用户名: 密码: 验证码:
Ga_2O_3薄膜的电子束蒸发制备与掺杂及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-Ga2O3是一种直接、宽带隙半导体材料,带隙宽度在4.2-4.9eV之间。β-Ga2O3具有很好的光学和电学特性,在近紫外、可见光和近红外区域透过率很高。室温单晶β-Ga2O3由于氧缺陷、镓缺陷的存在呈现n型导电特性。其他元素,如Si、Sn掺入可以提高β-Ga2O3的导电特性。Dy、Eu和N元素掺入可以改变Ga203材料的光学特性。因为β-Ga2O3薄膜在紫外区具有较高的光电导特性,β-Ga2O3材料被认为是一种新颖的、有发展前景的深紫外日盲探测器材料。目前许多薄膜沉积和生长技术被用来制备β-Ga2O3薄膜材料,如金属有机物化学气相沉积(Metal organic chemical vapor deposition, MOCVD)、分子束外延(Molecular beam epitaxy, MBE)、脉冲激光沉积(Pulsed laser deposition, PLD)、溅射等,而热蒸发技术是传统、成熟、沉积速率快、易于工业生产的一种常用的制备薄膜技术,目前关于电子束蒸发技术制备β-Ga2O3薄膜材料鲜少有报道。多晶半导体材料由于结构特殊,相对于单晶材料比较容易制备,而且具有很多优越的性质,现在已经成为半导体材料研究的热点问题之一。本文主要利用电子束蒸发技术分别在蓝宝石和硅衬底上制备了β-Ga2O3薄膜和Cu掺杂的β-Ga2O3薄膜。具体研究内容如下:
     采用电子束蒸发技术,在蓝宝石衬底上制备了高透过率的β-Ga2O3薄膜。然后将β-Ga2O3薄膜在1000℃温度下、氧气和氮气氛围中进行退火处理,比较退火氛围对β-Ga2O3薄膜晶体结构、表面形貌和光学特性影响。实验结果发现,氧气氛围退火更有利于提高β-Ga2O3薄膜晶体质量。在氧气中退火后,β-Ga2O3薄膜光致发光谱探测到了330nm紫外波段发光和706nm近红外波段发光。β-Ga2O3多晶薄膜光学禁带宽度5.1和5.7eV,与单晶的体材料β-Ga2O3有很大区别,根据薄膜的X射线衍射谱(X-ray diffraction, XRD)、表面形貌和透射电镜选区电子衍射谱证实薄膜是多晶结构,β-Ga2O3薄膜中包裹着不同尺寸的晶粒,在量子尺寸效应的作用下,β-Ga2O3的光学带隙增大。红外光谱探测到了特征吸收峰位于460cm-1波数Ga-O伸缩振动吸收峰,670cm-1波数的与β-Ga2O3材料相关的吸收峰,以及760cm-1波数的Ga-OH伸缩振动吸收峰。此外发现新的吸收峰,位于560cm-1波数位置,推测是与β-Ga2O3材料相关的伸缩振动吸收峰。
     基于蓝宝石衬底的GaN半导体二极管(Light emitting diodes, LED)由于衬底的热导性、电导性差,而限制了高功率的LED器件制备。采用衬底剥离技术,实现衬底转移可以提高器件功率,同时提高蓝宝石衬底应用,降低器件制作成本。β-Ga2O3与蓝宝石衬底和GaN材料都有较小的晶格失配,是非常好GaN材料LED器件牺牲层材料。因为采用MOCVD技术外延生长GaN一般需要1000℃左右的生长成核温度,β-Ga2O3材料在1000℃温度结构稳定性是需要研究的重点内容,它直接影响着GaN基LED器件质量。因而论文首次研究1000℃氧气的氛围中,Ga203结构和光学性质随着退火时间的变化关系。实验结果说明退火后β-Ga2O3薄膜是多晶结构。退火后样品的晶体质量相对于未退火样品都提高了,XRD衍射峰强度增加同时半高宽减小,退火时间30、60和90分钟的时候,衍射峰强度变化不大,但是当时间到120分钟的时候,衍射峰强度明显减弱,说明薄膜晶体质量开始变坏。同样的现象在表面形貌和发光谱中都观测到了,因而实验说明在30-90分钟内,β-Ga2O3薄膜性质稳定,时间到达120分钟后薄膜性质变差。
     原创性地采用电子束蒸发物理方法在蓝宝石衬底上制备了Cu掺杂β-Ga2O3薄膜,研究了Cu元素掺杂对β-Ga2O3薄膜的结构特性和光学特性的影响,光致发光光谱测试结果发现Cu元素掺杂使薄膜的黄绿发光峰位置红移到520nm波长,XRD衍射峰的位置也发生了偏移,因为Cu离子半径大于Ga离子半径,因而Cu取代Ga位,使晶格发生了微小变化。X射线光电子能谱发现了二价铜离子和一价铜离子的存在。然后系统的研究了退火温度、衬底生长温度和生长速率等因素对Cu掺杂β-Ga2O3薄膜的结构特性和光学特性影响。实验结果说明衬底400℃、退火温度1000℃有利于制备高质量的Cu掺杂β-Ga2O3薄膜,该实验参数对研究Cu掺杂β-Ga2O3薄膜提供了有意义的参考。
     初步探索了在硅衬底上沉积制备β-Ga2O3薄膜和Cu掺杂β-Ga2O3薄膜特性,研究了硅衬底上生长β-Ga2O3薄膜和Cu掺杂β-Ga2O3薄膜XRD特性、红外光谱(Fourier transforming infrared, FTIR)特性和发光特性。
