用户名: 密码: 验证码:
ZnS、ZnO、TiO_2微纳结构设计合成与光致发光、光电转换性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过设计合成,作者制备了In掺杂ZnO/GeO_2核-壳的纳米结构、金属(合金)衬底上生长的ZnO、ZnS、In_2O_3微纳结构以及海胆状TiO_2、ZnO微纳结构并对其形成机理进行了分析。采用X-射线衍射分析仪,扫描电子显微镜,透射电子显微镜对所制备材料进行表征,并测试分析了所制微纳结构的室温光致发光性能。本文还探讨了染料敏化电池(DSCs)的制备工艺,利用所合成的TiO_2、ZnO微纳结构制备出“三明治”型DSCs器件,并测试分析了所制电池的光电转换性能。全文研究内容概括如下:
     (1)通过简单的热蒸发ZnO, In_2O_3,和GeO_2混合粉末的方式制备In掺杂ZnO/GeO_2核-壳的纳米结构。所合成的掺杂ZnO/GeO_2核-壳的纳米结构内部为具有单晶结构的In掺ZnO(IZO)内核,外部为非晶的GeO_2壳层。掺杂ZnO/GeO_2核-壳的纳米结构自组装成鸟巢状结构。细节分析揭示,In掺ZnO内核是以Ge-In合金液滴为催化剂按Vapor-Liquid-Solid(VLS)机制,沿<01-11>方向生长,而整个生长过程中GeO_2壳层起到了很好的保护作用。对产物的室温光致发光谱进行分析发现,其位于510nm(2.43 eV)处的有一较强的绿光发射峰,位于405nm(3.06 eV)的紫光发射峰则相对较弱。
     (2)以高Zn含量的黄铜(Cu-Zn合金)箔片作为衬底气相合成制备具有“Z”型弯曲的ZnS纳米结构。材料的微结构表征和形成过程分析表明,所合成的ZnS纳米线是利用合金箔片表面热分解遗留下的Cu-Zn液滴作为催化剂以VLS方式的。室温光致发光谱显示,所制备ZnS一维纳米结构的发射谱包括了一个中心位于2.57eV(482nm)蓝色发光峰,一个中心位于2.88eV(430nm)紫色发光峰和一个中心位于3.12eV(397nm)新发光峰。
     (3)以外延生长的方式合成一维ZnS纳米结构-膜-金属衬底的复杂构造。该复杂构造是由鸟嘴状纳米棒,岛状ZnS膜以及锌片组成的。室温光致发光谱显示,所制备ZnS微纳结构的发射谱包括两个特征峰,一个是中心位于423nm(2.93 eV)处,另一个位于515nm(2.41 eV)处,分别对应着蓝光峰和绿光峰。
     (4)以Zn片作为衬底气相合成制备出具有调制结构的ZnO分级纳米结构。所制备的分级结构是由球形催化剂颗粒,短棒以及高密度的纳米线构成的。成分检测表明,催化剂颗粒为金属锌。由此证明,Zn可以作为ZnO分级结构以VLS方式生长的催化剂。室温光致发光谱显示,所制备的调制的ZnO分级结构具有两个发光峰带,一个为比较弱的中心位于380nm处的紫外光发射峰,一个为较强的中心位于500nm发光峰。
     (5)通过直接加热的方式,在Cu-In合金片衬底合成出In_2O_3微纳结构。分析显示,In_2O_3微纳结构具有遗传特征。实验中,Cu-In合金片表面受热熔化,再氧化促成了In_2O_3微纳结构的形成。
     (6)通过简易的溶剂热方法,在FTO玻璃衬底上生长出海胆状TiO_2微纳结构。所制备的海胆状微纳结构是由球形颗粒TiO_2及其外部阵列生长的TiO_2纳米针构成。对纳米针进行表征分析发现,其具有良好的单晶性能,沿<110>方向生长。
     (7)以所合成的海胆状TiO_2微纳结构作为染料敏化太阳能电池的光阳极,制备了“三明治”型染料敏化太阳能电池。实验测得所制得的电池短路电流密度为3.83mA/cm~2,开路电压为0.66V,电池的填充因子为49.2%,计算所得电池总的光电转换效率为1.24%。实验还制备了以TiO_2纳米针/P25复合薄膜作为光阳极的DSCs器件,以对比分析TiO_2纳米针的作用。
     (8)通过简单的热处理方法,直接在FTO导电玻璃上制备出海胆状ZnO微纳结构。然后,对所得海胆状纳米结构进行水热处理,使所制得的球形表面的一维纳米结构形貌发生演化。所合成的微纳结构由微球及其表面阵列分布的准一维纳米结构构成。室温光致发光测试表明:熟化前,样品的室温光致发光谱包括了一个中心位于381nm处的弱的紫外发光峰和一个中心位于510nm的强的黄绿光发光峰。熟化后的样品的光致发光谱中只有一个中心位于383处的极强的紫外发光峰。
     (9)以所制的海胆状ZnO微纳结构作为的光阳极制作“三明治”型染料敏化太阳能电池。实验测得以水热处理前ZnO微纳结构组装的染料敏化太阳能电池的短路电流密度JSC为2.60mA/cm~2,VOC为0.668V,填充因子FF为49.5%,转换效率η为0.86%;而水热熟化处理ZnO微纳结构,将大幅提高其组装的染料敏化太阳能电池性能。
In-doped ZnO/GeO_2 core-shell nanostructures, ZnO, ZnS, In_2O_3 micro-nano materials grown on metal (alloy) substrates, and sea urchin-like TiO_2, ZnO micro-nano structures were prepared by the design synthesis. Their formation mechanisms have been analyzed in this thesis. The morphologies and microstructures of the as-prepared materials have been investigated by using of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The room temperature photoluminescence of the products has been studied and analyzed. In addition, the preparation process of the dye sensitized solar cells (DSCs) has also discussed. The as-synthesized TiO_2, ZnO micro-nano structures have been used to fabricate "sandwich" type DSCs devices and the photoelectric conversion performance of them is investigated. The following is the main contents of this dissertation.
