:359-368.
    32 Kahn J, Byk T, et al. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood. 2004;103:2942-2949.
    33 Broxmeyer H, Kohli L, Kim C, et al. Stromal cellderived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and Gai proteins and enhances engraftment of competitive, repopulating stem cells. J Leukoc Biol. 2003;73:630-638.
    34 Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia. 2002;16:1992-2003.
    35. Gronthos S, Simmons PJ. The growth factor requirements of STRO-1-positive humanbone marrow stromal precursors under serum-deprived conditions in vitro. Blood. 1995;85:929-940.
    36. Ponomaryov T, Peled A, Petit I, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest. 2000;106:1331-1339.
    37. Kucia M, Ratajczak J, Reca R, Janowska-Wieczorek A, Ratajczak MZ. Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis. 2004;32:52-57.
    38. Peled A, Petit I, Kollet O et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999:283:845-R4R.
    39. Spencer A, Jackson J, Baulch-Brown C. Enumeration of bone marrow “homing” haemopoietic stem cells from G-CSF-mobilised normal donors and influence on engraftment following allogeneic transplantation. Bone Marrow Transplant. 2001; 28:1019-1022.
    40. Voermans C, Kooi ML, Rodenhuis S, et al. In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood. 2001;97:799-804.
    41. Ji JF, He BP, Dheen ST, Tay SS. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells. 2004;22:415-427.
    42 Verfaillie CM. Adhesion receptors as regulators of the hematopoietic process. Blood. 1998;92:2609-2612.
    43. Noort WA, Kruiselbrink AB,et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice.Exp Hematol. 2002 Aug;30(8):870-8.
    44. Prockop DJ, Azizi SA, Phinney DG, Kopen GC, Schwarz EJ. Potential use of marrow stromal cells as therapeutic vectors for diseases of the central nervous system. Prog Brain Res. 2000; 128:293-297.
    45. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-1alpha. J Cell Physiol 166:585–592, 1996.
    46. Reese JS, Koc ON, Gerson SL. Human mesenchymal stem cells provide stromal support for efficient CD34+ transduction. J Hematother Stem Cell Res 8:515–523, 1999.
    47. Cheng L, Qasba P, Vanguri P, Thiede MA. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol 184:58–69,2000.
    48. Chichester CO, Ferna′ndez M, Minguell JJ. Extracellular matriz gene expresio′n by human bone marrow stroma and by marrow fibroblast. Cell Adhes Commun 1:93–99, 1993.
    49.Fouillard L, Bensidhoum M, Bories D et al . Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma.Leukemia 2003;17:474-6.
    50 Bianco P, Riminucci M, Gronthos S, Robey GR. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19: 180-182.
    51. Le Blanc K, Tammik C, Go¨therstro¨m C et al . HLA-expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003;31:890-6.
    52. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105:1-8.
    53. Frassoni F LM, Bacigalupo A, Gluckman E, et al. Expanded mesenchymal stem cells (MSC), coinfused with HLA identical hemopoietic stem cell transplants, reduce acute and chronic graft versus host disease: a matched pair analysis. Bone Marrow Transplant. 2002;29:75.
    54. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30:42-48.
    55. Chung NG, Jeong DC, Park SJ, et al. Cotransplantation of marrow stromal cells may prevent lethal graft-versus-host disease in major histocompatibility complex mismatched murine hematopoietic stem cell transplantation. Int J Hematol 2004; 80:370-6.
    56. Kim DW, Chung YJ, Kim TG, Kim YL, Oh IH. Cotransplantation of third-party mesenchymal stromal cells can alleviate single-donor predominance and increaseengraftment from double cord transplantation. Blood. 2004;103:1941-1948.
    57. Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant. 2005 May;11(5):389-98.
    58. Lee ST, Jang JH, Cheong J-W et al . Treatment of high-risk acute myelogenous leukaemia by yeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and ulture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol 2002;118:1128-31.
    59. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838-3843.
    60. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2002;101:3722-3729.
    61. Ziegler SF, Ramsdell F, Alderson MR. The activation antigen CD69. Stem Cells Dayt 1994;12:456 65.
    62 . Lazarus HM, Haynesworth SE, Gerson SL et al . Ex vivo expansion and subsequent infusion of human bone marrow derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995;
    63. Koc ON, Gerson SL, Cooper BW et al . Rapid hematopoietic recovery after co-infusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Clin Oncol 2000;18:307-16.
    64. Horwitz EM, Prockop DJ, Fitzpatrick LA et al . Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5:309-13.
    65. Horwitz EM, Prockop DJ, Gordon PL et al . Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001;97:1227-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700