β-Ga2O3is regarded as a promising candidate material for optoelectronic devices because of its wide direct bandgap of4.2-4.9eV.β-Ga2O3has stable structure properties and stable optoelectronic properties, meanwhile, the transmissivity of β-Ga2O3is high in near ultraviolet, visible light and near infrared light region. At room temperature, crystal β-Ga2O3exhibits n type conducting properties due to the gallium vacancies and oxide vacancies. Doping with other element, such as Si、Sn and so on, would improved the conducting properties of β-Ga2O3material. As reported, doping with Dy, Eu and N element, would change the optical properties of β-Ga2O3. β-Ga2O3is regarded as the novel and promising candidate for ultraviolet photodectors. The β-Ga2O3films have been prepared by several methods, such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), pulsed laser deposition (PLD), and sputtering. However, there are few reports on the thermal evaporation technique. As is well known, the thermal evaporation technique is traditional and convenient method to fabricate film. Herein, it is flexibly and widely employed in industrial manufacture with the advantage of fast depositing rate. Ploy crystalline semiconductor material has unique properties comparing with crystalline material. It is easy to prepared polycrystalline β-Ga2O3. It is focusing much attention on the polycrystalline β-Ga2O3because of some excellent properties. In this paper, using electron beam evaporation method, we prepared β-Ga2O3and Cu doped β-Ga2O3film on sapphire and silicon substrate, respectively. The detailed work is shown as following.
     Using electron beam evaporation method, β-Ga2O3was deposited on c-plane Al2O3substrates. As-grown β-Ga2O3samples were subsequently annealed at1000℃under nitrogen or oxygen for1hour. And the micorstructure, surface morphology and optical properties were investigated. It was indicated that the annealing treatment in oxygen atmosphere was more effective to improve the crystalline properties of β-Ga2O3than in the nitrogen atmosphere. The photoluminescence (PL) showed broad ultraviolet emission centered at330nm and broad red emission centered at706nm. The optical bandgap of β-Ga2O3was deduced to be5.1and5.7eV, which was distinctly different with that's of the bulk crystal. Based on the X-ray diffraction (XRD), surface morphology and selected area transmission electron microscope images, It was suggested the quantum size effect caused the broadening of the optical bandgap. Fourier transforming infrared (FTIR) transmittance spectra was recorded in the range of3600-400cm-1. The IR band at460cm-1was assigned to Ga-O vibrations, and the band at670cm-1was relative with the β-Ga2O3. The band at760cm-1was assigned to Ga-OH vibrations. In addition, the new band at560cm-1was deduced to be arising from the β-Ga2O3.