     (1) In-doped ZnO/GeO_2 core-shell nanostructures have been successfully synthesized by one step thermal evaporation of a mixed powder of ZnO, In_2O_3, and GeO_2. The doped ZnO/GeO_2 core-shell nanostructures have a rod-like single-crystalline In-doped ZnO core and an amorphous GeO_2 shell. The doped ZnO/GeO_2 core-shell rods can be assembled into the bird’s nest by self-assembly. Detailed analyses indicate that the In-doped ZnO core grows along the <01-11> direction through a vapor-liquid-solid mechanism, where the In-Ge alloy catalyzes the growth of the In-doped ZnO core wich is protected by GeO_2. The room temperature photoluminescence spectrum of the sample is composed of two bands, including a weak violet peak centered at 405 nm (3.06 eV) and a strong green emission centered at 510 nm (2.43 eV), which can be attributed to the Ge-O vacancies and the singly ionized oxygen vacancies.
     (2) ZnS nanowires with "Z" type bending have been prepared by vapor phase method, where the brass (Cu-Zn alloy) foils with high Zn content were used as the substrate.The growth of the as-synthesized ZnS nanowires follows VLS growth mechanism, where Cu-Zn droplets from the thermal decomposition of alloy substrate are used as the catalyst. Room temperature photoluminescence spectrum showed that the emission spectrum of one-dimensional ZnS nanostructures consist of a center at 2.57eV (482 nm) blue emission peak, a center located at 2.88eV (430 nm) purple peak and a new center at 3.12eV (397 nm) peak.
     (3) A complex one-dimensional nanostructure-film-metal substrate architecture, which is composed of ZnS nanorods, island-like ZnS film and Zn foil, has been formed via a liquid-phase epitaxial growth mode. The room-temperature photoluminescence spectrum shows that the complex ZnS nanostructures have a strong blue emission band centered at about 423 nm and a weak broad green emission band centered at about 515 nm.
     (4) Modulated ZnO hierarchical nanostructures have been successfully synthesized by vapor phase method, where Zn foils are used as the substrate.The ZnO hierarchical nanostructures consist of large quantities of high dense nanowires strewn with some small balls which connected with wires by short rods. The composition detection results show that the ball is metallic Zn, which confirms that Zn serves as the catalyst for VLS growth of the ZnO hierarchical nanostructures. The photoluminescence spectrum of the modulated ZnO hierarchical nanostructures includes a weak ultraviolet peak centered at 380 nm and a strong green emission centered at 500 nm.
     (5) In_2O_3 micro-nano structures have been synthesized by a direct heating mode, where Cu-In alloy foils are used as the substrate. In_2O_3 micro-nano structures have the genetic characteristics. Analysis revealed that Cu-In alloy surface melted and then oxided, which led to the formation of In_2O_3 micro-nano structures.
     (6) Sea urchin-like TiO_2 micro-nano structures have been synthesized through a simple solvothermal method. The micro-nano structures are composed of TiO_2 microspheres and TiO_2 nanoneedle arrays on the spherical surface. Characterization showed that the nano-needle has a good performance on the crystallization, grows along <110> direction.
     (7) The as-prepared sea urchin-like TiO_2 micro-nano structures are used as a light anode for dye-sensitized solar cells (DSCs) to form a "sandwich" DSCs device. The short-circuit current density (JSC) of as-prepared battery is 3.83mA/cm~2, open circuit voltage (VOC) is 0.66V, the fill factor is 49.2%, and the total battery photoelectric conversion efficiency is 1.24%. In addition, TiO_2 nanoneedle/P25 composite film is also used as the anode of the DSCs to discover the effect of TiO_2 nano-needles.
     (8) Sea urchin-like ZnO micro-nano structures have been directly prepared on FTO conducting glass through a simple heat treatment method. Then, the sea urchin-like nano-structures are treated by the hydrothermal ripening, so that the morphology evolution of one-dimensional structure on the spherical surface occurred. The micro-nano structures are composed of microspheres and the quasi-one-dimensional array structures on the surface of the microspheres. The room temperature photoluminescence spectrum shows that: the photoluminescence spectrum of the sample consists of a center located at 381nm weak UV emission peak and a center at 510nm strong yellow-green emission peak before the ripening. PL spectrum has an only obvious center at 383nm ultraviolet emission peak after the treatment process.
     (9) The as-prepared sea urchin-like ZnO micro-nano structures have been used as the light anode of "sandwich" type dye-sensitized solar cell. The test of the photoelectric conversion characteristics of the cell which fabaricated by ZnO micro-nano structures before ripening shows that its JSC is 2.60mA/cm~2, VOC is 0.668V, FF is 49.5%,ηis 0.86%. However, the performance of the cell built by ZnO micro-nano structures after hydrothermal ripening treatment is significantly improved.
