用户名: 密码: 验证码:
不同骨质疏松条件下膨胀式椎弓根螺钉的稳定性测定及临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     经椎弓根内固定以其卓越三柱固定生物力学优势,已成为脊柱后路手术中最常用的内固定方式。其稳定性主要取决于椎弓根螺钉在骨质中的把持力,骨质疏松条件下螺钉的稳定性因受到骨质条件的影响而会显著下降。前期研究表明,膨胀式椎弓根螺钉可显著性提高螺钉抗拔出能力;但是,将其应用于什么程度的骨质疏松是安全的,这一问题仍未完全明了,本课题正是紧密围绕此实际问题而设计开展的。
     研究目的:
     一、评价不同骨质疏松条件下膨胀式椎弓螺钉的稳定性,以及螺钉稳定性是否可经一种新型钙基骨水泥强化提高。
     二、测量不同骨密度条件下椎体松质骨显微结构参数和力学特性指标,与螺钉拔出力作相关性分析,以了解与螺钉稳定性相关的骨显微结构和力学特性指标,进一步明确螺钉松动的原因。
     三、观察膨胀螺钉对合并有骨质疏松症的脊柱疾病的初步临床疗效,为进一步开展膨胀螺钉相关的临床试验提供理论和实践依据。
     材料方法:
     一、采用新鲜尸体脊柱标本,根据骨密度检测结果,按临床诊断标准分成骨质正常、骨量减少、骨质疏松和重度骨质疏松4个水平;设计分非强化普通钉、非强化膨胀钉、强化普通钉和强化膨胀钉4种方案进行植钉。用平衡不完全随机区组的统计学分组方法,对标本进行组间分配。每个骨密度水平,每种植钉方案植入螺钉9枚。然后,进行螺钉轴向拔出实验,测定最大拔出力、刚度和能量吸收值3项指标,对所测指标进行植钉方案间和骨密度水平间的纵横对比分析。
     二、收集螺钉拔出实验后未行强化钉道的椎体标本,在椎体中央部钻取松质骨柱状骨样,对骨样进行显微CT扫描、力学压缩实验,以获取椎体松质骨显微结构参数和力学特性指标。并作各项指标的不同骨密度水平间的比较分析,在了解这些指标随骨质疏松程度加重的变化规律的基础上,再将骨显微结构、力学特性指标与所对应的螺钉的最大拔出力作相关性分析。
     三、前瞻性设计,纳入合并有骨质疏松症的脊柱疾病患者共63例,在内固定手术治疗中应用膨胀式椎弓根螺钉。采用视觉模拟量表VAS、Oswestry功能障碍指数ODI、JOA腰椎评分等量表和影像学资料对临床疗效进行随访评价。观察内固定在位情况,计算骨性融合率。并对某一病种所特有的评价指标作专门测量统计;例如,对腰椎滑脱病例的影像学评价中要测量滑脱百分比Taillard指数,椎间隙平均高度,滑脱角及腰椎前凸角,以评价复位矫正和维持情况。
     结果:
     一、螺钉轴向拔出实验结果示:(1)骨密度水平相同条件下,膨胀螺钉的最大拔出力、刚度均显著性高于普通螺钉。(2)对同类型螺钉来说,采用新型钙基骨水泥强化可提高螺钉的最大拔出力,但是对提高螺钉拔出刚度无显著作用。(3)骨质疏松水平时,膨胀螺钉、强化普通钉以及强化膨胀钉组的最大拔出力至少可以达到骨量减少时普通钉的水平。(4)但是,重度疏松时,所有植钉方案的螺钉最大拔出力均显著下降,故在此骨质条件下没有任何一种植钉方案的最大拔出力能达到骨量减少时普通钉的水平。
     二、经椎体松质骨显微CT扫描、压缩实验发现:(1)随骨密度水平的依梯次下降,即骨质疏松程度进行性加重,椎体松质骨显微结构参数、力学特性指标随之发生相应明显变化,存在骨密度水平间的显著性差异。(2)广泛的相关性存在于骨密度、显微CT、压缩实验和螺钉拔出实验等指标之间。(3)其中普通螺钉和膨胀螺钉的最大拔出力均与显微CT扫描所得的骨体积分数BV/TV、骨小梁厚度Tb.Th和小梁间隙Tb.Sp呈高度相关关系,同时还与压缩实验中得出的极限应力σult和弹性模量E也高度相关。
     三、临床初步应用结果示:(1)纳入63例患者均获随访,平均随访时间约21.8月。(2)与术前相比,末次随访的VAS、ODI值下降依次72.9%和66.7%,JOA显效率、有效率依次为73.0%(46/63)和20.7%(13/63),总有效率为93.7%(59/63),三项指标术前与术后相比,均存在显著性差异。(3)末次随访影像学,所有63例病例,未见螺钉内固定的松动、断裂,内固定位置良好,成功骨性融合率为96.8%(61/63)。(4)其中8例腰椎滑脱,术后、随访Taillard指数,滑脱角和腰椎前凸角与术前相比均显著性下降,而椎间隙高度则显著性提高。
     结论:
     一、骨密度下降程度为骨量减少和骨质疏松时选用膨胀式椎弓根螺钉作内固定是安全的;新型钙基骨水泥强化可以进一步提高螺钉(包括膨胀螺钉)的抗拔出强度。
     二、随骨密度下降,骨组织会同时发生质的退变;螺钉的最大拔出力与部分骨显微结构参数、力学性能指标高度相关,检测这些指标能提高对螺钉发生松动风险的判断力。
     三、在合并有骨质疏松的脊柱疾病的内固定手术中,可以长时间维持稳定的固定,骨性融合率高,临床疗效良好。总结起来,本课题研究结果表明,骨质疏松条件下应用膨胀式椎弓根螺钉作固定,是安全有效的,也是理想选择之一。膨胀式椎弓根螺钉具有继续在临床上推广应用的广阔前景。
Background The use of pedicle screw presents 3-D biomechanical advantages in the spine surgeries of internal fixation. These advantages depend on pedicle screws to retain bony purchase, which will be substantially compromised in the osteoporotic bone. Several previous studies have demonstrated that the fixation strength of pedicle screw can be significantly improved with an expansive design. However, there are some concerns whether this kind of pedicle screw, named expansive pedicle screw, is safe to use in the spine with osteoporosis or severe osteoporosis. Few studies are available to refer the performance of expansive pedicle screw used in the presence of osteoporosis or severe osteoporosis diagnosed according to the clinical criteria. Therefore, our study was initiated and performed in order to elucidate these concerns. Objectives The aim of this study is three-fold: (1) to evaluate whether the fixation strength of the expansive pedicle screw is competent in the