     Particularly for special application, the β-Ga2O3was evaluated to be the excellent sacrificial substances in the GaN/Ga2O3/sapphire structure. As is well known, the thermal conductivity of sapphire is not high enough for large scale GaN based light emitting diodes (LED). One of effective ways of enhancing the performance of optoelectronic devices is the transfer of prefabricated devices from conventional sapphire substrates onto more thermally and electrically conductive substrates. Due to the2.6%of the minimum lattice mismatch between β-Ga2O3and GaN, the successful growth of GaN on Ga2O3buffer layers has been reported to act as the sacrificial materials for chemical lift off process. Generally, epitaxial growth of GaN on sapphire with MOCVD method required high temperature around1000℃. Both sacrificial buffer layers and various optoelectronic devices based on Ga2O3material required stable and reliable structural and physical properties, especially in the conditions of active oxygen ambient at high temperature. β-Ga2O3films with polycrystalline structure were prepared on c-plane sapphire substrate. XRD patterns indicated that the grain orientations were promoted and the grain sizes enlarged with annealing time increasing. Considered the XRD patterns, the Ga2O3films annealed for30,60and90minutes showed similar structure properties. The PL spectra exhibited violet, green and red emissions, which were affected by the annealing time. Therefore, it was concluded that the β-Ga2O3films would remain stable structure and optical characteristics when they were annealed for30to90minutes. However, if the annealing treatment time arrived to120minutes, the crystalline properties of β-Ga2O3film became worse.
     Cu doped β-Ga2O3thin films were deposited by electron beam method with subsequent annealing at1000℃for1hour. The influence of the Cu dopant on the crystal structure, surface morphologies and optical properties of β-Ga2O3films was investigated. XRD patterns indicated that the optimum orientations of the films were promoted by high temperature annealing treatment. The PL spectra of the annealed samples presented violet and green emissions, and the peak of green emissions red shift to520nm wavelength. The X-ray photoelectron spectroscopy (XPS) result indicated that the Cu ions were effectively doped into the β-Ga2O3films with univalent and bivalent chemical states. Then, we researched the effects of the deposit parameters on the Cu doped β-Ga2O3thin films properties, such as annealing temperature, substrate growth temperature and depositing speed. In summaries, we obtained the optimized deposit parameter of Cu doped β-Ga2O3films, which was400℃of substrate temperature and1000℃of annealing temperature. It would be useful to future research on the properties of Cu doped β-Ga2O3films.
     Lastly, we prepared the β-Ga2O3film and Cu doped β-Ga2O3films on silicion substrate. The influence of the silicon substrate on the crystal structure and optical properties of β-Ga2O3films was investigated by X-ray diffraction, photoluminescence spectra and FTIR transmittance spectra.
引文
[1]赵正平.SiC新一代电力电子器件的进展[J].半导体技术,2013,38(2):81-88.
    [2]Nishizawa J, Itoh K, Okuno Y, et al. Blue light emission from ZnSe p-n junctions [J]. Journal of Applied Physics,1985,57(6):2210-2216.
    [3]Albert D, Nurnberger J, Hock V, et al. Influence of p-type doping on the degradation of ZnSe laser diodes [J]. Applied Physics Letters,1999,74(14):1957-1959.
    [4]Morkoc H, Strite S, Gao G B, et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies [J]. Journal of Applied Physics,1994, 76 (3):1363-1398.
    [5]Pankove J I. GaN:from fundamentals to applications [J]. Materials Science and engineering B,1999,61-62(30):305-309.
    [6]刘万金,胡小燕,喻松林.GaN基紫外探测器发展概况[J].激光与红外,2012,42(11):1210-1214.
    [7]韦敏,邓宏,王培利,等.ZnO基紫外探测器的研究进展与关键技术[J].材料导报,2007,21(12):1-3.
