用户名: 密码: 验证码:
轻合金板材脉冲电流辅助超塑成形工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超塑成形是制造复杂薄壁轻合金结构件的有效方法之一,已经在许多领域得到应用。但由于低应变速率和高温的要求,常规的超塑成形工艺能耗高、效率低,导致成本较高。本文试图对超塑成形的加热方法进行探索,实现脉冲电流快速加热。还将利用脉冲电流的电致超塑性效应提高轻合金板材的超塑成形性能。
     关于电流对材料超塑性能的影响,已有相关的研究报道,但工作主要集中在电致超塑性理论方面,而实际的工程应用还鲜有报道。为此,本文将脉冲电流引入到轻合金材料的超塑成形工艺中,将脉冲电流的焦耳热效应与电致超塑性效应结合,提出一种脉冲电流辅助超塑成形新方法,并设计了相应的工艺装备、制定了工艺流程、确定了工艺参数。工艺试验结果表明,该方法对AZ31镁合金及TC4钛合金等轻合金板材的超塑成形十分有效,成形试件质量良好,工艺过程所需时间减少50%,能耗降低65%左右。
     根据电热学理论,详细分析了轻合金板材脉冲电流加热过程中的加热速率、加热温度等与材料热物理性能及电流参数间的关系,为合理地制订加热规范奠定了理论基础。利用有限元方法分析了平板及异形试件加热时的温度场分布,并通过在电极与试件之间放置TC4金属片(具有低导热系数、高电阻率的物理特性)的方法,提高了加热坯料温度场的均匀性。通过加热试验对上述理论分析进行了试验验证,结果表明,该加热方法高效、节能、可靠。
     为揭示脉冲电流作用下轻合金板材的超塑变形机理,利用光学显微镜(OM)、透射电子显微镜(TEM)等方法分析了不同原始显微组织的AZ31镁合金及TC4钛合金板材在脉冲电流辅助超塑成形工艺条件下变形时的微观组织演变规律,包括晶粒长大、动态再结晶(DRX)和晶界滑移(GBS)等,讨论了脉冲电流对位错形貌及位错运动的影响。研究发现脉冲电流可在一定程度上抑制成形过程中晶粒长大、促进再结晶形核,细化成形后的微观组织。此外脉冲电流还可以促进晶界滑移,提高位错运动能力。这些都有助于材料超塑变形能力的提高。
     针对超塑成形中的空洞问题,应用电热学及热弹性理论分析了在脉冲电流作用下,V形空洞附近的温度场及应力场。并分析了脉冲电流对空洞形核及长大的影响,利用扫描电子显微镜(SEM)观察了AZ31镁合金超塑变形前后的的空洞形貌。研究发现,脉冲电流可在V形空洞尖角附近形成局部高温区及局部压应力区,在一定程度上抑制V形空洞在垂直电流方向的发展;此外脉冲电流还可提高空洞形核率,促进小尺寸空洞的长大,从而使得空洞大小及分布更加均匀,避免了材料的过早断裂。
As one of the effective method to manufacture complex and thin wall lightalloy structures, superplastic forming has been applied in many fields. However, thistechnology has the defect of high cost owing to high energy consumption and lowefficiency caused by the deformation condition of high forming temperature and lowstrain rate. Therefore, the pulse current heating method of superplastic foming hasbeen studied in this paper to achieve fast and high efficiency heating. Moreover, theelectro-superplastic effect of pulse current has been utilized to improve the fomingproperty of the light alloy sheet.
     Most present studies about the electro-superplastic focused on the theory, andthere has little literatures concerning the craft application of electro-superplstic.Therefore, the pulse current has been applied into the process of light alloy sheetsuperplastic forming in this paper, and the Joule heating effect andelectro-superplstic effect of pulse current have been associated and applied. A newprocessing method named pulse current auxiliary superplastic forming (PCASPF)has been proposed, and the processing device has been design, and the technologicalprocess and the processing parameter have been determined. From the results of theforming test, it is known that this method is effective for superplastic foming of lightalloy sheet such as AZ31magnesium alloy and Ti-6Al-4V titanium alloy. The timeof the whole processing reduced to50%, and the energy consumption of the wholeprocessing reduced to35%.