引文
[1]张立德牟季美著,纳米材料与纳米结构,科学出版社(2001).
    [2]徐志军初瑞清编著,纳米材料与纳米技术,化学工业出版社,(2010)
    [3]卫英慧主编,纳米材料学概论,化学工业出版社,(2009).
    [4]张邦维著,纳米材料物理基础,化学工业出版社,(2009).
    [5] L. E. Brus, J .Phys. Chem., 89, (1986), 2555.
    [6] R. Rossetti, S. Nakahara, L. E. Brus, J. Chem. Phys., 79, (1983), 1086.
    [7] W. P. Halperin, Rev. Mod. Phys., 58, (1986), 532.
    [8] P. Ball, L. Garwin, Nature, 355, (1992), 761.
    [9] L. J. Geerligs, D. V. Averin, J. E. Mooij, Phys. Rev. Lett. 65, (1990), 3037.
    [10] D. D. Awschalom, M. A. McCord, G. Grinstein, Phys. Rev. Lett., 65, (1990), 783.
    [11] Z.W.Pan, Z.R.Dai, Z.L.Wang, Sience, 291,(2001), 1947
    [12] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. King, E.Weber, R.Russo, Y. P. Yang, Science, 292, (2001), 1897.
    [13] I. C. Chen et al. Adv.Funct.Mater. 13, (2003), 811
    [14] S. Fujita, S.W. Kim, M. Ueda, and S. Fujita, J. Cryst. Growth, 272, (2004), 5.
    [15] J. Zhang, L.D. Sun, J.L. Yin, H.L. Su, C.S. Liao, C.H. Yan, Chem. Mater. ,14, (2002), 4172.
    [16] S.J. Chen, L.H. Li, X.T. Chen, Z.L. Xue, J.M. Hong, X.Z.You, J. Cryst. Growth, 184, (2003), 25.
    [17] B. Nikoobakht, C. A. Michaels, S. J. Stranicka, M. D. Vaudin, Appl.Phys.Lett., 85,(2004), 3244.
    [18] C.L. Carnes, K.J. Klabunde, J. Mol. Catal. A, 194, (2003), 227.
    [19] E.M.Wong, P.C.Searson, Appl. Phys. Lett. , 74, (1999), 2393.
    [20] W.L. Hughes, Z.L. Wang, J. Am. Chem. Soc., 126, (2004), 670.
    [21] X. F. Duan, C .M. Lieber, J. Am. Chem. Soc., 122, (2000), 188.
    [22] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4, (1964), 89.
    [23]周庆涛,半导体纳米线及其阵列可控生长和物性研究,合肥工业大学博士论文(2008).
    [24]陈翌庆石英,纳米材料学基础,中南大学出版社(2009).
    [25] E. Stern, G, Cheng, etal., Nanotechnology, 16, (2005) , 2941.
    [26] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 291, (2001), 1947.
    [27] P. Yang, C. M. Lieber, J. Mater. Res., 12, (1997), 2981.
    [28] P. Yang, C. M. Lieber, Science, 273, (1996), 1836.
    [29]张新华,特殊纳米结构的水热/溶剂热制备与表征,合肥工业大学硕士毕业论文(2007). [30 ]刘奕,低维无机纳米材料的液相控制,中国科学技术大学博士论文,(2006).
    [31]李峰,胡征,景苏,郑和根,忻新泉,无机化学学报,17, (2001),315.
    [32]黄书万,光电材料,上海科学技术出版社,(1987).
    [33]袁多荣,许东,刘明果等,新型络合物高效非线性光学材料—CMTC晶体,科学通报, 41, (1996 ), 2004.
    [34] X.S.Fang, L.D.Zhang. J. Mater.Sci.Technol. , 22, (2006), 721.
    [35] B. Gilbert, B. H. Frazer, H. Zhang, F. Huang, J. F. Banfield, D. Haskel, J. C. Lang, G. Srajer, G. De Stasio, Phys.Rev.B, 66, (2002),245205.
    [36] S. B. Qadri, E. F. Skelton, D. Hsu, A. D. Dinsmore, J.Y ang, H. F. Gray, B. R. Ratna, Phys. Rev. B, 60, (1999), 9191.
    [37] C. Z. Yang, Y. G. Liu, H. Y. Sun, D. F. Guo, X. H. Li, W. Li, B. T. Liu, X. Y. Zhang, Nanotechnology, 19, (2008), 095704.
    [38] N. D. Kumar, M. RJoshi, C. S. Friend, etal., APPI.Phys.Lett.71, (1997), 1388.
    [39] E. Sehreiber, H. F. itting, J. Electron.Speetrosc.Relat.Phenom.131-132, (2003), 87.
    [40] F. J. Zhang, Z.Xu, Y. Glv, etal. Eur. Phys. J. B, 52, (2006), 245.
    [41] J. H. Maekey, H. L. Smith, A. HalPerin, O. Ptieal, J.Phys.Chem.Solids, 27, (1966), 1759.
    [42] G.D. Yuan, 2.Z.Ye, Q.Qian, etal., J.Cryst.Growth, 273, (2005), 451. [43 ] H. Liu, S. Chu, C. Chang, J . Cryst. Growth, 280, (2005), 1732178.