    [8]Fabricius H, Skettrup T, Bisgaard P. Ultraviolet detectors in thin sputtered ZnO films [J]. Applied Optics,1986,25(16):2764-2767.
    [9]Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors [J]. Journal of Crystal Growth,2001,225(2-4):110-113.
    [10]叶志镇,张银珠,陈汉鸿,等.ZnO光电导紫外探测器的制备和特性研究[J].电子学报,2003,31(11):1605-1607.
    [11]Xu Z Q, Deng H, Xie J, et al. Ultraviolet photoconductive detector based on Al doped ZnO films prepared by sol-gel method [J]. Applied Surface Science,2006,253 (2):476-479.
    [12]Jin C Y, Park S, Kim H, et al. Influence of In2O3 capping and annealing on the luminescence properties of Ga2O3 nanorods [J]. Physcica Scripta,2012,149(2):014053-4.
    [13]Kim H W, Kim N H. Study of Ga203 nanobelts synthesized by the thermal annealing of GaN powders [J]. Acta Physica Polonica A,2005,107(02):346-350.
    [14]Encarnacion G V, Koji H, Odaka H. Luminescence of undoped β-Ga2O3 single crystals excited by picosecond X-ray and sub-picosecond UV pulses [J]. Solid State Communications,2003,127(5):385-388.
    [15]Khana A, Jadwisienczak W M, Kordesch M E. One-step preparation of ultra-wideβ-Ga2O3 microbelts and their photoluminescence study [J]. Physica E,2006,35(1):207-211.
    [16]马英仁,孟娟,徐晓峰,等.Ga2O3薄膜气体传感器工作机理的研究[J].哈尔滨理工大学学报,1997,2(3):102-104.
    [17]Lee C T, Yan J T. Investigation of a Metal-Insulator-Semiconductor Pt/Mixed Al2O3 and Ga2O3 Insulator/AlGaN Hydrogen Sensor. Journal of the Electrochemical Society [J]. 2010,157(8):J281-J284.
    [18]Hajnal Z, Miro J, Kiss G, et al. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3 [J]. Journal of Applied Physics,1999,86(7):3792-3796.
    [19]Lovejoy T C, Yitamben E N, Shamir N, et al. Surface morphology and electronic structure of bulk single crystal β-Ga2O3(100)[J]. Applied Physics Letters,2009,94(8):081906-3.
    [20]Iwaya K, Shimizu R, Aida H, et al. Atomically resolved silicon donor states of β-Ga203 [J]. Applied Physics Letters,2011,98(14):142116-3.
    [21]肖洪地,马洪磊,杨光.采用射频磁控溅射法在Si(111)衬底上生长β-Ga2O3薄膜[J].功能材料,2006,37:1-3.
    [22]Bermudez V M. The structure of low-index surfaces of β-Ga2O3 [J]. Chemical Physics, 2006,323(2-3):193-203.
    [23]闫金良,赵银女.Cu掺杂Ga2O3薄膜的光学性能[J].光子学报,2012,41(6):704-707.
    [24]Roehrens D, Brendt J, Samuel is D, et al. On the ammonolysis of Ga2O3:An XRD, neutron diffraction and XAS investigation of the oxygen-rich part of the system Ga2O3-GaN [J]. Journal of Solid State Chemistry,2010,183(3):532-541.
    [25]Matsuzaki K, Yanagi H, Kamiya T, et al. Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3 [J]. Applied Physics Letters,2006,88(9):092106-3.
    [26]Tippins H H. Optical absorption and photoconductivity in the band edge of β-Ga2O3 [J]. Physics Review A,1965,140(1)316-319.
    [27]Binet L, Gourier D. Origin of the blue luminescence of β-Ga2O3 [J]. Journal Physics Chemical Solids,1998,59(8):1241-1249.
    [28]Orita M, Ohta H, Hirano M, et al. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes [J]. Appllied Physics Letter,2000, 77(25):4166-4168.