     Based on the electrothermics theory, the heating rate and heating temperatureof light alloy sheets with different performances during pulse current heating hasbeen studied systematically, which is necessary to determine the heating processingparameters. The temperature fields of the flat plate and semisphere plate duringpulse current heating have been analysed by the method of finite element simulation.The uniformity of the temperature field has been improvement by placing theTi-6Al-4V titanium alloy sheet between the specimen and the electrode. The heatingtest has been executed to check the theory analysis. Form the results of heating test,it is known that this heating method is high efficiency and energy conservation.
     To disclosure the deformation mechanism of light alloy superplstic forming bythe action of pulse current, the analysis methods of OM and TEM have been used toanalyse the microstructure evolution, involving grain growth dynamicrecrystallization (DRX) and grain boundary slipping (GBS), of AZ31magnesium alloy and Ti-6Al-4V titanium alloy with different original microstructure duringPCASPF, and the effect of pulse current on the dislocation morphology andmovement has also been studied. Form the research, it is known that the graingrowth speed has been reduced, the dynamic recrystallization has been accelerated,and the microstructure has been refined by the pulse current. Furthermore, the grainboundary slipping and the dislocation movement have also been accelerated by thepulse current, which are benefit to improve the superplastic forming ability of thelight alloy sheet.
     Based on the electrothermics and thermoelasticity theory, the temperature andstress fields by the action of pulse current near the cavities have been studied. Theeffect of pulse current on the cavity nucleate and cavity growth has been analysed,and the cavitied morphology of AZ31magnesium alloy during PCASPF has beenobserved by the method of SEM. Form the results, it is concluded that there exist thelocal high temperature and compression stress zone near the cavity tips, whichrestrained the cavity continues growth along the tip direction. Moreover, the cavitynucleate rate and small cavity growth have been accelerated by the pulse current,which made the cavities size and cavities distribution more uniform, and avoided thepremature fracture during superplastic forming.
引文
[1]杨合,李落星,王渠东等.轻合金成形领域科学技术发展研究[J].机械工程学报,2010,46(12):31-42.
    [2] Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry inprotecting the environment[J]. Journal of Materials Processing Technology,2001,117:381-385.
    [3] Mordike B L, Ebert T. Magnesium Properties-applications-potential[J].Matertials Science&Engineering A,2001, A302:37-45
    [4] Zhang K F, Wang G F, Wu D Z. Research on the controlling of the thicknessdistribution in superplastic forming[J]. Journal of Materials ProcessingTechnology,2004,151:54-57.
    [5] Jiang SS, Zhang KF. Study on controlling thermal expansion coefficient ofZrO2-TiO2ceramic die for superplastic blow-forming high accuracy Ti-6Al-4Vcomponent[J]. Materials&Design,2009,20:3904-3907.
    [6] Xing H L, Zhang K F, Qiao Y et al. An advanced superplastic sheet-formingmachine controlled by microcomputer[J]. Journal of Materials ProcessingTechnology,1995,55:43-47.
    [7]李峰.特种塑性成形理论及技术[M].北京:北京大学出版社,2011:7-28.
    [8] Hwang Y M, Lay H S. Study on superplastic blow-forming in a rectangularclosed-die[J]. Journal of Materials Processing Technology,2003,140:426-431.
    [9] Chung S W, Higashi K, Kim W J. Superplastic gas pressure forming offine-grained AZ61magnesium alloy sheet[J]. Matertials Science&EngineeringA,2004,372:15-20.
    [10]吴诗惇.金属超塑性变形理论[M].北京:国防工业出版社,1997:102-142.
    [11]蒋少松. TC4钛合金超塑成形精度控制[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:6-9.
    [12]丁桦,张凯锋.材料超塑性研究的现状及发展[J].中国有色金属学报.2004,14(7):1059-1067
    [13] Watanabe H, Tsutsui H, Mukai T et al. Deformation mechanism in acoarse-grained Mg-Al-Zn alloy at elevated temperatures[J]. InternationalJournal of Plasticity,2001,17:387-397.
    [14] Wu X, Liu Y. Superplasticity of coarse-grained magnesium alloy[J]. ScriptaMaterialia,2002,46:269-274.
