用户名: 密码: 验证码:
脉冲电流对金属凝固组织的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲电流对金属凝固过程具有重要影响。研究电流对凝固组织的作用规律,探讨其作用机理是材料制备领域的重要研究课题。本文采用自主研制的中频脉冲电源,以纯铝、纯铜和铝硅、铝铜二元合金为研究对象,运用实验研究方法,探讨了脉冲电流对金属凝固过程及组织的影响,揭示了脉冲电流细化金属凝固组织的机理。
     实验研究了中频脉冲电流峰值、脉冲频率及脉宽对纯铝、纯铜凝固组织的影响规律。结果表明:随着电流峰值密度、脉冲频率的增加及脉冲宽度的减小,纯铝的凝固组织由未处理试样的粗大柱状穿晶组织转变为细小的等轴晶组织;但中频脉冲电流对纯铜凝固组织的细化作用不明显,而高压脉冲电流对纯铜凝固组织有较明显的细化作用。这说明脉冲电流对纯铜凝固组织的细化需要更大的脉冲能量,反映了脉冲电流对金属凝固组织的细化作用与金属的性质有密切关系。
     研究了脉冲电流对铝硅、铝铜合金宏观和微观凝固组织的影响。发现随着脉冲电流峰值密度和脉冲频率的增加,亚共晶铝硅、铝铜合金宏观凝固组织由未处理时的粗大等轴晶转变为细小等轴晶组织,其微观凝固组织中初生α-Al相由粗大的柱状树枝晶转变为细小等轴晶。铝硅合金中初生α-Al相的量增加,其组织中的共晶硅相随脉冲电流参数的增大由未处理时较大的长条状转变为细小的短条状,且分布变得均匀;铝铜合金微观组织中二次枝晶变短且逐渐消失。研究还发现,随着溶质含量的增加,脉冲电流对铝铜合金凝固组织的细化作用减弱。这也说明脉冲电流对金属的细化作用与金属的性质有密切关系。
     本文从研究脉冲电流对晶体形核和晶体长大的影响出发,探讨了脉冲电流对金属凝固组织细化的机理。首先,根据纯铝的不同凝固阶段设计了8种脉冲电流处理工艺,发现脉冲电流作用于形核之前的高温液相阶段对凝固组织没有细化作用,作用于晶体生长阶段对凝固组织的细化作用也不明显,而作用于凝固的形核阶段对纯铝凝固组织细化效果最佳。由此发现脉冲电流对金属凝固组织的细化作用是极大地提高了金属的形核率。为了进一步探讨其机理,本文又设计了在铸型中放置金属网和铸型预热实验。结果表明:脉冲电流作用下铸型型壁上晶核的不断形成和脱落是脉冲电流细化金属凝固组织的直接原因,延迟型壁处形成凝固壳层的时间会极大地提高脉冲电流细化金属凝固组织的效果。
     在上述发现的基础上,本文利用电动力学和电磁学理论研究了脉冲电流对金属熔体凝固形核过程的作用,建立了脉冲电流导致晶核增殖的数学模型。揭示了凝固组织的细化不仅与脉冲电流参数有关,而且还与金属的物化性能及铸型材料有关,从理论上解释了相同脉冲电流参数脉冲电流为何对不同金属的凝固组织有不同的细化效果。通过对脉冲电流作用下晶核的运动分析,解释了试样凝固组织的晶区形状形成原因。
     利用定向凝固技术研究了脉冲电流对晶体生长的影响。结果表明:脉冲电流使界面前沿液相中的溶质浓度降低,溶质扩散层厚度减小,脉冲电流显著增大固液界面前沿液相中的温度梯度。当下拉速度为3μm/s时,可使界面生长形态由未施加脉冲电流时的胞状晶生长形态转变为平面晶生长;当下拉速度为14μm/s时,可使未施加脉冲电流时的胞状枝晶生长形态转变为胞状晶生长形态;当下拉速度为96μm/s时,脉冲电流能够抑制柱状树枝晶的二次枝晶臂生长,使二次枝晶臂变短甚至消失。
     脉冲电流提高了固液界面生长形态的稳定性,增大了由平面晶向胞状晶、胞状晶向胞状树枝晶转变的临界生长速度。研究发现,随着脉冲电流的增大,界面生长的糊状区深度和一次臂间距逐渐减小。
The electric current pulse (ECP) remarkably influences on solidification processes of metal. In recent years, studying effect and mechanism of ECP on solidification structure is an important item in field of material preparation. The effect of ECP on solidification process and structure of pure Al, pure Cu, and Al-Si, Al-Cu alloys is experimentally investigated by using self-designed pulse current equipment, and the refinement mechanism of ECP on solidification structure is analysed.