    [29]Kokubun Y, Miura K, Endo F, et al. Sol-gel prepared β-Ga2O3 thin fi lms for ultraviolet photodctectors [J]. Appllied Physics Letter,2007,90(3):031912-3.
    [30]Kiyoshi S, Encarnacion G V, Takekazu U, et al. Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single Crystals [J]. Applied Physics Letters,2008, 92(20):201914-3.
    [31]Zhao J L, Sun X, Ryu W, et al. UV and visible electroluminescence from a Sn:Ga2O3/n+-Si heterojunction by Metal-Organic Chemical Vapor Deposition [J]. IEEE Transactions Electron on Electron Devices,2011,58(5):1447-1451.
    [32]Tsai T Y, Horng R H, Wuu D S, et al. GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application [J]. Electrochemical and Sol id-State Letters,2011,14 (11)H434-H437.
    [33]Tsai T Y, Ou S L, Hung M T, et al. MOCVD growth of GaN on sapphire using a Ga203 interlayer [J]. Journal of The Electrochemical Society,2011,158(11):H1172-H1178.
    [34]Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates [J]. Applied Physics Letter,2012,100(1):013504-3.
    [35]Liu Y D, Xia X C, Liang H W, et al. Improvement of crystal quality and UV transparence of dielectric Ga203 thin films via thermal annealing in N2 atmosphere [J]. Journal of Material Science:Material Electronics,2012,23(2):542-545.
    [36]张梅,何鑫,吴坤斌,等.氧化镓的制备及其光学性质的研究[J].广州化工,2009,37(5):138-139.
    [37]胡帆,晁明举,梁二军,等.Mn掺杂Ga2O3薄膜的结构及光吸收性能研究[J].材料导报,2009,23(8):16-21.
    [38]Geller S. Crystal structure of β Ga2O3 [J]. Journal of Chemical Physics,1960,33(3): 676-684.
    [39]Irmscher K, Galazka Z, Pietsch M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochral ski method [J]. Journal of Applied Physics,2011,110(6): 063720-7.
    [40]Yamaga M, Villora E G, Shimamura K, et al. Donor structure and electric transport mechanism in β-Ga2O3 [J]. Physical Review B,2003,68(15):155207-9.
    [41]Villora E G, Shimamura K, Kitamura K, et al. Epitaxial relationship between wurtzite GaN and β-Ga2O3 [J]. Applied Physics Letters,2007,90(23):234102-3.
    [42]Irmscher K, Galazka Z, Pietsch M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method [J]. Journal of Applied Physics,2011, 110(6):063720-7.
    [43]Kim H, Jin C, Baek K, Lee C. Fabrication and characterization of Ga203/ZnO coaxial nanowires [J]. Journal of the Korean Physical Society,2011,58(5):1295-1299.
    [44]Son J H, Kim T G, Shin S W. Blue and red luminescence from Si ion-irrdiated SiO2/Si/SiO2 layers [J]. Optical Materials,2001,17(1-2):125-129.
    [45]Gao L Y, Zheng M J, Zhong M. Preparation and photoinduced wettability conversion of superhydrophobic Ga203 nanowire film [J]. Applied Physics Letters,2007, 91(1):013101-3.
    [46]Cao L,Li M K, Yang Z, et al. Synthesis and characterization of dentate-shaped β-Ca2O3 nano/microbelts via a simple method [J]. Applied Physics A Materials Science & Processing,2008,91(3):415-419.
    [47]Shen W Y, Pang M L, Lin J, et al. Host-Sensitized Luminescence of Dy3- in nanocrystalline β-Ga203 prepared by a pechini-type Sol-Gel process [J]. Journal of the Electrochemical Society,2005,152(2):H25-H28.
    [48]Gollakota P, Dhawan A, Wellenius P, et al. Optical characterization of Eu-doped-Ga2O3 thin films [J]. Applied Physics Letters,2006,88(22):221906-3.
    [49]Nogales E, Garia J A, Mendez B. Visible and infrared luminescence study of Er doped β-Ga2O3 and Er3 Ga5O12 [J]. Journal of Physics D:Applied Physics,2008,41 (6):065406-5.