    [15] Higashi K, Mabuchi M. Critical aspects of high strain rate superplasticity[C].Atul E.Chokshi. ICSAM97, Bangalore,1997. Switzerland.1997:267-276
    [16] Osadal K, Shirakawa K. Mass production of a apare tire housing for anantomobile [C]. Advances in Superplasticity and Superplastic Forming. TMS(The Minerals, Metals&Materials Society),2004:41-47
    [17] Krajewski P E, Schroth J G. Overview of Quick Plastic Forming Technology.[J]Material science forum,2007,(551):1-11
    [18] Saome Y, Lwazaki H. Superplastic extrusion of microgear shaft of10μm inmodule[J]. Journal of Microsysterm Technologies,2000,4(6):126-129.
    [19] Wang C L, Zhang K F. Superplastic microforming of Zn-AL22Alloy ribs[J].Journal of Material Science and Technology,2004,20(2):1-3.
    [20] Curtis R V. Overview-superplastic community [J]. Mat. wiss. u. Werkstofftech,2008,39:265-275.
    [21] Rashid M S, Kim C, Ryntz E F et al. Quick Plastic Forming of Aluminum AlloySheet Metal[P]. U.S.Patent Number6,253,588,2001.
    [22] Manfre D. Titanium alloy for aerospace applications[J].Advanced engineeringMaterials,2003,5(6):419-427.
    [23] http://www.msm.cam.ac.uk/.../titanium/titanium2.html
    [24] Zhang K F, Wang G F, Wu D Z et al. The Superplastic Capability of Butt CoverPlate of Ti-6Al-4V Titanium Alloy[J]. Transactions of Nonferrous MetalsSociety of China,2002,12(2):251-255.
    [25]韩文波,张凯锋,王国峰. Ti-6Al-4V合金多层板结构的超塑成形/扩散连接工艺研究[J].航空材料学报,2005,25(6):29-32.
    [26]熊爱明,张志清,李淼泉. TC6钛合金的超塑性变形研究[J].航空学报,2003,24(5):477-480.
    [27] Barnes A J. Superplastic Forming40Years and Still Growing[J]. Journal ofMaterials Engineering and Performance,2007,16:440-450.
    [28]陈振华.变形镁合金[M].北京:化学工业出版社,2005:30-50.
    [29] http://www.ruckerperformance.com/2/parts/superform.php
    [30]东键司[日].实用铝合金的超塑性(上).顾景诚译.轻金属,1991,6:60-63
    [31] Pancholi V, Kashyap B P. Effect of layered microstructure on superplasticforming property of AA8090Al–Li alloy. Journal of Materials ProcessingTechnology,2007,186:214-220
    [32] Kaibyshev R, Avtokratova E, Apollonov A, Davies R. High strain ratesuperplasticity in an Al-Mg-Sc-Zr alloy subjected to simple thermomechanicalprocessing. Scripta Materialia,2006,54:2119-2124
    [33] Ma Z Y, Mishra R S. Development of ultrafine-grained microstructure and lowtemperature (0.48Tm) superplasticity in friction stir processed Al-Mg-Zr.Scripta Materialia,2005,53:75-80
    [34]赵俊,黎文献,肖于德等.铝合金超塑变形研究进展.材料导报,2004,18(3):27-31
    [35] Tроицкий OA,Лихтман BИ. Oб анизотропии действия электроного иγ-облучения на процесс деформации монокристаллов цинка в хрупкомсостоянии[J]. ДоклAH CCCP,1963,148(2):332-334.
    [36] Tроицкий O A. Электропластический эффект в металлах[J].Физикатвердого тела,1970,12(1):203-210.
    [37] Kравченко B R. Bоздействие направленного потока электронов надвижущиеся дислокации[J]. Журнал экспериментальной и теоретическойфизики,1966,51(6):1676-1688.
    [38] Sprecher A F, Mannan S L, Conrad H. On the temperature rise associated withthe electroplastic effect in titanium[J].Scripta Metallurgica,1983,17:769-772.
    [39] Sprecher A F, Mannan S L, Conrad H. On the mechanisms for the electroplasticeffect in metals[J]. Acta Materialia,1986,34:1145-1162.
    [40] Okazaki K, Kagawa M, Conrad H. A study of the electroplastice ffect inmetals[J]. Scripta Metallurgica,1978,12:1063-1068.
    [41] Okazaki K, Kagawa M, Conrad H. Additional results on the electroplastic efectin metals[J]. Scripta Metallurgica,1979,13:277-280.