     Using pulse current with lower voltage and higher frequency investigates the effect of pulse current peak value, frequency and pulse width on solidification structure of pure Al and Cu. The results show that the solidification structure of pure Al transforms from coarse columnar crystal into fine globular crystal with increase of peak value current density and frequency or decrease of pulse width. However, the refining effect of pulse current with higher voltage and lower frequency on solidification structure of pure Cu is more than that of pulse with lower voltage and higher frequency. It is indicated that refinement of solidification structure of pure Cu must use a lager ECP, which reflects there is a closely relationship between effect of ECP on solidification structure and characteristics of metal.
     The influence of electric current pulse on solidification structure of hypoeutectic Al-Si and Al-Cu alloy is investigated. The results show that their macrostructure is remarkably refined by using electric current pulse. Moreover, with an increase of the peak value and frequency of current, not only the size of grain is decreased , but also primary a-Al phase of microstructure is transformed from dendritic crystals into equiaxed ones. For the microstructure of Al-Si alloy, quantity of primary a-A\ phase increases, and eutectic Si phase is changed short strip and well-proportioned distribution with ECP from long strip without ECP. For the microstructure of Al-Cu alloys, the secondary-arm gradually disappears. In addition, with the increase of Cu content of hypoeutectic Al-Cu alloys, the refining effect of ECP on macrostructure is weakened, which illustrates farther that there is a closely relationship between effect of ECP on solidification structure and characteristics of metal.
     The refining mechanism of ECP on solidification structure is investigated by studying effect of ECP on crystal nucleation and growth.
     Firstly, eight ECP treatment techniques are designed according to different solidification stage of pure Al. The experimental results show that the solidification structure can not be refined by exerting ECP on high temperature liquid phase. The ECP has also no obvious influence on the solidification structure when it is applied during crystal growth. However, the very fine structure is obtained by applying ECP during the nucleation of the melt. These verify that refining effect of ECP on structure of metal is promoting the nucleation rate. For making out the reason of enhancing nucleation rate, secondly, the experiments of wire netting beforehand putting into each sand mould and preheating mould are designed. The reason of enhancing nucleation rate is certify that the nuclei created on the mould wall are broken off and fall into the melt, and conformed that the nucleation rate increases by retarding the formation of the solidification shell.
     Based on the above results, the effect of ECP on solidification nucleation process is studied by theories of electrodynamics and electromagnetics, and established the mathematic model of nucleus multiplication by ECP. These show that refinement of structure relate with not only parameter of ECP but also characteristic of melt and material of sand mould, which make clear why has a different refining effect for various metal with same parameter of ECP, And make out the formation reason of shape of globular crystal zone by analyzing movement of nucleus under ECP.
     The effect of ECP on interface front of temperature field, solute field and interface morphology and stability is investigated during directional solidification. The results show that ECP can decrease solute concentration and solute boundary layer thickness nearby front of solid-liquid interface, and increase remarkably liquid temperature gradient at interface. Application of ECP could makes solid-liquid interface change from cellular to planar interface at the puling rate of 3μm/s, from cellular-dendritic to cellular interface at the puling rate of 14μm/s. When the puling rate is 96μm/s, application of ECP suppresses the secondary dendrites, and makes them shorten even disappear.
     The ECP improves the solid-liquid interface stability and increases the critical growth velocity that the interface morphology transforms planar crystal to cellular crystal and cellular crystal to cellular dendrite. It also shows that the cellular spacing and the mushy zone depth decrease with increasing current density.
引文
[1] James P.Schaffer等著,余永宁,强文江等译.工程材料科学与设计[M].北京:机械工业出版社,2003.
    [2] 黄良余.铝及其合金的晶粒细化处理简述[J].特种铸造及有色合金,1997,3:41-43.
    [3] Sigworth G K. Foundmentals of grain refining in aluminum alloy castings [J]. Light Metals, 1989: 75-85.
    [4] Mats Johusson, Lennart Backerud and Sigworth G K. Study of mechanism of grain refinement of Al after additions of Ti- and B- containing master alloys [J]. Metall Trans. A, 1993, 20A (2): 481-491.
    [5] Dhindaw, Brij K. International Conference on Solidification Science and Processing: outlook for the 21st century. Science Publishers, 2001.
    [6] Flemings Merton C. Proceedings of the Merton C. Flemings Symposium on Solidification and Materials Processing. TMS, 2001
    [7] Campbell, John. Modeling of casting, welding, and advanced solidification processes Ⅶ. Minerals, Metals & Materials Society, 1995.
    [8] 翟启杰,邢长虎,赵沛,等.微区成分扰动生核处理基础研究[J].钢铁,2002,37(6):39~41.
    [9] 李庆春.铸件形成理论基础[M].机械工业出版社,北京:1982.