human cadaver vertebrae with different levels of bone mineral density and whether the fixation strength can be further improved with the augmentation of a newly developed calcium-based biomaterial; and (2) to measure the micro-architectural indices and mechanical properties of cancellous bone in the vertebral body and to analyze the interrelationships between these parameters and the relationship between them and the corresponding maximum pullout strength of pedicle screws; and (3) to observe the efficacy of expansive pedicle screw in the management of spinal diseases coincided with osteoporosis and to preliminarily make sure of indications for the expansive pedicle screw fixation to provide theoretical and practical evidence for future clinical trials and extensive application of expensive pedicle screw in spine surgeries.
     Materials and Methods Fresh human cadaver spines were stratified into four levels: normal, osteopenia, osteoporosis and severe osteoporosis, according to the value of bone mineral density. The vertebra was bilaterally instrumented pedicle screws with four protocols, including conventional pedicle screw without augmentation, expansive pedicle screw without augmentation, conventional screw with augmentation and expansive screw with augmentation. The statistical method of“balanced incomplete randomized blocks”was used to assign the pedicles for the four protocols at the same level, resulting in nine screws per group per level. Screw pullout tests were conducted. On the load-stroke curve, the maximum pullout strength, stiffness and energy absorption were determined. The differences between the groups at the same bone mineral density level but different inserting protocols, or between the groups at different bone mineral density levels but same inserting protocol, were compared. Following the pullout tests, the vertebral specimens were collected. Subsequently, cancellous bone cylinders were drilled for micro-CT scanning and compression tests from 6 vertebrae in the groups without augmentation with the new biomaterial. The interrelationships between micro-CT, mechanical parameters themselves and the relationship between them and the corresponding maximum pullout strength of pedicle screws were analyzed. A preliminary clinical study was carried out with prospective design, in which 63 patients, who suffered from different spinal diseases and concurrent osteoporosis, were included. The questionnaires of VAS, ODI and JOA were administered preoperatively and at the latest follow-up to assess the clinical and functional outcomes. Also, the radiographic data were recorded, from which common observations such as the condition of pedicle screws, cage position and the fusion rate of bone graft were taken. Given special measurements were needed for one certain pattern of disease, they were gotten respectively. For example, in order to evaluate the orthopedic results in the treating of spondylolisthesis, the Taillard index (the degree of slip), the slip angle, the average disc height and the lumbar lordosis were measured on the lateral X-ray view pre-and post- operationally, and at follow-up.