    [42] Okazaki K, Kagawa M, Conrad H. Efects of strain rate,temperature andinterstiai content on the electroplastic effect in titanium[J]. ScriptaMetallurgica,1979,13:473-477.
    [43] Okazaki K, Kagawa M, Conrad H. An evaluation of contributions of skin, pinchand heating effects to the electroplastic effect in titanium[J]. Materials Scienceand Engineering,1980,45:109-116.
    [44] Conrad H, Karam N, Mananan S. Efect of electric current pulses on therecrystallization of copper[J]. Scripta Metallurgica,1983,17:411-416.
    [45] Conrad H, Karam N, Mananan S. Efect of prior cold work on the influence ofelectricc urrent pulses on the recrystallization of copper[J]. ScriptaMetallurgica,1984,18:275-280.
    [46] Conrad H, Karam N, Mananan S et al. Efect of electric current pulses on therecrystallization kinetics of copper[J]. Scripta Metallurgica,1988,22:235-238.
    [47] Conrad H, Yang D. Effect of an electric field on the plastic deformation kineticsof electrodeposited Cu at low and intermediate tempertures[J]. Acta Materialia,2002,50:2851-2866.
    [48] Zhang J, Tang G Y, Yan Y J et al. Effect of current pulses on the drawing stressand properties of Cr17Ni6Mn3and4J42alloys in the cold-drawing process[J].Journal of Materials Processing Technology,2002,120:13-16.
    [49] Tang G Y, Zhang J, Yan Y J et al. The engineering application of theelectroplastic effect in the cold-drawing of stainless steel wire[J]. Journal ofMaterials Processing Technology,2003,137:96-99.
    [50] Tang G Y, Zheng M X, Zhu Y H et al. The application of the electro-plastictechnique in the cold-drawing of steel wires[J]. Journal of Materials ProcessingTechnology,1998,84:268-270.
    [51] Tang G Y, Zhang J, Zheng M X et al. Experimental study of electroplastic effecton stainless steel wire304L[J]. Materials Science and Engineering A,2000,281:263-267.
    [52] Xu Z H, Tang G Y, Tian S Q et al. Research on the engineering application ofmultiple pulses treatment for recrystallization of fine copper wire[J]. MaterialsScience and Engineering A,2006,424:300-306.
    [53]宋辉.脉冲电流处理对钛合金板材组织和性能影响的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:3-18.
    [54]董晓华,李尧.金属的电致塑性和电致超塑性效应[J].湖北工学院学报,1996,11(4):1-6.
    [55]李大龙.电塑性效应对金属流动应力的影响机理及实验研究[D].秦皇岛:燕山大学硕士学位论文,2005:6-7.
    [56] Troitskii O A, Spitsyn V I, Sokolov N V. Application of High-density Current inPlastic Working of Metals[J]. physica status solidi,1979,52:85-93.
    [57] Conrad H. Effect of an Electric Field on the Superplasticity of7475Al[J].Scripta Metallurgica,1989,23:697-703.
    [58]刘志义.铝锂合金电致高速超塑性[D].沈阳:东北大学博士学位论文,1993:45-67.
    [59] Li M Q, Chen Y Y, Chen D J. Electric field modification during superplasticdeformation of15vol%SiCp/LY12Al composite[J]. Journal of MaterialsProcessing Technology,1998,73:264-267.
    [60]李淼泉,吴诗惇. LY12CZ铝合金超塑变形时的电场效应.金属学报,1995,31:272-276.
    [61]王平.电热止裂相变应力及止裂效果综合分析[D].秦皇岛:燕山大学博士学位论文,2006:2-8.
    [62] Финкель ВМ,Головин Ю И,Слетков А А. О возможности торможениябыстрых трещин импульсами тока[J]. ДОКЛ:АН СССР,1976,227(4):848-857.
    [63] Финкель В М, Головин Ю И, Слетков А А. Разрушение вершины трещинысильным электромагнитным полем[J]. ДОКЛ:АН СССР,1977,237(2):325-327.
    [64]白象忠,胡宇达.电磁热效应裂纹止裂的研究[J].力学进展,2000,30(4):546-557.