    [10] B.I.Butakov, M.B.Stolyar, Yu.G.Ovchinnikov, et al. External physical actions on structure and properties of metals and alloys. Tyazheloe Mashinostroenie, 2002, (3): 9-16.
    [11] Furuhashi S, Yoshida M, Tanaka T. Control of early solidification by the use of high frequency electromagnetic field in the continuous casting of steel. Tetsu To Hagane 1998, 84(9): 625-631.
    [12] A.A. Wheeler. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy [J]. J. Cryst. Growth, 1990, 100:78-88
    [13] H.Conrad. Influence of an electric or magnetic field on the liquid~solid transformation in materials and on the microstructure of the solid [J]. Mater. Sci. and Eng., 2000, A287: 205-212.
    [14] L.N. Brush, B.T. Murray. Crystal growth with applied current [J]. J. Cryst. Growth, 2003, 250: 170-173
    [15] L.N. Brush. A phase field model with electric current [J]. J. Cryst. Growth, 2003, 247: 587-596.
    [16] S. Taniguchi, H.Yasuda and K. Takatani. Preface to the special issue on "advanced application of electromagnetic force to materials processing" [J]. ISIJ Int., 2003, 43 (6): 799-800.
    [17] Gamier M. Technological and economical challenges facing EMP in next century [C]. The 3rd international symposium on EPM. Nagoya: The Iron and Steel Institute of Japan, 2000: 3-8.
    [18] Utech U P, Fleming M C, Thermal convection in metal crystal growth: effect of a magnetic field [J]. Trans. Metal.Soc. AIME, 1965, 233: 156.
    [19] Uhlmann D R, Seward T P, Chalmers B. The efect of magnetic fields on the structure of me talalloy castings [J]. Trans. Metall. Soc. AIME, 1966, 236 (4): 527-531.
    [20] V. Abramov, V. Bulgakov, F. Sommer. Solidification of aluminium alloys under ultrasonic irradiation using water-cooled resonator [J]. Materials Letters, 1998,42: 27-34.
    [21] F.P. Qi, H.B. Zhang, Q.J. Zhai. Microstructure Refinement of Sn-Sb Peritectic Alloy under High-Intensity Ultrasound Treatment [J]. Journal of Shanghai University, 2005, 9: 74-77.
    [22] X. Jian, H. Xu, Q. Han. Effect of power ultrasound on solidification of aluminum A356 alloy [J]. Materials Letters, 2005, 59: 190-193.
    [23] H. Conrad. Effects of electric current on solid state phase transformations in metals [J]. Mater. Sci. Eng. A, 2000, 287: 227-237.
    [24] S.H. Xiao, J.D. Guo, S.D. Wu, et al. Recrystallization in fatigued copper single crystals under electropulsing [J]. Scripta Mater., 2002,46: 1-6.
    [25] Y. Zhou, K. Hirao, Y. Yamauchi, et al. Effects of heating rate and particle size in pulse electric current sintering of alumina [J]. Scripta Mater., 2003, 48: 1631-1636.
    [26] O. A. Troitskii. Pressure shaping by the application of a high energy [J]. Mater. Sci. Eng. A, 1985,75:37-50.
    [27] H. Conrad, N. Karam, S.L. Mannan. Effect of electric current pulses on the recrystallization of copper [J]. Scripta Metall, 1983, 17 (3): 411-416.
    [28] A.F. Sprecher, S.L.Mannan, H. Conrad. On the mechanisms for the electroplastic effect in the metals [J]. Acta Metall, 1986, 34: 1145-1162.
    [29] H. Conrad, A.F. Sprecher, W.D. Cao, X.P. Lu. Electroplasticity the effect of electricity on the mechanical properties of metals [J]. JOM, 1990, 42 (9): 28-33.
    [30] H.Conrad. Effects of electric current on solid state phase transformations in metals [J]. Mater. Sci.Eng. A, 2000, 287: 227-237.
    [31] H. Conrad, J. White, W.D. Cao, X.P. Lu, A.F. Sprecher. Effect of electric current pulses on fatigue characteristics of polycrystalline copper [J]. Mater. Sci. Eng. A, 1991, 145:1-12.
    [32] Z.H. Lai, C.X. Ma, H.Conrad. Cyclic softening by high density electric current pulses during low cycle fatigue of α—Ti [J]. Scripta Metall., 1992, 27: 527-531.
    [33] 肖素红,周亦胄,吴世丁,姚戈,李守新,周本濂.高密度脉冲电流对Cu单晶体驻留滑移带的影响[J].金属学报,2000,36(12):1237-1239.
    [34] H. Conrad, N. Karam, S.L. Mannan. Effect of prior cold work on the influence of electric current pulses on the recrystallication of copper [J]. Scripta Metall, 1984, 18 (3): 275-279.