     Results Given the same specimen, the maximum pullout strength and stiffness of expansive screw were significantly higher than those of conventional screw. When the same type of screw was used, the maximum pullout strength of the calcium based cement augmented group was higher than that of the non-augmented group, but the calcium based cement seemed to have very limited impact on improving the stiffness of either conventional or expansive pedicle screw. The pullout strength and stiffness of the expansive screw, augmented conventional screw and augmented expansive screw groups at the osteoporotic level were comparable to those of the conventional pedicle screw group at the osteopenic level. However, under the severely osteoporotic bone environment, the pullout strength of pedicle screw with whatever placement protocol was significantly lower than that of the conventional screw group at the osteopenic level. With the increasing severity of osteoporosis, progressive bone volume loss, mechanical incompetence and micro-architectural deterioration were evident. Significant differences in micro-CT and mechanical parameters were found among the different levels of bone mineral density. Strong correlations were extensively observed among micro-CT or mechanical parameters themselves, between micro-CT indices and mechanical properties. The maximum pullout strength of the both pedicle screws highly correlated with bone volume over total volume (BV/TV), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp) from micro-CT scanning, and with ultimate stress (σult) and elastic modulus (E) from compression mechanical test. In the clinical trial, the 63 cases were all achieved to be followed up. The average follow-up time was about 22 months (rang 12-44 months) with the minimum of one year. Before surgery, the patients demonstrated severe pain and disability in term of preoperative VAS and ODI. At follow-up assessment, the clinical and functional outcome showed significant improvement in all measurements. The mean VAS and ODI scores were significantly decreased by 72.9% and 66.7%, respectively. According to the results of JOA, an obvious efficacy was shown in 73.0% patients and a moderate efficacy was in 20.7%, so the total effective rate was 93.7 (59/63). Significant differences were found in all the three questionnaire scores between pre-operation and follow-up. There were no instances of screw loosening, pullout, or breakage of the expansive pedicle screws. No measurable subsidence or extrusion of the cages was evident at the follow-up evaluation. According to the radiographic evidence taken at the last follow-up, 61 out of 63/all cases achieved the criteria of solid fusion and the fusion rate is 96.8%. For
     the eight cases of spondylolisthesis, post-operatively the average slip percentage (Taillard index), slip angle and angle of lumbar lordosis were significantly decreased and the average disc height was significantly improved compared to those of pre-operation. In addition, no significant differences in these measurements were found between post-operation instantly and at the final follow-up.
     Conclusions Our pullout test results demonstrate that the expansive pedicle screw appears feasible and safe in either osteopenic or osteoporotic spine and that calcium based cement augmentation can further improve the initial fixation strength of expansive pedicle screw. The maximum pullout strength of the pedicle screws highly correlated with some parameters from micro-CT scanning and compression mechanical test. To measure these parameters can help to improve the prediction of the fixation strength of pedicle screw. The preliminary clinical trial has shown that the application of expansive pedicle screw in operative managing spinal diseases with concomitant osteoporosis is a feasible and reliable alternative. This fixation technique can create a favorable biomechanical condition to obtain a solid fusion and to produce good clinical results.
     In summery, all the results of this study reveal that the expansive pedicle screw is valuable to apply in spine surgery, especially in the presence of osteoporosis.
引文
[1] Boucher HH. A method of spinal fusion. J Bone Joint Surg Br, 1959, 41-B(2): 248-59.
    [2]雷伟,李明全.第一章第3节:腰椎椎弓根钉技术.脊柱内固定系统应用指南(第一版),2004,p14-15.
    [3]阮狄克,方津生. 100例国人腰椎弓根的CT测量及其临床意义.中国脊柱脊髓杂志,1993,3(6):244-247.
    [4]李严兵,王爱平,彭田红,徐达传,丁自海,谢叻,赵卫东,钟世镇.腰椎椎弓根通道不同外偏角方向变化规律的数字解剖学研究.中国临床解剖学杂志,2007,25(2):113-117.
    [5]唐杞衡,陈建海,姜保国,张殿英,傅中国.椎弓根螺钉把持椎弓根皮质骨对其固定强度的影响.中国脊柱脊髓杂志,2005,15(7):429-432.
    [6] Inceoglu S, Kilincer C, Tami A, McLain RF. Cortex of the pedicle of the vertebral arch. Part I: Deformation characteristics during screw insertion. J Neurosurg Spine, 2007, 7(3): 341-346.
    [7] Hriano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichiya M, Ikeda M. Structural characteristics of the pedicle and its role in screw stability. Spine, 1997, 22(21): 2504-2510.
    [8] Chavassieux P, Seeman E, Delmas PD. Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev, 2007, 28(2): 151-164.
    [9] Coe JD, Warden KE, Herzig MA, McAfee PC. Influence of bone mineral density on the fixation of thoracolumbar implants: a comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine, 1990, 15: 902-907.
    [10] Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS, III, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine, 1994, 19(21): 2415-2420.
    [11] Wittenberg RH, Lee KS, Shea M, White AA, III, Hayes WC. Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop Relat Res, 1993, 296:278-87.
    [12] Yamagata M, Kitahara H, Minami S, Takahashi K, Isobe K, Moriya H. Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine, 1992, 17(3 suppl): S51-S54.
    [13]李增春,张志玉,王以进.骨密度对椎弓根螺钉系统固定的影响之生物力学研究.中华骨科杂志,1998,18(5):293-297.