    [44] Q. J. Feng , D. Z. Shen , J. Y. Zhang, et al., J. Cryst. Growth , 285, (2005), 5612565. [45 ] Q. Zhao, L. Hou, R. Huang, Inorg. Chem. Comm., 6, (2003), 9712973. [46 ] Z. Qiao, G. Xie, J. Tao, et al., Solid State Chem., 166, (2002), 49252. [47 ] R. Lv, C. Cao, H.Zhu, Mater. Res. Bull , 39, (2004), 151721524. [48 ] M. Behboudnia, M. H. Majlesara, B. Khanbabaee, Mater. Sci. Eng. B, 122, 2005, 1602163. [49 ] H. Moon, C. Nam, C. Kim , et al., Mater. Res. Bull., 41, (2006), 201322017. [50 ] H.Kim, W. Sigmund, J . Cryst. Growth, 255, (2003), 1142118. [51 ] H. J. Yuan, S. S. Xie, D. F. Liu , et al., J. Cryst.Growth , 258, (2003), 2252231. [52 ] Y. Wang, L. Zhang, C. Liang, et al., Chem. Phys. Lett ., 357, ( 2002), 3142318.
    [53] H. J. Yuan, S. S. Xie, D. F. Liu, et al., Chem. Phys. Lett , 371, (2003), 3372341. [54 ] X. Zhang, Y. Zhang , Y. Song, et al., J. Phys. E, 28, (2005), 126. [55 ] Z. He , Y. Su, Y. Chen , et al., Mater. Res. Bull., 40, (2005), 130821313. [56 ] M. Lin, T. Sudhiranjan, C. Boothroyd, et al., Chem .Phys. Lett ., 400, (2004), 1752178. [57 ] X. T .Zhou, P. Kim, T. Sham, et al., J Appl.Phys., 98, 2005, 02431221202431225.
    [58]李静, ZnO微纳结构的实用制备方法研究,厦门大学博士学位论文, (2009).
    [59]潘科夫著.李维楠译.电致发光(M),科学出版社, (1987).
    [60] I.Park, G.C.Yi, Adv.Mater.16, (2004), 87.
    [61] H. Haneda, T. Sekiguchi, N. Ohashi, L. Sakaguchi, K. Koumoto, Adv.Mater.14, (2002), 418.
    [62] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Science 292, (2001), 1897.
    [63] C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Adv. Mater. 15,( 2003), 838.
    [64] H. Q. Yan, R. He, J. Johnson, M. Law, R. J. Saykally, P. D. Yang, J. Am. Chemm.Soc.125, (2003), 4728.
    [65] J. C. Johnson, K. P. Knutsen, H. Q. Yan, M. Law, Y. F. Zhang, P. D. Yang, R. J. Saykally, Nano Lett., 4, (2004), 197.
    [66] Q. H. Li, Y. X. Liang, Q. Wan, T. H. Wang, Appl.Phys.Lett., 85, (2004), 6389.
    [67] H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J.Pearton, J. S. Lin, Appl.Phys.Lett., 86, (2005), 243503.
    [68] M. Law,L. E. Greene, J. C. Johnson, R. Saykally, P. D.Yang, Nat.Mater.,4, (2005), 455.
    [69] M. Guo, P. Diao, X. D. Wang, S. M. Cai, J. Solid State Chem., 178, (2005), 3210.
    [70] E. Hosono, S. Fujihara, I. Honma, H.Zhou, Adv.Mater., 17, (2005), 2091.
    [71] F. Xu, M.Dai, Yi. Lu, Litao Sun, J. Phys. Chem. C, 114, (2010), 2776.
    [72] Z. L. Wang, J. Song, Science, 312, (2006), 242.
    [73] A. Fujishima, A. Honda, Nature, 37, (1972), 238.
    [74] B. K. Li, B. E. Logan, Colloids and Surfaces B:Biointerfaces, 36, (2004), 81.
    [75] G. F. Fu, P. S. Vary, C. T. Lin, J. Phys.Chem. B, 109, (2005), 8889.
    [76] B. O'Regan, M. Gr?tzel, Nature, 353, (1991), 737.
    [77] S. M. Lim, J. Z. Luo, Z. Y. Zhong, etal., Inorg.Chem., 44, (2005), 4124.
    [1] S. Iijima, Nature, 354, (1991), 56.
    [2] W. Q. Han, S. S. Fan, Q. Q. Li, Y. D. Hu, Science, 277, (1997), 1287.
    [3] A. P. Alvisatos, Science, 1996, 271, 933.
    [4] S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Nature, 394, (1998), 52.
    [5] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, C. M. Lieber, Science, 294, (2001), 1313.
    [6] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, Appl. Phys. Lett., 81, (2002), 3648.
    [7] S. Frank, P. Poncharal, Z. L. Wang, W. A. Heer, Science, 280, (1998), 1744.
    [8] J. Hu, M. Ouyang, P. Yang, C. M. Lieber, Nature, 399, (1999), 48.
    [9] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature, 420, (2002), 57.
    [10] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature, 415, (2002), 617.
    [11] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Adv. Mater., 15, (2003), 353.
    [12] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogués, Nature, 423, (2003), 850.
    [13] Y. Z. Zhou, J. S. Chen, B. K. Tay, J. F. Hu, G. M. Chow, T. Liu, P. Yang, Appl. Phys. Lett., 90, (2007), 043111.