    [50]张修太,黄蕙芬.Ga2O3:Mn电致发光薄膜的微结构及光谱特性研究[J].电子件,2004,27(24):581-584.
    [51]张杰,乔自文,林崔昆,等.β-Ga2O3:Dy3+纳米棒束的制备和光致发光性质[J].中国稀土学报,2005,23(5):572-575.
    [52]戴江南,王立,方文卿,等.常压MOCVD生长Ga2O3薄膜及其分析[J].发光学报,2006,27(3):418-420.
    [53]Ou S L, Wuu D S, Fu Y C, et al. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition [J]. Materials Chemistry and Physics,2012, 133(2-3):700-705.
    [54]Suzuki R, Nakagomi S, Kokubun Y. Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer [J]. Applied Physics Letter,2011,98(13):131114-3.
    [55]Li Y B, Tokizono T, Liao M, et al. Efficient Assembly of Bridged β-Ga2O3 Nanowires for Solar-Blind Photodetection [J]. Advanced Functional Materials,2010,20(22):3972-7.
    [56]田民波,李正操.薄膜技术与薄膜材料[M].北京:清华大学出版社,2011:23-30.
    [57]张以忱.真空镀膜技术[M].北京:冶金工业出版社[M],2009:23-30.
    [58]Villora E G, Shimamura K, Kitamura K, et al. Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3, [J]. Appllied Physics Letter,2006,88(3):031105-3.
    [59]Ryu Y R, Lee T S, Lubguban J A, et al. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes [J]. Applied Physics Letters,2006,88 (24):241108(1-3).
    [60]Alivov Y I, Kalinina E V, Cherenkov A E, et al. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates [J]. Applied Physics Letters,2003,83 (23):4719-4721.
    [61]Ashrafi A B M A, Suemune I, Kumano H, et al. Nitrogen-doped p-type ZnO layers prepared with H2O vapor-assisted metalorganic molecular-beam epitaxy [J]. Japanese Journal of Applied Physics Part 2-Letters,2002,41 (11B):L1281-L1284.
    [62]Yang T, Bian J, Liang H, et al. High quality p-type ZnO films grown by low pressure plasma-assisted MOCVD with N2O rf plasma doping source [J]. Journal of Materials Processing Technology,2008,204 (1-3):481-485.
    [63]Sun J C, Liang H W, Zhao J Z, et al. Ultraviolet electroluminescence from n-ZnO:Ga/p-ZnO:N homojunction device on sapphire substrate with p-type ZnO:N layer formed by annealing in N2O plasma ambient [J]. Chemical Physics Letters,2008,460 (4-6):548-551.
    [64]Kong L Y, Ma J, Luan C N, et al. Structural and optical properties of heteroepitaxial beta Ga203 films grown on MgO (100) substrates [J]. Thin Solid Films,2012, 520(13):4270-4274.
    [65]Lv Y, Ma J, Mi W, et al. Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique [J]. Vacuum,2012,86(12): 1850-1854.
    [66]Mi W, Ma J, Luan C, et al. Characterization of β-Ga2O3 epitaxial films grownon MgO(111) substrates by metal-organic chemical vapor deposition [J]. Materials Letters,2012, 87:109-112.
    [67]Mi W, Ma J, Zhu Z, et al. Epitaxial growth of Ga203 thin films on MgO(110) substrate by metal-organic chemical vapor deposition [J]. Journal of Crystal Growth,2012, 354(1):93-97.
    [68]Kong L, Ma J, Luan C, Zhu Z. Structural and optical properties of Ga203:In films deposited on MgO(100) substrates by MOCVD [J]. Journal of Solid State Chemistry,2011,184(8): 1946-1950.
    [69]谷亦杰,宫声凯,卫英慧,等.材料分析检测技术[M].长沙:中南大学出版社,2009:43-50.
    [70]杨德仁.半导体材料测试与分析[M].北京:科学出版社,2010:50-80.
    [71]许振嘉.半导体的检测与分析[M].北京:科学出版社,2007:13-40.