    [14] Weinstein RS, Hutson MS. Decreased trabecular width and increased trabecular spacing contribute to bone loss with aging. Bone, 1987, 8(3): 137-142.
    [15] Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone, 1997, 21(2): 191-199.
    [16] van der Linden JC, Homminga J, Verhaar JA, Weinans H. Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res, 2001, 16(3): 457-465.
    [17] Aaron JE, Shore PA, Shore RC, Beneton M, Kanis JA. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone, 2000, 27(2):277-282.
    [18] Hordon LD, Raisi M, Aaron JE, Paxton SK, Beneton M, Kanis JA. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Two-dimensional histology. Bone, 2000, 27(2): 271-276.
    [19]谭映军,潘显明,陈乾一,权毂,李延,胡修德,黄钢,马泽辉,张波.内锥及外锥形椎弓根螺钉的生物力学研究.骨与关节损伤杂志,2001,16(6):441-443.
    [20]潘显明,谭映军,张波,权毅,胡谬德,黄钢,李延,陈孟诗.椎弓根螺钉的螺纹形状与拔钉生物力学.第四军医大学学报,2002,23(5):447-450.
    [21] Abshire BB, McLain RF, Valdevit A, Kambic HE. Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out. Spine J, 2001, 1(6): 408-414.
    [22] Lill CA, Schneider E, Goldhahn J, Haslemann A, Zeifang F. Mechanical performance of cylindrical and dual core pedicle screws in calf and human vertebrae. Arch Orthop Trauma Surg, 2006, 126(10): 686-694.
    [23] Mummaneni PV, Haddock SM, Liebschner MA, Keaveny TM, Rosenberg WS. Biomechanical evaluation of a double-threaded pedicle screw in elderly vertebrae. J Spinal Disord Tech, 2002, 15(1): 64-68.
    [24] Battula S, Schoenfeld A, Vrabec G, Njus GO. Experimental evaluation of the holding power/stiffness of the self-tapping bone screws in normal and osteoporotic bone material. Clin Biomech, 2006, 21(5): 533-537.
    [25] Schoenfeld AJ, Battula S, Sahai V, Vrabec GA, Corman S, Burton L, Njus GO. Pullout strength and load to failure properties of self-tapping cortical screws in synthetic and cadaveric environments representative of healthy and osteoporotic bone. J Trauma, 2008, 64(5): 1302-1307.
    [26] Klein SA, Glassman SD, Dimar JR, Voor MJ. Evaluation of the fixation and strength of a "rescue" revision pedicle screw. J Spinal Disord Tech, 2002, 15(2):100-104.
    [27] Brantley AG, Mayfield JK, Koeneman JB, Clark KR. The effects of pedicle screw fit. An in vitro study. Spine, 1994, 19 (15): 1752-1758.
    [28] Polly DW Jr, Orchowski JR, Ellenbogen RG.Revision pedicle screws. Bigger, longer shims--what is best? Spine, 1998, 23(12): 1374-1379.
    [29] Kiner DW, Wybo CD, Sterba W, Yeni YN, Bartol SW, Vaidya R. Biomechanical analysis of different techniques in revision spinal instrumentation: larger diameter screws versus cement augmentation. Spine, 2008, 33(24): 2618-1622.
    [30] Chin KR, Gibson B. The risks of pedicle wall breech with larger screws afterundertapping. Spine J, 2007, 7(5): 570-574.
    [31] Yazu M, Kin A, Kosaka R, Kinoshita M, Abe M. Efficacy of novel-concept pedicle screw fixation augmented with calcium phosphate cement in the osteoporotic spine. J Orthop Sci, 2005, 10(1): 56-61.
    [32] Pitzen TR, Drumm J, Bruchmann B, Barbier DD, Steudel WI. Effectiveness of cemented rescue screws for anterior cervical plate fixation. J Neurosurg Spine, 2006, 4(1): 60-63.
    [33] Takigawa T, Tanaka M, Konishi H, Ikuma H, Misawa H, Sugimoto Y, Nakanishi K, Kuramoto K, Nishida K, Ozaki T. Comparative biomechanical analysis of an improved novel pedicle screw with sheath and bone cement. J Spinal Disord Tech, 2007, 20(6): 462-467.
    [34] Esenkaya I, Denizhan Y, Kaygusuz MA, Yetmez M, Kelestemur MH. Comparison of the pull-out strengths of three different screws in pedicular screw revisions: a biomechanical study. Acta Orthop Traumatol Turc, 2006, 40(1): 72-81.
    [35] Lin LC, Chen HH, Sun SP. A biomechanical study of the cortex-anchorage vertebral screw. Clin Biomech, 2003, 18(6): S25-S32.
    [36] Lei W, Wu Z. Biomechanical evaluation of an expansive pedicle screw in calf vertebrae. Eur Spine J, 2006, 15(3): 321-326.
    [37] Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD. Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J, 2004, 4(4): 402-408.