    [14] H. B. Zeng, W. P. Cai, J. Hu, G. T. Duan, P. S. Liu, Y. Li, Appl. Phys. Lett., 88, (2006), 171910.
    [15] D. L. Peng, K. Sumiyama, T. J. Konno, T. Hihara, S. Yamamuro, Phys. Rev. B, 60, (1999), 2093.
    [16] T. Gao, Q. H. Li, T. H. Wang, Chem. Mater., 17, (2005), 887.
    [17] R. Katoh, T. Hihara, D. L. Peng, K. Sumiyama, Appl. Phys. Lett., 87, (2005), 252501.
    [18] O. Cherniavskaya, L. W. Chen, L. Brus, J. Phys. Chem. B, 108, (2004), 4946.
    [19] J. Park, E. Kang, S. U. Son, H. M. Park, M. K. Lee, J. Kim, K. W. Kim, H. J. Noh, J. H. Park, C. J. Bae, J. G. Park, T. Hyeon, Adv. Mater. , 17, (2005), 429.
    [20] P. Szuromi, Science, 281, (1998), 881.
    [21] L. Xu, Y. Su, Y. Q. Chen, L. Zhu, H. H. Xiao, Q. T. Zhou, S. Li, J. Phys. Chem. B, 110, (2006), 6637.
    [22] C. Ronning, P. X. Gao, Y. Ding, Z. L. Wang, D. Schwen, Appl. Phys. Lett. 84, (2004), 783.
    [23] W. Lee, M.C. Jeong, J.M. Myoung, Appl. Phys. Lett., 85, (2004), 6167.
    [24] G. Z. Shen, J. H. Cho, S. I. Jung, C. J. Lee, Chem. Phys. Lett., 401, (2005), 529.
    [25] H. He, C. S. Lao, L. J. Chen, D. Davidovic, Z. L. Wang, J. Am. Chem. Soc., 127, (2005), 16376.
    [26] T. Minami, H. Sonohara, T. Kakumu, S. Takata, Jpn. J. Appl. Phys., 34,(1995), 1971.
    [27] R. Wang, A. W. Sleight, R. Platzer, J. A. Gardner, J. Solid State Chem., 122, (1996), 166.
    [28] S. Y. Bae, C. W. Na, J. H Kang, J. Park, J. Phys. Chem. B, 109, (2005), 2526.
    [29] J. S. Jie, G. Z. Wang, X. H. Han, Q. X. Yu, Y. Liao, G. P. Li, J. G. Hou, Chem. Phys. Lett., 387, (2004), 466.
    [30] H. J. Fan, B. Fuhrmann, R. Scholz, et al. Nanotechnology, 17, (2006), S231.
    [31] H. Gao, H. Ji, X. T. Zhang, H. Q. Lu, J. Vac. Sci. Technol. B, 26, (2008), 585.
    [32] Y. Ding, X. Y. Kong, Z. L. Wang, Phys. Rev. B, 70, (2004), 235408.
    [33] J. S. Jie, G. Z. Wang, X. H. Han, J. G. Hou, J. Phys. Chem. B, 108, (2004), 17027.
    [34] C. W. Na, S. Y. Bae, J. Park, J. Phys. Chem. B, 109, (2005), 12785.
    [35] P. Hidalgo, B. Méndez, J. Piqueras, Nanotechnology, 19, (2008), 455705.
    [36] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4, (1964), 89.
    [37] Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng, Chem. Phys. Lett., 303, (1999), 311.
    [38] Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, S. T. Lee, Appl. Phys. Lett., 74, (1999), 3824.
    [39] Y. J. Zhang, J. Zhu, Q. Zhang, Y. J. Yan, N. L. Wang, X. Z. Zhang, Chem. Phys. Lett., 317, (2000), 504.
    [40] X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, J. J. Du, Chem. Phys. Lett., 349, (2001), 210.
    [41] J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, S. T. Lee, Adv. Mater., 14, (2002), 1396.
    [42] Z. Jiang, T. Xie, G.Z. Wang, X.Y. Yuan, C.H. Ye, W.P. Cai, G.W. Meng, G. H. Li, L. D. Zhang, Mater. Lett., 59, (2005), 416.
    [43] P. Hidalgo, B. Méndez, J. Piqueras, Nanotechnology, 16, (2005), 2521.
    [44] Y. Chen, X. Cui, K. Zhang, D. Pan, S. Zhang, B. Wang, J. G. Hou, Chem. Phys. Lett. 369, (2003), 16.
    [45]张中太张俊英著,无机光致发光材料及应用,化学工业出版社,(2005).
    [46] C. Falcony, M. Garcia, A. Ortiz, and J.C. Alonso, J. Appl. Phys., 72, (1992), 1525.
    [47] X. Wu, U. Hommerich, J.D. Mackenzie, J.lumin., 284, (1997), 72
    [48] C. L. Yuan, P. S. Lee. Europhys. Lett., 83, (2008), 47010.
    [49] M. Zacharias, P. M. Fauchet, Appl. Phys. Lett., 71, (1997), 381.
    [50] A. B. Djurisi?, Y. H. Leung, W. Choy, K. W. Cheah, W. K. Chan, Appl. Phys. Lett., 84, (2004), 2635.