    [65] Parton V, Tani J. On the Retardation of a Crack by Means of Passing a Currentpulse[J]. International Journal of Applied Electromagnetics in Materials,1994,5(4):279-290.
    [66] Bai X Z, Fu Y M, Zheng L J et al. Experimental research on electro-magneticheating effects to stop crack propagation in metal components[C]. ThirdInternational Conference on Experimental Mechanics,2001, October,15-17:257-260.
    [67]周亦胃.金属材料在脉冲电流作用下的裂纹愈合和超细晶化[D].沈阳:中国科学院金属研究所博士学位论文,2003:59-70.
    [68] Liu T J C. Thermo-electro-structural coupled analyses of crack arrest by Jouleheating[J]. Theoretical and Applied Fracture Mechanics,2008,49:171-184.
    [69] Sprecher A F, Mannan S L, Conrad H. On the mechanisms for theelectro-plastic effect in the metals[J]. Acta Metall,1986,34:1145-1162.
    [70] Conrad H. Enhanced synthesis processing and properties of materials withelectric and magnetic fields[J]. Matertials Science&Engineering A,2000,287A:476-482.
    [71]王轶农,何长树,赵骧等.电场退火对冷轧工业纯铜再结晶及织构的影响[J].金属学报,2000,36(2):126-130.
    [72] Xu Z S, Lai Z H, Chen Y X. Effect of electric current on the recrystallizationbehavior of cold worked α-Ti[J]. Scripta Metallurgica,1988,22:187-190.
    [73] Maki S, Ishiguro M, Mori K, etal. Thermo mechanical treatment usingresistance heating for production of fine grained heat-treatable aluminum alloysheets [J]. Journal of Materials Processing technology,177(2006):444-447.
    [74] Mori K, Maki S, Tanaka Y. Warm and Hot Stamping of Ultra High TensileStrength Steel Sheets Using Resistance Heating[J]. Ann. CIRP,54(1)209-212.
    [75] Yanagimoto J, Izumi R. Continuous electric resistance heating-Hot formingsystem for high-alloy metals with poor workability[J]. Journal of MaterialsProcessing Technology,2009,209:3060-3068.
    [76]姚启明,李双寿,李而立等.客车镁合金管材电阻加热弯曲工艺[J].轻合金加工技术,2005,33(8):48-51.
    [77]门正兴,周杰,王梦寒等.电阻直接加热锻造成形工艺方法及试验[J].重庆大学学报,2011,34(9):67-72.
    [78]郑明新,张人佶,朱永华等.电塑性效应及其应用[J].中国机械工程,1997,8(5):91-95.
    [79]胡承明.电增塑金属轧制新工艺[J].国外金属加工,1990,(4):51-52.
    [80] Xu Z H, Tang G Y, Tian S Q et al. Research of electroplastic rolling of AZ31Mg alloy strip[J]. Journal of Materials Processing Technology,2007,182:128-133.
    [81] Xu Z H, Tang G Y, Ding F et al. The effect of multiple pulse treatment on therecrystallization behavior of Mg-3Al-1Zn alloy strip[J]. Appl. Phys A,2007,88:429-433
    [82]唐国翌,张锦,阎允杰等.电塑性加工对钢丝的摩擦学特性和表面质量的影响[J].钢铁,2001,36(3):51-53.
    [83]姚可夫,王沛玉.脉冲电流对金属材料塑性变形和组织结构与性能的影响[J].机械强度,2003,25(3):340-342.
    [84]姚可夫,方威.0Cr17Ni6Mn3钢丝电塑性拉拔的研究[J].金属学报,2003,36(3):630-633.
    [85]唐国翌,郑明新,朱永华等.电塑性加工技术及其工程应用[J].钢铁,1998,33(9):35-37.
    [86]田昊洋,唐国翌,丁飞等.镁合金丝材的电致塑性拉拔研究[J].有色金属,2007,59(2):10-13.
    [87]花福安,李建平,赵志国等.冷轧薄板试样电阻加热过程分析[J].东北大学学报(自然科学版),2007,28(9):1278-1281.
    [88]吉泽升,朱荣凯,李丹.传输原理[M].哈尔滨:哈尔滨工业大学出版社,2005:117-153.
    [89]罗海岩,陆继东,黄来等.铝电解槽三维电热场的ANSYS分析[J].华中科技大学学报(自然科学版),2002,30(7):4-6.