    [38]孙常太,黄公怡.钛合金及不锈钢椎弓根螺钉的骨—螺钉界面力学及组织学分析.中华骨科杂志,1999,19(11):679-682.
    [39]杨海峰.医用钛金属材料表面改性研究功能材料.分析科学学报,2001,11(3):232-235.
    [40]苗波,姜德志.医用镁合金微弧氧化后不同涂层抑菌性及骨诱导性的研究.黑龙江医药科学,2009,32(5):7-8.
    [41]苗波,隋长德,李慕勤,王晶彦.羟基磷灰石/骨碎补复合材料修复骨缺损的实验研究.黑龙江医药科学,2009,32(5):3-4.
    [42] Hasegawa T, Inufusa A, Imai Y, Mikawa Y, Lim TH, An HS. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J, 2005, 5(3): 239-243.
    [43] Upasani VV, Farnsworth CL, Tomlinson T, Chambers RC, Tsutsui S, Slivka MA, Mahar AT, Newton PO. Pedicle screw surface coatings improve fixation in nonfusion spinal constructs. Spine, 2009, 34(4): 335-343.
    [44] Mutsuzaki H, Ito A, Sakane M, Sogo Y, Oyane A, Ebihara Y, Ichinose N, Ochiai N. Calcium phosphate coating formed in infusion fluid mixture to enhance fixation strength of titanium screws. J Mater Sci Mater Med, 2007, 18(9): 1799-1808.
    [45] Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res, 1984, 189:125-141.
    [46] Roy-Camille R, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle screw plating. Clin Orthop Relat Res, 1986, 203:7-17.
    [47]杜心如,赵玲秀,张一模,叶启彬.腰椎人字嵴顶点毗邻结构的观察及其临床意义.中国脊柱脊髓杂志,2001,11(2):89-92.
    [48] Hailong Y, Wei L, Zhensheng M, Hongxun S. Computer analysis of the safety of using three different pedicular screw insertion points in the lumbar spine in the Chinese population. Eur Spine J, 2007, 16(5): 619-623.
    [49] Barber JW, Boden SD, Ganey T, Hutton WC. Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? J Spinal Disord, 1998, 11(3): 215-220.
    [50] Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA, Womack WJ, Puttlitz CM. Cortical bone trajectory for lumbar pedicle screws. Spine J, 2009, 9(5): 366-373.
    [51]李斌,潘粉丽,常崇旺.椎弓根螺钉抗拔出强度的生物力学测试.现代生物医学进展,2009,9(3):520-521.
    [52] Chen LH, Tai CL, Lai PL, Lee DM, Tsai TT, Fu TS, Niu CC, Chen WJ. Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping. Clin Biomech, 2009, 24(8): 613-618.
    [53] George DC, Krag MH, Johnson CC, Van Hal ME, Haugh LD, Grobler LJ. Hole preparation techniques for transpedicle screws. Effect on pull-out strength from human cadaveric vertebrae. Spine, 1991, 16(2): 181-184.
    [54] Pfeiffer FM, Abernathie DL, Smith DE. A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Spine, 2006, 31(23): E867-E870.
    [55] Lehman RA, Jr., Kuklo TR. Use of the anatomic trajectory for thoracic pedicle screw salvage after failure/violation using the straight-forward technique: a biomechanical analysis. Spine, 2003, 28(18): 2072-2077.
    [56] Patel PS, Shepherd DE, Hukins DW. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. BMC Musculoskelet Disord, 2008, 9: 137.
    [57] Milcan A, Ayan I, Zeren A, Sinmazcelik T, Yilmaz A, Zeren M, Kuyurtar F. Evaluation of cyanoacrylate augmentation of transpedicular screw pullout strength. J Spinal Disord Tech, 2005, 18(6):511-514.
    [58] Inceoglu S, Ehlert M, Akbay A, McLain RF. Axial cyclic behavior of the bone-screw interface. Med Eng Phys, 2006, 28(9): 888-893.
    [59] Serhan HA, Varnavas G, Dooris AP, Patwadhan A, Tzermiadianos M. Biomechanics of the posterior lumbar articulating elements. Neurosurg Focus, 2007, 22(1): E1.
    [60] Mummaneni PV, Haddock SM, Liebschner MA, Keaveny TM, Rosenberg WS.Biomechanical evaluation of a double-threaded pedicle screw in elderly vertebrae. J Spinal Disord Tech, 2002, 15(1): 64-68.
    [61] Kawagoe K, Saito M, Shibuya T, Nakashima T, Hino K, Yoshikawa H. Augmentation of cancellous screw fixation with hydroxyapatite composite resin (CAP) in vivo. J Biomed Mater Res, 2000, 53(6): 678-684.
    [62] Jacob AT, Ingalhalikar AV, Morgan JH, Channon S, Lim TH, Torner JC, Hitchon PW. Biomechanical comparison of single- and dual-lead pedicle screws in cadaveric spine. J Neurosurg Spine, 2008, 8(1): 52-57.