    [35] H. Conrad, H. Cuo, A.F. Sprecher. Effect of an electric field on the recovery and recrystallization of Al and Cu [J]. Scripta Metall, 1989, 23 (6): 821-825.
    [36] H. Conrad, H. Cuo, A.F. Sprecher. Effects of electropulse duration and frequency on grain growth in Cu [J]. Scripta Metall, 1990, 24 (2): 359-362.
    [37] 刘志义,邓小铁,王引真.脉冲电流对2091铝锂合金动态再结晶动力学的影响[J].材料研究学报,2001,15(3):359-364.
    [38] 张伟,隋曼龄,周亦胄,何冠虎,郭敬东,李斗星.高密度电脉冲下材料微观结构的演变[J].金属学报,2003,39(10):1009-1018.
    [39] 滕功清,晁月盛,赖祖涵.Fe78B13Si9纳米晶合金的晶体结构[J].东北大学学报,1998,19(3):247-250.
    [40] Z.H. Lai, H. Conrad, G.Q. Teng, Y.S. Chao. Nanocrystallization of amorphous Fe-Si-B alloys using high current density electropulsing [J]. Mater. Sci. Eng. A, 2000, 287: 238-247.
    [41] 黄金亮,曹兴国,顾海澄.电脉冲快速退火Fe73.5Cu1Mo3Sil3.5B9合金的组织与磁性能[J].材料开发与应用,1999,14(2):6-10.
    [42] 周亦胄,周本濂,郭晓楠,何冠虎,张弗天.脉冲电流对45钢损伤的恢复作用[J].材料研究学报,2000,14(1):29-36.
    [43] 周亦胄,肖素红,甘阳,高明,何冠虎,周本濂.脉冲电流作用下碳钢淬火裂纹的愈合[J].金属学报,2000,36(1):43-45.
    [44] 沈以赴,郭晓楠,姚戈,何冠虎,李顺林,周本濂.材料疲劳恢复新途径的探索Ⅱ—脉冲电流对Ti-6Al-4V合金裂纹扩展的阻滞[J].材料研究学报,1999,13(4):381-384.
    [45] 沈以赴,郭晓楠,张坤,等.脉冲电流对金属材料的作用及其研究进展[J].材料科学与工程,1998,16(3):4-7.
    [46] 邢书明,胡汉起,刘秉顺,等.电场和磁场作用下的金属凝固[J].特种铸造及其合金,1998.6:37-39.
    [47] 王俊,孙宝德,疏达,周尧和.材料研究中的电脉冲处理技术[J].1999,13(2):19-21.
    [48] 何树先,王俊,周尧和.电流在金属凝固过程中的应用[J].特种铸造及其合金,2001,5:28-30.
    [49] 范金辉,翟启杰.物理场对金属凝固组织的影响[J].中国有色金属学报,2002,12:11-17.
    [50] 杨丽红,黄金亮,殷镖.电脉冲在现代材料制备与研究中的应用[J].热加工工艺,2003,2:51-53.
    [51] Liu R P, Herlach D M. Undercooling and solidification of Si by electromagnetic levitation [J]. Acta Mater, 2001, 49 (3): 439-444.
    [52] Bassler B T, Hofmeister W H, Bayuzick R J. The solidification velocity pure nickel [J]. Mater. Sc. Eng. A, 2003, 342 (1-2): 80-92.
    [53] V.W. Verhoeven, T. Hansen. Periodic structure fluctuations during the solidification of aluminum alloys studied by neutron diffraction [J]. Mater. Sci. Eng. A, 1963, 367 (1-2): 82-88.
    [54] V.W. Verhoeven, T. Hansen. Experimental study of ordering kinetics in aluminum alloys during solidification [J]. Acta Mate., 1965, 51 (15): 4497-4504.
    [55] V. Charles. Crystallization of aluminum alloys in the presence of vertical electromagnetic fields [J]. J. Cryst. Growth, 1997, 173 (3-4): 541-549.
    [56] K.I. Vashchenko, D.M. Herlach. Undercooling and solidification of Si by electric [J]. Acta Mater., 1974, 49 (4): 439-444.
    [57] A.K. Misra. A novel solidification technique of met als and alloys: under the influence of applied potential [J]. Metall.Trans. A, 1985, 16: 1354-1355.
    [58] A.K. Misra. Misra technique applied to solidification of cast iron [J]. Metall Trans, 1996, 17A: 358-360.
    [59] A.K. Misra. Microtructures and mechanical properties of directionally solidified NiAl-Mo and NiAl-Mo(Re) eutectic alloys [J]. Mater. Sci. Eng. A, 1997, 239-240 (1-2): 75-87.
    [60] M.Nakada, Y. Shiohara, M.C. Flemings. Modification of solidification structures by pulse electric discharging [J]. ISIJ Int., 1990, 30 (1): 27-33.