    [51] Y. B. Li, Y. S. Bando, D. Golberg, Adv. Mater. 15, (2003), 581.
    [52] C.H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, Adv. Mater. 13, (2001), 1330.
    [1] Z.J. Li, Z. F. Hu, F. J. Liu, et al., Mater. Lett., 65, (2011), 809.
    [2] J.P. Biethan, L. Considine, D. Pavlidis, J. Electronic Mater., 40, (2011),453.
    [3] S. K. Mohanta, D. C. Kim, B. H. Kong, et al. Science Adv. Mater., 23, (2010), 64.
    [4] S Fundling, U. Sokmen, A Behrends, et al., Phys. Status. Solid B- basic solid state phys., 247, (2010), 2351.
    [5] P. Hyoungwon; B. Kyeong-Jae; Y. Ki-Yeon, et al., Nanotechnology, 9, (2010), 355304.
    [6] Y. Huang, Z.L. Wang, Q. Wang, C.Z. Gu, C.C. Tang, Y. Bando, D. Golberg, J. Phys. Chem. C, 113 , (2009), 1980.
    [7] K. F. Huo, J. J. Fu, H. W. Ni, Y. M. Hu, G. X. Qian, P. K. Chu, Z. Hu, J. Nanosci. Nanotechnol., 9, (2009), 3848.
    [8] I. Hamberg, C.G. Granqvist, J. Appl. Phys., 60, (1986), 123.
    [9] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo , P. Yang, Science, 292, (2001), 1897.
    [10] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 291, (2001), 1947.
    [11] S. Biswas, S. Kar, S. Chaudhuri, J. Phys. Chem. B, 109, (2005), 17526.
    [12] H. J. Yuan, X. Q. Yan, Z. X. Zhang, D. F. Liu, Z. P. Zhou, L. Cao, J. X. Wang, Y. Gao, L.. Song, L. F. Liu, X. W. Zhao, X. Y. Dou, W. Y. Zhou, S. S. Xie, J. Cryst. Growth, 271, (2004), 403.
    [13] W. Zhang, J. Shi, H.Chen, Z. Hua, D. Yan, Chem. Mater., 13, (2001), 648.
    [14] L. W. Yin, Y. Bando, J. H. Zhan, M. S. Li, D. Golberg, AdV. Mater. ,17, (2005), 1972.
    [15] R.N.Bhargava, D.Gallaghev, Phys.Rev.Lett., 72, (1994), 416.
    [16] W.G. Becker, A.J. Bard, J. Phys. Chem., 87, (1983), 4888.
    [17] D. Denzler, M. Olschewski, K. Sattler, J. Appl. Phys., 84, (1998), 2841.
    [18] Y. Jiang, W.J. Zhang, J.S. Jie, X.M. Meng, J.A. Zapien, S.T. Lee, AdV. Mater., 18, (2006), 1527.
    [19] H.Y. Lu, S.Y. Chu, S.S. Tan, J. Cryst. Growth, 269, (2004), 385.
    [20] L. Spanhel, M. A. Anderson, J. Am. Chem. Soc., 113, (1991), 2826.
    [21] S. Cho, J. Ma, Y. Kim, et al.,. Appl. Phys. Lett. , 75, (1999), 2761.
    [22] S. A. Studenikin, N. Goleg , M. Cocivera, J. Appl. Phys. 84, 1998, 2287.
    [23]王爱华,张兵临,秦玉华,高知丰,周秋霞,姚宁,材料导报, 22, (2008), 137.
    [24] K. Vanheusden, C. H. Seager, W. L. Warren, et al., Appl. Phys. Lett., 68, (1996), 403.
    [25] K. Vanheusden, W. L. Warren, C. H. Seager, et al., Appl. Phys. Lett., 79, (1996), 7983.
    [26] M. Liu, A. H. Kitai, P. Mascher, J. Luminescence, 54, (1992), 35.
    [29] P. Xu, Y. Sun, C. Shi, et al., Science in China (A), 44, (2001), 1174.
    [27] T. Minami, H. Nanto, S. Takata, Thin Solid Film, 109, (1983), 379.
    [28]林碧霞,傅竹西,贾云波,物理学报,50, (2001), 2208.
    [1] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. King, E. Weber, R. Russo, P. D. Yang, Science, 292, (2001), 1897.
    [2] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, AdV. Mater., 15, (2003), 353.
    [3] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. D. Yang, Angew. Chem., Int. Ed., 2003, 3031–3034.
    [4] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. D. Yang, Nano Lett., 5, (2005), 1231.
    [5] Z. R. Tian, J. A. Voigv, J. Liu, B. Mckenzie, H. F. Xu, J. Am. Chem. Soc., 125, (2003), 12384.
    [6] L. Vayssieres, M. Gr?etzel, Angew. Chem. Int. Ed., 43, (2004), 3666.
    [7] M. Gr?etzel, Inorg. Chem., 44, (2005), 6841.
    [8] S. Y. Huang, G. Schlichthorl, J. Nozika, etal., J. Phys. Chem. B, 101, (1997), 2576.
    [9] M. Law, L. E. Greene, J. C. Johnson, R. J. Saykally, P. D. Yang, Nat. Mater. 4, (2005), 455.
    [10] M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. D.Yang, J. Phys.Chem. B, 110, (2006), 22652.
    [11] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, P. D. Yang, Inorg. Chem., 45, (2006), 7535.