    [63] Cook SD, Salkeld SL, Whitecloud TS, III, Barbera J. Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design. J Spinal Disord, 2000, 13(3): 230-236.
    [64] Andreassen GS, Hoiness PR, Skraamm I, Granlund O, Engebretsen L. Use of a synthetic bone void filler to augment screws in osteopenic ankle fracture fixation. Arch Orthop Trauma Surg, 2004, 124(3): 161-165.
    [65] Aldini NN, Fini M, Giavaresi G, Giardino R, Greggi T, Parisini P. Pedicular fixation in the osteoporotic spine: a pilot in vivo study on long-term ovariectomized sheep. J Orthop Res, 2002, 20(6): 1217-1224.
    [66] Ignatius AA, Augat P, Ohnmacht M, Pokinskyj P, Kock HJ, Claes LE. A new bioresorbable polymer for screw augmentation in the osteosynthesis of osteoporotic cancellous bone: a biomechanical evaluation. J Biomed Mater Res, 2001, 58(3): 254-260.
    [67] Wessling M, Aach M, Herbort M, Gosheger G, Hardes J, Gebert C. The primary stability of the hip transposition type IIb: A biomechanical in vitro study. Clinical Biomechanics, 2009, 24(4): 361-365.
    [68] Wittenberg RH, Lee KS, Shea M, White AA, III, Hayes WC. Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixationstrength. Clin Orthop Relat Res, 1993, 296: 278-287.
    [69] Bai B, Kummer FJ, Spivak J. Augmentation of anterior vertebral body screw fixation by an injectable, biodegradable calcium phosphate bone substitute. Spine, 2001, 26(24): 2679-2683.
    [70] Tan JS, Kwon BK, Dvorak MF, Fisher CG, Oxland TR. Pedicle screw motion in the osteoporotic spine after augmentation with laminar hooks, sublaminar wires, or calcium phosphate cement: a comparative analysis. Spine, 2004, 29(16): 1723-1730.
    [71]黎逢峰,方煌,陈安民,吴华,李锌,胡宁.磷酸钙骨水泥强化椎弓根螺钉固定的生物力学研究.中国脊柱脊髓杂志,2003,13(12):731-734.
    [72] Moon SH, Um HS, Lee JK, Chang BS, Lee MK. The effect of implant shape and bone preparation on primary stability. J Periodontal Implant Sci, 2010, 40(5): 239-243.
    [73] Chatzistergos PE, Magnissalis EA, Kourkoulis SK. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model. Med Eng Phys, 2010, 32(2): 145-254.
    [74] Tosun B, Snmazcelik T, Buluc L, Curgul I, Sarlak AY. Effect of insertional temperature on the pullout strength of pedicle screws inserted into thoracic vertebrae: an in vitro calf study. Spine, 2008, 33(19): E667-E672.
    [75]吕荣.改进的丽春红三色法.陕西新医药,1986,15(3):60-63.
    [76] Wang ML, Massie J, Allen RT, Lee YP, Kim CW. Altered bioreactivity and limited osteoconductivity of calcium sulfate-based bone cements in the osteoporotic rat spine. Spine J, 2008, 8(2): 340-350.
    [77] Bonewald LF, Harris SE, Rosser J, Dallas MR, Dallas SL, Camacho NP, Boyan B, Boskey A. von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int, 2003, 72(5): 537-547.
    [78] Wan SY, Wu ZX, Zhang W, Liu D, Gao MX, Fu SC, Shi L, Lei W. ExpandablePedicle Screw Trajectory in Cadaveric Lumbar Vertebra: An Evaluation Using Microcomputed Tomography. J Spinal Disord Tech, 2010 Oct 21. [Epub ahead of print].
    [79] Liu D, Wu ZX, Gao MX, Wan SY, Shi L, Fu SC, Wang J, Lei W. A New Method of Partial Screw Augmentation in Sheep Vertebrae in vitro: the Biomechanical and Interfacial Evaluation. J Spinal Disord Tech, 2010 Dec 8. [Epub ahead of print].
    [80] Yi X, Wang Y, Lu H, Li C, Zhu T. Augmentation of pedicle screw fixation strength using an injectable calcium sulfate cement: an in vivo study. Spine, 2008, 33(23): 2503-2509.
    [81] Cook SD, Barbera J, Rubi M, Salkeld SL, Whitecloud TS, III. Lumbosacral fixation using expandable pedicle screws. an alternative in reoperation and osteoporosis. Spine J, 2001, 1(2):109-114.
    [82] Ponnusamy KE, Iyer S, Gupta G, Khanna AJ. Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J, 2011, 11(1): 54-63.
    [83] Battula S, Schoenfeld A, Vrabec G, Njus GO. Experimental evaluation of the holding power/stiffness of the self-tapping bone screws in normal and osteoporotic bone material. Clin Biomech, 2006, 21(5): 533-537.