    [90]任德鹏,贾阳,刘强.月面巡视探测器太阳帆板热电耦合仿真计算[J].航天器环境工程,2008,25(5):423-427.
    [91] Zhang C P, Zhang K F, Wang G F. Superplastic of fine grained γ-TiAl basedalloy synthesized by pulse current auxiliary sintering[J]. Materials Letter,2009,63:2153-2156.
    [92] Tomida S, Nagae T, Nakata K. Pulsed electric-current press bonding ofaluminum alloy to stainless steel[C]. MAPEES04, Osaka, Japan. March19-22,2004, Osaka University,313-316.
    [93] Maki S, Harada Y, Mori K et al. Application of resistance heating technique tomushy state forming of aluminium alloy[J]. Journal of Materials ProcessingTechnology,2002,125-126:477-482.
    [94]肖尊文,王惠萍,罗凌虹. Al2O3添加剂对ZrO2陶瓷性能影响的探讨.现代技术陶瓷,1996,4:6-9.
    [95]于彦东,张凯锋,蒋大鸣.轧制镁合金超塑性和超塑胀形.中国有色金属学报,2003,13(1):71-75.
    [96] Panicker R, Chokshi A H, Mishra R K et al. Microstructural evolution and grainboundary sliding in a superplastic magnesium AZ31alloy[J]. Acta Materialia,2009,57:3683-3693.
    [97]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1995:295-313.
    [98]赵文娟,丁桦,曹富荣等. Ti-6Al-4V合金超塑性变形中的组织演变及变形机制[J].中国有色金属学报,2007,17(12):1973-1980.
    [99]张锦.电塑性效应在拔丝工艺中的应用及微观机理分析[D].北京:清华大学硕士学位论文,2000:16-20.
    [100]余永宁,毛卫民.材料的结构[M].北京:冶金工业出版社,2001:206-213.
    [101] Barnett M R, Jacob S, Gerard B F et al. Necking and failure at low strains in acoarse-grained wrought Mg alloy[J]. Scripta Materialia,2008,59:1035-1038.
    [102] Soer W A, Chezan A R, De Hosson J T M. Deformation and reconstructionmechanisms in coarse-grained superplastic Al-Mg alloys[J]. Acta Materialia,2006,54:27-33.
    [103] Lagow W B, Robertson I M, Jouiad M et al. Observation of dislocationdynamics in the electron microscope[J]. Matertials Science&Engineering A,2001,309-310:445-450.
    [104] Abedi H R, Zarei-Hanzaki A, Khoddam S. Effect of precipitates on thecavitation behavior of wrought AZ31magnesium alloy[J]. Materials andDesign,2011,32:2181-2190.
    [105] Yin D L, Zhang K F, Wang G F et al. Superplasticity and cavitation in AZ31Mg alloy at elevated temperatures. Materials Letter,2005,59:1714-1718.
    [106] Khraisheh M K, Abu-Farha F K, Weinmann K J. Investigation ofpost-superplastic forming properties of AZ31magnesium alloy[J]. CIRP AnnMaunf Technol,2007,56(1):289-292.
    [107]范华林,陈平.电磁热效应理论在薄板止裂技术上的应用[J].兵工学报,2005,26(6):791-794.
    [108]蒋兴钢,崔建忠,马龙翔.一个新的金属高温蠕变空洞形核理论模型[J].北京科技大学学报,1993,15(3):305-309.
    [109] Raj R. Nucleation of cavities at second phase particles in grain boundaries.Acta Metall,1978,26(6):995-1006
    [110] Koller R C, Raj R. Diffusional relaxation of stress concentration at secondphase particles. Acta Metall,1978,26(10):1551-1558
    [111]陈浦泉.组织超塑性[M].哈尔滨:哈尔滨工业大学出版社,1988:206-213.
    [112] Beere W, Speight M.V. Creep caviation by vacancy diffusion in plasticallydeforming solid. Matertials Science,1978,12(4):172-176.
    [113] Stowell M J. Cavity growth in superplastic alloys. Matertials Science,1980,14(7):267-272.
    [114] Cocks A C F, Ashby M F. Intergranular fracture during power-law creep undermultiaxial stress. Matertials Science,1980,14(3):395-402

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700