    [12] J. B. Baxter, E. S. Aydil, Appl. Phys. Lett., 86, (2005), 053114.
    [13] J. B. Baxter, A. M. Walker, K.van Ommering, E. S. Aydil, Nanotechnology, 17, (2006), S304.
    [14] L. E. Greene, M. Law, B. D. Yuhas, P. D. Yang, J. Phys. Chem. C, 111, (2007), 18451.
    [15] K.Takanezawa, K. Hirota, Q. S. Wei, K.Tajima, K. Hashimoto, J. Phys. Chem. C, 111, (2007), 7218.
    [16] D. C. Olson, S. E. Shaheen, R. T. Collins, D. S. Ginley, J. Phys. Chem. C, 112, (2008), 9544.
    [17] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett., 6, (2006), 215.
    [18] K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Lett., 7, (2007), 69.
    [19] E. Enache-Pommer, J. E. Boercker, E. S. Aydil, Appl. Phys. Lett., 91, (2007), 123116.
    [20] K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, E. S. Aydil, Nano Lett., 7, (2007), 1793.
    [21] K. Zhu, R. Neale, A. Miedaner, etal., Nano Lett., 7, (2007), 69.
    [22] D. B. Kuang, J. Brillet, P. Chen, etal., ACS Nano, 2, (2008), 1113.
    [23] B. Liu, E. S. Aydil, J.Am.Chem.Soc, 131, (2009), 3985.
    [24] H. S. Shim, S. I. Na, S. H. Nam, etal., App. Phys. Lett., 92, (2008), 183107.
    [25] E. P. Emil, L. E. Boercker, E. S. Aydil, Appl.Phys.Lett., 91, (2007), 123116.
    [26]付三玲,张伏,韦志仁,人工晶体学报,37, (2008), 1012.
    [27] B. Tan, Y. Y. Wu. J. Phys. Chem. B, 110, (2006), 15932.
    [28] B. Liu, S. Aydil, J. Am.Chem.Soc. 131, (2009), 3985.
    [29] B. O'Regan, M. Gr?tzel, Nature, 353, (1991), 737.
    [30] A. Hagfeldt, M. Gr?tzel, Chem. Rev, 95, (1995), 49.
    [31]许辉,二氧化钛双层膜的制备及其在染料敏化太阳能电池中的应用,北京化工大学硕士学位论文,(2010).
    [32] F.Pichot and B. A. Gregg, J. Phys. Chem. B 104, (2000), 6.
    [33]郝三存,吴季怀,黄的防等,材料导报,17, (2003), 35.
    [34]杨宏训,吴季怀,黄妙良等,太阳能报,25, (2007), 355.
    [35]罗佳,染料敏化太阳能电池光阳极制备及其光-电化学性能的研究,中南大学硕士论文,(2010).
    [1] R. Jose, V. Thavasi, Ramakrishna. J. Am. Ceram. Soc., 92, (2009), 289.
    [2]彭才英, Miyazaki S,徐骏,真空科学与技术学报, 29, (2009), 411.
    [3] T. Dittrieh, E. A. Lebedev, J. Weldmann, J. Phys.Status solid. 165, 1998, R5.
    [4] E. M. Kaidashe, M. Lorenz, H. Weneckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H.Hoehmuth, M.Grundmann, Appl. Phys. Lett., 82, (2003), 3901.
    [5] K. Kakiuehi, E. Hosono,S. Fujihar, J. Photochem. Photobiol. A, 179, (2006), 81.
    [6] K. Kain, M. Eva, L. Henrik, E. Sten, etal., Energy Mater.Cells, 73, 2002, 51.
    [7] R. Katoh, A. Furube, Y.Tamaki, J. Photoehem. Photobio A, 166, (2004)69.
    [8] O. Dana, J. L.Yun, etal., J.Phys.Chem.C, 26, (2008), 9544.
    [9] T. Zhang, W. Dong, M. Keeter-Brewer, K. Sanjit, R. N. Njabon, Z. R. Tian, J.Am.Chem.Soc.,128, (2006), 10960.
    [10] H. Geriseher, H. Tributseh, Ber.Bunsenges. Phys.Chem., 72, (1968), 437.
    [11] H. Geriseher, H. Tributseh, Ber.Bunsenges. Phys.Chem.,73, (1969), 850.
    [12] H. Geriseher, H. Tributseh, Ber.Bunsenges. Phys.Chem.,73, (1969), 251.
    [13] M. Matsumura, S. Matsudair, Tsubomura, Ind. Eng. Chem. Prod. Res.Dev.19, (1980), 415.
    [14] R. Hoyer, H. Weller, J.Phys.Chem., 99, (1995), 14096.
    [15] B. B. Jason, S.A. Eray, Solar Energy Materials &Solar Cells, 90, (2006), 607.
    [16] B. B. Jason, S.A. Eray, Appl.Phys.Lett.86, (2005), 053114.
    [17] S. K. Puehamy, K. Nonomura, T. Yoshida. T. Sugiura, H. Minoura. Solid State, 151, (2002), 19.
    [18] A. B. Kashyout, M.Soliman, M. Gamal, M. Fathy, Mater. Chem. Phys., 90, (2005), 230.
    [19] E. Hosono, S. Fujihara, I. Honma, H. Zhou,Adv. Mater.,17, (2005), 2091.