    [84] Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A. A meta-analysis of previous fracture and subsequent fracture risk. Bone, 2004, 35(2): 375-382.
    [85] Akhter MP, Lappe JM, Davies KM, Recker RR. Transmenopausal changes in the trabecular bone structure. Bone, 2007, 41(1): 111-116.
    [86] Nazarian A, Stauber M, Zurakowski D, Snyder BD, Muller R. The interaction of microstructure and volume fraction in predicting failure in cancellous bone. Bone, 2006, 39(6): 1196-1202.
    [87] Recker RR, Bare SP, Smith SY, Varela A, Miller MA, Morris SA, Fox J. Cancellous and cortical bone architecture and turnover at the iliac crest of postmenopausal osteoporotic women treated with parathyroid hormone 1-84. Bone, 2009, 44(1):113-119.
    [88] Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone, 2008, 42(3): 456-466.
    [89] Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone, 1993, 14(4):595-608.
    [90] Bevill G, Farhamand F, Keaveny TM. Heterogeneity of yield strain in low-density versus high-density human trabecular bone. J Biomech, 2009, 42(15): 2165-2170.
    [91] Ikeda S, Morishita Y, Tsutsumi H, Ito M, Shiraishi A, Arita S, Akahoshi S, Narusawa K, Nakamura T. Reductions in bone turnover, mineral, and structure associated with mechanical properties of lumbar vertebra and femur in glucocorticoid-treated growing minipigs. Bone, 2003, 33(5): 779-787.
    [92] Liu D, Lei W, Wu ZX, Gao MX, Wan SY, Fu SC, Shi L. Augmentation of Pedicle Screw Stability With Calcium Sulfate Cement in Osteoporotic Sheep: Biomechanical and Screw-bone Interfacial Evaluation. J Spinal Disord Tech, 2010. Sep 14. [Epub ahead of print].
    [93] Chang MC, Liu CL, Chen TH. Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: a novel technique. Spine, 2008, 33(10): E317-E324.
    [94] Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine, 2007, 32(10): 1077-1083.
    [95] Renner SM, Lim TH, Kim WJ, Katolik L, An HS, Andersson GB. Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as afunction of injection timing and method. Spine, 2004, 29(11): E212-E216.
    [96]卢海霖,邑晓东,王宇,郑辉.可注射硫酸钙在椎弓根螺钉固定中的生物力学研究.中国脊柱脊髓杂志,2006,16(2):152-154.
    [97] Afzal S, Akbar S, Dhar SA. Short segment pedicle screw instrumentation and augmentation vertebroplasty in lumbar burst fractures: an experience. Eur Spine J, 2008, 17(3): 336-341.
    [98]郭卫春,彭昊,陶海鹰,明江华.强化膨胀式椎弓根螺钉翻修作用的生物力学评价临床外科杂志,2006,14 (8):508-509.
    [99]李宏伟,马远征,鲍达,孙继桐,陈兴,刘海容.膨胀与普通椎弓根钉治疗脊柱胸腰段骨折合并骨质疏松的对比研究.中国骨质疏松杂志,2006,12(1):13-15.
    [100]王祥善,孙保国,刘建民,陈金华,母心灵,雷哲,郭小伟.膨胀式椎弓根螺钉在骨质疏松椎体的生物力学研究.实用诊断与治疗杂志,2005,19(8):552-557.
    [101]张伟,雷伟,吴子祥.膨胀式椎弓根螺钉的强度测试,科学技术与工程,2008,16(8):4635-4637.
    [102]吴子祥,雷伟,孙明林,崔庚,于良.膨胀式椎弓根螺钉脊柱后路内固定的生物力学测试.医用生物力学,2004,19(2):98-102.
    [103]吴子祥,雷伟.膨胀式椎弓根螺钉抗旋出性能的生物力学测试.中国矫形外科杂志,2004,12(9):695-697.
    [104]雷伟,吴子祥,李明全,崔庚.膨胀式脊柱椎弓根螺钉固定的生物力学研究.中国脊柱脊髓杂志,2004,14(11):669-672.
    [105]吴子祥,雷伟,李明全,崔庚.膨胀式椎弓根螺钉翻修作用的生物力学效应.中国临床康复, 8(14): 2668-2669.
    [106] Zarrinkalam MR, Beard H, Schultz CG, Moore RJ. Validation of the sheep as a large animal model for the study of vertebral osteoporosis. Eur Spine J, 2009, 18(2): 244-253.
    [107] Wan S, Lei W, Wu Z, Liu D, Gao M, Fu S. Biomechanical and histological evaluationof an expandable pedicle screw in osteoporotic spine in sheep. Eur Spine J, 2010, 19(12): 2122-2129.