    [61] L. Jianming, L. Hantong. Modification of solidification structure by pulse electric discharging [J]. Scripta. Metall., 1994, 31 (12): 1691-1694.
    [62] J R Barnak, A F. Sprecher, H. Conrad. Colony (grain) size reduction in eutectic Pb~Sn castings by electroplusing [J]. Scripta. Metall., 1995, 32 (6): 879-884.
    [63] H. Conrad. Influence of an electric or magnetic field on the liquid~solid transformation in materials and on the microstructure of the solid [J]. Mater. Sci. Eng. A, 2000, 287: 205-212.
    [64] 鄢红春,何冠虎,周本濂,等.脉冲电流对Sn~Pb合金凝固组织的影响[J].金属学报,1997,33(4):352-358.
    [65] 王建中,苍大强,唐勇,等.电脉冲孕育处理对Al-5.0%Cu合金凝固结构的影响[J].铸造,1999,(5):4-7.
    [66] 曹丽云,王建中,曹力生,等.电脉冲孕育(EPM)处理对ZL101合金凝固组织和力学性能的影响[J].铸造,2001,50(10):590-593.
    [67] 曹丽云,王建中,曹力生,等.电脉冲孕育处理Al-Si合金变质新方法[J].《新技术新工艺》·材料与表面处理,2001,12:40-42.
    [68] 曹丽云,王建中,杨兴江,等.电脉冲变质处理对ZL108合金性能的影响[J].特种铸造及有色合金,2001,4:10-11.
    [69] 赵志龙,刘兵,张海南,张蓉,等.ZL102合金的电脉冲变质及其与硼砂细化处理的复合作用[J].2002,51(5):283-285.
    [70] 赵志龙,刘林.ZL102铝硅合金的脉冲电变质处理及其对力学性能的影响[J].铸造,2005,54(9):892-894.
    [71] 赵志龙,严超,唐波,等.ZL102合金石膏型铸件的电变质处理[J].铸造技术,2005,26(9):776-779.
    [72] 陈庆福,王建中,蔡伟,等.电脉冲孕育细化CuAlNi合金的宏观组织与铸态形状记忆效应[J].材料科学与工艺,2001,9(3):240-242.
    [73] 訾炳涛,崔建忠,巴启先.高密度脉冲电流作用下LY12铝合金的凝固组织[J].特种铸造及有色合金,2000,(4):4-6.
    [74] 訾炳涛,崔建忠,巴启先.脉冲电流和脉冲磁场作用下LY12铝合金凝固组织的比较[J].热加工工艺,2000,4:3-5.
    [75] 班春燕,崔建忠,巴启先,等.脉冲电流对Al及Al-5.3%Zn合金宏观组织的影响[J].铸造技术,2004,25(4):238-241.
    [76] 班春燕,巴启先,崔建忠,路贵民,訾炳涛.脉冲电流作用下LY12铝合金的微观结构和合金元素分布[J].物理学报,2001,50(10):2028-2031.
    [77] 班春燕,崔建忠,巴启先,路贵民,张北江.脉冲电流及脉冲磁场对铝合金中合金元素分布的影响[J].中国有色金属学报,2002,12(3):121-123.
    [78] 何树先,王俊,孙宝德,等.高密度脉冲电流对A356铝合金凝固组织的影响[J].中国有色金属学报,2002,12(3):426-429.
    [79] 何树先,王俊,周尧和.高密度脉冲电流对A356铝合金低温熔体凝固组织的影响[J].金属学报,2002,38(5):479-482.
    [80] S.X. He, B.D. Sun, Y.H. Zhou, et al. Effect of high density pulse electric current on solidification structure of low temperature melt of A356 alloy [J]. Trans. Nonferous Met. Soc. China, 2002, 3: 414-418.
    [81] 何树先,王俊,周尧和,孙宝德.高密度脉冲电流对过共晶Al-Si合金凝固组织的影响[J].中国有色金属学报,2002,12(2):275.
    [82] 傅明喜,吴晶,司乃潮.脉冲电流对Al-Si合金缩孔及凝固组织的影响[J].热处理技术,2002,1:24-27.
    [83] 陆琼晔,傅明喜,吴晶,司乃潮,姚新禄.脉冲脉冲电流对ZA-27合金凝固组织的影响[J].机械工程材料,2004,28(1):12-14.
    [84] 王志华.电磁场对ZA27合金及Al-Si合金凝固组织影响的实验研究[D].兰州理工大学硕士学位论文,2004.
    [85] 肖蕴华,杨菲,原正兴,等.脉冲电流处理对ZA12合金凝固组织和力学性能的影响[J].热加工工艺,2002,6:32-33.
    [86] 肖蕴华,高明,杨菲,等.电脉冲时间对铸造ZA12合金凝固组织和性能的影响[J].热加工工艺,2004,1:38-40.