    [20] A.Otsuka, K.Funabiki, N.Sugiyama, T.Yoshida, Chem.Lert., 35, (2006), 666.
    [21] L.Y. Zeng, S.Y. Dai, W.W. Xu, K. J. Wang, Plasma Sei.Technol., 8, (2006), 172.
    [22] W. J. Lee, A. Suzuki, K. Imaeda, H. Okada, A. Wakahara, A. Yoshid, Jpn. J. Appl. Phys. Part1, 43, (2004), 152.
    [23] A. Du, Pasquier, H. H. Chen, Y. C. Lu, Appl.Phys.Lett., 89, (2006), 233513.
    [24] Q. F. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Z. Cao, Ady. Funct. Mater., 18, (2008), 1654.
    [25] T. P. Chou, Q. F. Zhang, G. E. Fryxell, G. Z. Cao, Adv. Mater., 19, (2007), 2588.
    [26] Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Cao, Angew.Chem. Int. Ed., 47, (2008), 2402.
    [27] R. J. Zhou, T. Burkhart, J. Mater. Science, 04, (2011), 2281.
    [28] T. Watson, P Holliman, D. Worsley, J. Mater. Chem., 21, (2011), 4321.
    [29] E. C. Muniz, M. S. Goes, J. J. Silva, et al., Ceram. Inter., 37, (2011), 1017.
    [30] C. Marinescu, A. Sofronia, C. Rusti, et al., J. Therm. Analy. Calor., 103, (2011), 49.
    [31] Q. F. Zhang, K. Park, G. Z. Cao, J. Chin. Chem. Soc., 57, (2010), 1119.
    [32] I. G. Yu, Y. J. Kim, H. J. Kim, et al. J. Mater. Chem., 21, (2011), 532.
    [33] E. Hosono, S. Fujihara, I. Honma, H.Zhou, Adv.Mater., 17, (2005), 2091.
    [34] P. H. Wen, Z. Q. Tao, Y. Ishikawa, et al., Appl. Phys. Lett., 97, (2010), 131906.
    [35] X. D. Li, D. W. Zhang, S. Chen, et al. Mater. Chem. Phys., 124, (2010), 179.
    [36]曹永革,王美丽,黄常刚,一种用于染料敏化太阳能电池的核壳结构阳电极及其制备方法,中国发明专利,公开号CN 101834068 A.
    [37]林红,林春富,庄东填,李建保染料敏化太阳能电池的ZnO电极及其制备方法,中国专利,公开号CN 101162739A.
    [38]郭敏,张梅,杨传钰,王习东,一种脉冲电沉积制备均匀透明ZnO纳米棒阵列薄膜的方法,中国专利公开号CN 101348931 A.
    [39] X. Wu, H. Bai, C. Li, G. Lu, G. Shi, Chem. Commun., 15, (2006), 1655.
    [40] X. Wen, Y. Fang, Q. Pang, C. Yang, J. Wang, W. Ge, K. S. Wong, S. Yang, J. Phys. Chem. B, 109, (2005),15303.
    [41] Z. L. Wang, J. Phys.: Condens. Matter, R16, (2004), 829.
    [42] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N.Morris, J. Pham, R. He, H. J. Choi, Adv. Funct. Mater., 12, (2002), 323.
    [43] W. Ostwald. Lehrbuch der Allgemeinen Chemie, vol. 2, part 1. Leipzig, Germany. (1896).
    [44] L. Ratke, P. W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing. Springer. (2002).
    [45] B. Cheng, W. Shi, J. M. Russell-Tanner, L. Zhang, T. E. Samulski, Inorganic Chemistry , 45, (2006), 1213.
    [46] V. A. Fonoberov, A. Balandin, Appl. Phys. Lett., 85, (2004), 5971.
    [47] J. M. Lim, K. C. Shin, H. W. Kim, C. M. Lee, J. Lumin., 109, (2004), 181.
    [48] J. W.Hu, Y. Bando, Appl. Phys. Lett., 82, (2003), 1401.
    [49] A. B. Djuri?i?, Y. H. Leung, Small, 2, (2006), 944.
    [50] A. B. Djuri?i?, W. C. H. Choy, V. A. L Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, R. T. K. Gundu, W. K. Chan, H. F. Liu, C. Surya, Adv. Funct. Mater. 14, (2004), 856.
    [51] Cui, J. B. J. Phys. Chem.C, 2008, 112, 10385.
    [52] N. E. Hsu, W. K. Hung, Y. F. Chen, J. Appl. Phys., 96, (2004), 4671.
    [53] D. Li, Y. H. Leung, A. B. Djuri?i?, Z. T. Liu, M. H. Xie, S.L. Shi, S. J. Xu, W. K. Chan, Appl. Phys. Lett., 85, (2004), 1601.
    [54] I. Shalish, H. Temkin, V. Narayanamurti, Phys. ReV. B, 69, (2004), 245401.
    [55] K.Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E.Gnade, J. Appl. Phys. 79, (1996), 7983.
    [56] S. Mahamuni, K. Borgohain, B. S.Bendre, V. J. Leppert, S. H. Risbud, J. Appl. Phys. 85, (1999), 2861.
    [57] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, J. Appl. Phys., 98, (2005), 041301.
    [58] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Prog. Mater. Sci., 50, (2005), 293.
    [59] D. C. Look, J. Electron. Mater. 35, (2006), 1299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700