    [108] Wan SY, Lei W, Wu ZX, Lv R, Wang J, Fu SC, Li B, Zhan C. Micro-CT evaluation and histological analysis of screw-bone interface of expansive pedicle screw in osteoporotic sheep. Chin J Traumatol, 2008, 11(2): 72-77.
    [109]万世勇,雷伟,吴子祥,吕荣,王军,李波,付索超,战策.膨胀式椎弓根螺钉在骨螺钉界面的显微CT评价及组织学分析.中国骨质疏松杂志,2007,13(11):1271-1273.
    [110]王祥善,鲍朝辉,赵卫东,孙保国,刘建民.膨胀式脊柱内固定系统椎弓根螺钉翻修作用的生物力学研究.中国脊柱脊髓杂志,2005,15(7):436-439.
    [111] Becker S, Chavanne A, Spitaler R, Kropik K, Aigner N, Ogon M, Redl H. Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J, 2008, 17(11): 1462-1469.
    [112] Gao, M., Liu, X., Zhen, P., Xue, Y., Tian, Q. Lumbar spondylolisthesis management using expandable pedicle screw and interbody fusion cage. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2009, 23(8): 904-908.
    [113] Fransen P. Increasing pedicle screw anchoring in the osteoporotic spine by cement injection through the implant. Technical note and report of three cases. J Neurosurg Spine, 2007, 7(3):366-369.
    [114] Evans SL, Hunt CM, Ahuja S. Bone cement or bone substitute augmentation of pedicle screws improves pullout strength in posterior spinal fixation. J Mater Sci Mater Med, 2002, 13(12): 1143-1145.
    [115] Wilkes RA, Mackinnon J, Thomas W. Neurologic deterioration after cement injection into a vertebral body. J Bone Joint Surg, 1994, 76 (1): 155 -160.
    [116] Konno S, Olmaker K, Byrod G. The European Spine Society Aero Med Prize 1994: acute thermal nerve root injury. Eur Spine J, 1994, 3(1): 299-302.
    [117] Weinstein RS, Hutson MS. Decreased trabecular width and increased trabecular spacing contribute to bone loss with aging. Bone, 1987, 8(3): 137-142.
    [118] Padilla F, Jenson F, Bousson V, Peyrin F, Laugier P. Relationships of trabecular bone structure with quantitative ultrasound parameters: in vitro study on human proximal femur using transmission and backscatter measurements. Bone, 2008, 42(6): 1193-1202.
    [119] Sran MM, Boyd SK, Cooper DM, Khan KM, Zernicke RF, Oxland TR. Regional trabecular morphology assessed by micro-CT is correlated with failure of aged thoracic vertebrae under a posteroanterior load and may determine the site of fracture. Bone, 2007, 40(3): 751-757.
    [120]丁柱,朱兆洪,李国岩.骨密度测量诊断骨质疏松研究概况.中国中医骨伤科杂志,2004, 6(12): 46-49.
    [121] Mazess R, Collick B, Trempe J, Barden H, Hanson J. Performance evaluation of a dual-energy x-ray bone densitometer. Calcif Tissue Int 1989; 44(3): 228-232.
    [122] Mittra E, Rubin C, Gruber B, Qin YX. Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing, microCT, and DXA. J Biomech, 2008, 41(2): 368-375.
    [123] Ding M, Cheng L, Bollen P, Schwarz P, Overgaard S. Glucocorticoid induced osteopenia in cancellous bone of sheep: validation of large animal model for spine fusion and biomaterial research. Spine, 2010, 35(4): 363-370.
    [124]戴如春,张丽,廖二元.骨质疏松的诊治进展.中国医刊,2008, 43(4): 4-6.
    [125] Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS, III, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine, 1994, 19(21): 2415-2420.
    [126] Fogel GR, Toohey JS, Neidre A, Brantigan JW. Is one cage enough in posterior lumbar interbody fusion: a comparison of unilateral single cage interbody fusion to bilateral cages. J Spinal Disord Tech, 2007, 20(1): 60-65.
    [127] Lowe TG, Tahernia AD, O'Brien MF, Smith DA. Unilateral transforaminal posterior lumbar interbody fusion (TLIF): indications, technique, and 2-year results. J Spinal Disord Tech, 2002, 15(1): 31-38.
    [128] Harrington JF, Jr., Park MC. Single level arthrodesis as treatment for midcervical fracture subluxation: a cohort study. J Spinal Disord Tech, 2007, 20(1): 42-48.
    [129]许鹏雍,凌尚准.脊柱结核的外科治疗进展.医学综述,2010,16(19):2982-2984.
    [130] Güzey FK, Emel E, Bas NS, Hacisalihoglu S, Seyithanoglu MH, Karacor SE, Ozkan N, Alatas I, Sel B. Thoracic and lumbar tuberculous spondylitis treated by posterior debridement, graft placement, and instrumentation: a retrospective analysis in 19 cases. Neurosurg Spine, 2005, 3(6):450-458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700