    [87] 崔衡,苍大强,宗燕兵,等.电流处理细化纯铝凝固组织的研究[J].有色冶金设计与研究,2006,27(4):6-8.
    [88] 唐波,严超,赵志龙,张蓉,刘林.脉冲电流对Al-4%Cu合金铸造组织的细化作用[J].铸造技术,2005,26(4):306-308.
    [89] 陈宇.脉冲电流对纯铝和灰铸铁凝固过程的影响[D].上海大学硕士学位论文,2004.
    [90] 范金辉,李仁兴,候旭,陈宇,翟启杰.不同参数脉冲电流对不锈钢1Cr18Ni9Ti凝固组织的影响.铸造技术,2003,24(6):534-536.
    [91] 范金辉,华勤,候旭,李仁兴,富知愚,翟启杰.脉冲电流对奥氏体不锈钢凝固的影响[J].钢铁,2003,38(5):44-46.
    [92] 王建中,王静松,常国威,等.电脉冲孕育处理对连铸Q235钢小方胚凝固组织的影响[J].辽宁工学院学报,1999,19(2):1-4.
    [93] 唐勇,王建中,苍大强,等.电脉冲作用下T8钢凝固组织的改变.北京科技大学学报[J],2000,22(4):307-311.
    [94] 唐勇,王建中,苍大强.电脉冲对高碳钢凝固组织的影响[J].钢铁研究学报,1999,(4):44-47.
    [95] 王静松,薛庆国,王建中,常国威,苍大强.脉冲电场处理对铁液凝固过程石墨化的影响[J].铸造,2001,50(11):677-679.
    [96] 赵昱祥,苍大强,王建中.脉冲电压对GCr15轴承钢凝固组织的影响[J].北京科技大学学报[J],2002,12(1):22-24.
    [97] 温宏权,马新建,周月明,张永杰.脉冲电流对碳钢凝固组织的影响[J].宝钢技术,2004,6:51-53.
    [98] 陆琼晔,傅明喜,吴晶,司乃潮,姚新禄.脉冲脉冲电流对ZA27合金凝固组织的影响[J].机械工程材料,2004,28(1):12.
    [99] 周本濂.材料制备中的非平衡过程.材料研究学报,1997,11(6):576-586.
    [100] Q. Li, H. Nguyen Thi, B. Billia. Quantitave analysis of the influence of Peltier interface demarcation on directional solidification [J]. J. Cryst. Growth, 1996, 167: 227-284.
    [101] L.L. Zheng, D.J. Larson, Jr. Thmermoelectric effects on interface demarcation and directional solidification of bismuth [J]. J. Cryst. Growth, 1997, 180: 293-304.
    [102] F. Li, L.L. Regel, W.R. Wilcox. The influence of electric current pulse on the microstructure of the MnBi/Bi eutectic [J]. J. Cryst. Growth, 2001, 223: 251-264.
    [103] L.N. Brush, R.N. Grugel. The effect of an electric current on rod-eutectic solidification in Sn-0.9wt%Cu alloys [J]. Mater. Sci. and Eng. A, 1997, 238: 176-181.
    [104] 郭丽丽,王倩,常国威.脉冲电流对Al-5.6%Cu合金柱状晶间距的影响[J].铸造,2004,53(7):531-533.
    [105] 万刚,武保林,赵玉华,等.脉冲电流对Zn-42%Al合金定性凝固行为的影响[J].铸造技术,2006,26(12):1124-1126.
    [106] A. Lodding, Z. Klemm. Die effektive in flussigen metallen bei der isotopenuberfuhrung [J]. Z. Naturforschung, 1962, 17A: 1085.
    [107] 梁百先,汤建国,张才国,等.电磁学教程[M].北京:高等教育出版社,1984.
    [108] 下地光雄.液态金属[M].郭金钦译.北京:北京科学出版社,1987.
    [109] 常国威,袁军平.电流密度对定向凝固组织中柱状晶间距的影响[J].金属学报,2000,36(1):30-32.
    [110] 常国威,薛庆国.电流改变定向凝固单相合金枝晶间距机理[J].北京科技大学学报.1999,21(2):175-178.
    [111] 闵乃本.晶体生长的物理基础[M].上海:上海科技出版社,1982.
    [112] 顾根大.电场作用下金属定向凝固行为的研究[D].哈尔滨工业大学博士学位论文,1989.
    [113] E.K.W. Michaela, H. D. Matthiesen. Determination of the Peltier coefficient germanium in a vertical Bridgman-Stock barger furnae [J]. J. Cryst. Growth, 1997, 174: 194-201.
    [114] S. Corre, T. Duffar, M. Bernard, M. Espezel. Numerical simulation and validation of the Peltier pulse marking of solid/liquid interfaces [J]. J. Cryst Growth, 1997, 180:604-614.
    [115] D.R Walla, J. E. Allen. Influence of the skin effect and current risetime on the fragmentation of wires by pulsed currents [J]. J. Appl. Phys., 2005, 98: 23304-23323.
    [116] 刘觉平.电动力学[M].高等教育出版社,2004.标注不标准!
    [117] 秦荣山.电脉冲作用下的非平衡转变研究[D].沈阳:中国科学院金属研究所博士论文,1996.
    [118] 秦荣山,鄢红春,何冠虎,周本濂.直接晶化法制备块状纳米材料的探索Ⅰ—脉冲电流作用下无序金属介质的成核理论[J].材料研究学报,1995,9(3):219-222.
    [119] 秦荣山,周本濂.直接晶化法制备块状纳米材料的探索Ⅱ—脉冲电流作用下金属熔体结晶晶粒尺寸的理论估算[J].材料研究学报,1997,11(1):69-72.
    [120] 王劲,尹建军,丁雨田,衣冠玉,等.ZA27合金在直流电流作用下的凝固行为[J].甘肃工业大学学报,2003,29(3):36-38.
    [121] 李万峰.直流电场作用对K417G镍基高温合金凝固组织的影响[J].材料工程,2001,(9):7-13.
    [122] S.Ahmed, B.Robert, E.C.McKannan. Solidification processing superalloys in an electric field [J]. Journal of Applied Manufacturing Systems, 1991, 4 (2): 25-28.
    [123] 李辉,边秀房,刘相法.马家骥.电流处理对铝合金组织及性能的影响[J].特种铸造及有色合金,1996,3:8-10.
    [124] 黄立国,张伟强.直流电场对Al-Cu共晶合金凝固组织的影响[J].材料工程,2004,10:36-38.
    [125] 何树先,王俊,孙宝德,周尧和.电脉冲对金属铝箔的作用[J].中国有色金属学报,2002,12,(s1):173-177.
    [126] 常国威,王建中,薛庆国,王静松,胡汉起.电流作用下凝固界面形态稳定性与对组织形态的影响.辽宁工学院学报,1998,18(3):1-4.
    [127] 高明,何冠虎,杨菲,等.强脉冲电流对铸造ZA27合金性能的影响[J].材料研究学报,2002,16(1):74-76.
    [128] 屠海令,赵周权,等.有色金属冶金·材料·再生与环保[M].北京:化学工业出版社,2003.
    [129] 邢淑仪,王世洪.铝合金和钛合金[M].北京:机械工业出版社,1987,10.
    [130] 范金辉.脉冲电流凝固细晶技术基础研究[D].上海:上海大学博士学位论文,2005.
    [131] M. Gao, G.H. He, F.Yang, et al. Effect of electric current pulse on tensile strength and elongation of casting ZA27 alloy [J]. Mater. Sci. and Eng. A, 2002, 337:110-114.
    [132] 李建明,李胜利,李劲,等.脉冲放电对Pn-Sn合金凝固组织影响的研究[J].特种铸造及有色合金,1994,6:1-4.
    [133] L.F.蒙多尔福 著,王视堂,张振录,等译.铝合金的组织与性能[M].冶金工业出版社,1988.
    [134] 丁明新,等.电动力学[M].沈阳:辽宁教育出版社,1986,244.
    [135] 虞福春,郑春开.电动力学[M].北京:北京大学出版社,1992,231.
    [136] S.R. Coriell, G.B. McFADDEN. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy Ⅱ [J]. J. Cryst Growth, 1989, 94: 334-348.
    [137] G.B. McFADDEN, S.R. Coriell. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy Ⅲ [J]. J. Cryst Growth, 1990, 100: 78-88.
    [138] L.N. Brush, S.R. Coriell, G.B. McFADDEN. Drectional solidification of a planar interface in the presence of a time-dependent electric current [J]. J. Cryst Growth, 1990, 102: 725-742.
    [139] W.J. Boettinger, S.R. Corielll, A.L. Greer, et al. Solidification microstructures: recent developments, future directions [J]. Acta Mtaer, 2000, 48: 43-70.
    [140] 陈光,李建国,傅恒志.先进定向凝同技术[J].材料导报,1999,13(5):5-7.
    [141] 王自东,周永利,常国威,胡汉起.扰动对单相合金定向凝固固液界面生长形态的影响[J]. 北京科技大学学报,1997,19(6):560-565.
    [142] 郭太明,李晨希.定向凝固过程中的不规则固液界面形貌[J].人工晶体学报,2003,32(5):495-501.
    [143] J.J. Xu. Generalized needle solution, instabilities and pattern formation [J]. Phys Rev E, 1996, 53(5):5051-5058.
    [144] 周尧和,胡壮麒,介万奇.凝固技术[M],北京:机械工业出版社,1998.
    [145] W. Kurz and D.J. Fisher. Fundamentals of solidification [M]. Switzerland Trans Tech. 1984.
    [146] (日)下地光雄著,郭淦钦译.液态金属[M].北京:科学出版社,1987.
    [147] A. Lodding, Z. Klemm. Die effektive in flussigen metallen bei der isotopenuberfuhrung. Z. Naturforschung 17A (1962): 1085.
    [148] 张先槕.冶金传输原理.北京:冶金工业出版社[M],1988.
    [149] 威尔特等合著.李为正译.动量热量质量传递原理[M].北京:国防工业出版社,1984.
    [150] R Haldenwang, R. Guerin. Transverse thermal effects in directional solidification [J]. J. Cryst Growth, 2002, 244: 108-122.
    [151] J.S. Li, Q.T. Hao, S.M. Li, et al. Research on the non-linear temperature field of molten metal shaped by an electromagnetic field in DS processing [J]. J. Mate. Process. Technol., 2003, 137: 145-150.
    [152] 汪冰峰,刘煜.定向凝固固液界面温度场的探讨[J].湖南工程学院学报,2003,13(2):40-43.
    [153] 常国威,王建中.金属凝固过程中的晶体生长于控制[M].北京:冶金工业出版社,2002.
    [154] J.D. Verhoeven, E.E. Hucke Electrotransport and resistivity in the molten bismuth-tin system [J]. Trans. Met. Soc. AIME, 1963, 227: 1156-1163.
    [155] 毛应俊,刘建,周尧和.ACRT定向凝固过程非小平面胞枝晶形态的转变[J].人工晶体学报,1996,25(1):38-41.
    [156] 郭喜平,徐嵬,洪润洲,等.强制对流对Al-4.5wt%Cu合金枝晶生长的影响[J].人工晶体学报,1997,18(3):310-313.
    [157] W.A. Tiller, K,A. Jackson, K.A. Rutter, B.Chalmers. The redistribution of solute atoms during the solidification of metals [J]. Acta Metall., 1953, 1 (1): 428-437.
    [158] D. Waltin, W.A. Tiller, K.A. Rutter, W.C. Winegard. Instability of a partial growing by diffusion or heatflow [J]. J.Appl. Phys., 1955, 203: 1023.
    [159] 胡汉起.金属凝固原理[M].北京:机械工业出版社,2000.
    [160] 丁国陆,黄卫东,林鑫,等.定向凝固界面高梯度绝对稳定性的临界条件[M].自然科学进展,1996,6(5):602-607.
    [161] W.W. Mullins, R.F. Sekerka. Stability of a partical growing bydiffusion of heat flow [J]. J. Appl. Phys., 1963, 34: 323-329.
    [162] W.W. Mullins, R.F. Sekerka. Stability of a planar interface during solidification of a dilute binary alloy [J]. J. Appl. Phys., 1964, 35: 444-451.
    [163] R.F. Sekerka. A stability function for explicit evaluation of the Mullins-Sekerka interface stability criterion [J]. J. Appl. Phys., 1965, 36: 2644-268.
    [164] R.F. Sekerka. Application of the time-dependent theory of interface stability to an isothermal phase transformation [J]. J. Phys. Chem. Solids, 1967, 28: 983-994.
    [165] 常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002.
    [166] 顾根大,安阁英.电场作用下Sn—5%Bi合金的胞晶生长[J].机械工程学报.1989,27:187-190.
    [167] 李庆春.铸件形成理论基础[M].北京:机械工业出版社,1982.
    [168] J.D.杰克逊著,朱培豫译.经典电动力学[M].北京:人民教育出版社,1980.
    [169] M.H. Burden, J.D. Hunt. Cellular and dendritic growth Ⅱ [J]. J. Cryst. Growth, 1974, 109-116.
    [170] W.K. Kurz, D.J. Fisher. Dendrite growth at the limit of stability: Tip radius and spacing [J]. Acta Metall., 1981, 29: 11-20.
    [171] R. Trivedi. Theory of dendritic growth during the directional solidification of binary alloys [J]. Cryst. Growth, 1980, 49: 219-227.
    [172] 林鑫,黄卫东,潘清跃,等.Al-4.5Cu单品定向凝固一次枝晶间距研究[J].金属学报,1997,33(11):1140-1146.
    [173] W. Kurz, R. Trivedi. Rapid solidification processing and microstrcture formation, Mater. Sci. Eng. A: Structural Materials: Properties, Microstructure and Processing Proceedings of the 8th International Conference on Rapidly Quenched and Metastable Materials. Part 1 (of2) Aug 22-27, 1993.
    [174] 毛协民,李建国,等.柱晶侧向分枝及侧枝消失历程的研究[J].西北工业大学学报,1991,7:340-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700