    [72]Chen T, Tang K. Ga2O3 quantum dots with visible blue-green light emission property [J]. Applied Physics Letters,2007,90(5):053104-3.
    [73]Feng P, Zhang Y, Li Q H, et al. Individual β-Ga2O3 nanowires as solar-blind photodetectors [J]. Applied Physics Letter,2006,88(15):153107-3.
    [74]Battiston G A, Gerbasi R, Porchia M, et al. Chemical vapour deposition and characterization of gallium oxide thin films [J].Thin Solid Films,1996,279(1-2): 115-118.
    [75]Hanjnal Z, Miro J, Kiss G, et al. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3 [J]. Journal of Applied Physics,1999,86(7):3792-3796.
    [76]Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Applied Physics Letters,1998, 72 (25):3270-3272.
    [77]Lee J Y, Lee J H, Kim H S, et al. A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED [J]. Thin Solid Films,2009,517:5157-5160.
    [78]Othonos A, Zervos M, Christofides C. A systematic investigation into the conversion of β-Ga2O3 to GaN nanowires using NH3 and H2:Effects on the photoluminescence properties [J]. Journal of Applied Physics,2010,108(12):124319-8.
    [79]Liu Z, Jing X, Wang L. Effects of O2 Partial Pressure and Ga Atmosphere on the Luminescence of Native Defects in β-Ga2O3 Phosphor [J]. Journal of the Electrochemical Society,2007,54(6):H440-H443.
    [80]马海林,苏庆,兰伟,刘雪芹.氧流量对热蒸发CVD法生长B-Ga2O3纳米材料的结构及发光特性的影响[J].物理学报2008,57(11):7322-7326.
    [81]Canham L T, Loni A, Calcott P D.On the origin of blue luminescence arising from atmospheric impregnation of oxidized porous silicon [J]. Thin Solid Films,1996, 276(1-2):112-115.
    [82]Yang G, Erica J W, George V F. Lattice-resolution imaging of the sapphire (0001) surface in air by AFM [J]. Surface Science,2007,601(4):1064-1071.
    [83]Yu Z, Overgaard C D, Droopad R, et al. Growth and physical properties of Ga2O3 thin films on GaAs(001) substrate by molecular-beam epitaxy [J]. Applied Physics Letters, 2003,82(18):2978-2980.
    [84]Lim W, Craciun V, Siebein K, et al. Surface and bulk thermal annealing effects on ZnO crystals, Applied Surface Science [J].2008,254(8):2396-2400.
    [85]Liang H W, Lu Y M, Shen D Z, et al. P-type ZnO thin films prepared by plasma molecular beam epitaxy using radical NO [J]. Physica Status Solidi a-Applications and Materials Science,2005,202(6):1060-1065.
    [86]Sudhakar S, Kwang S A, Yanfa Y, et al. Carrier concentration tuning of bandgap-reduced p-type ZnO films by codoping of Cu and Ga for improving photoelectrochemical response [J]. Journal of Applied Physics,2008,103(7):073504-5.
    [87]Zhang Y J, Yan J L, Li Q S, et al. Optical and structural properties of Cu-doped β-Ga2O3 films [J]. Materials Science and Engineering B,2011,176(11):846-849.
    [88]Ko H J, Chen Y F, Hong S K, et al. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy [J]. Applied Physics Letters,2000,77 (23):3761-3763.
    [89]Zhang L Y, Yan J L, Zhang Y J, et al. A comparison of electronic structure and optical properties between N-doped β-Ga2O3 and N-Zn co-doped β-Ga2O3 [J]. Physica B,2012, 407 (8):1227-1231.
    [90]Hsieh C H, Chang M T, Chien Y J, et al. Coaxial Metal Oxide Semiconductor(MOS) Au/ Ga2O3/GaN [J]. Nano Letters,2008,8(10):3288-3292.
    [91]Chang K W, Wu J J. Formation of well-aligned ZnGa2O4 nanowires from Ga2O3/ZnO core-shell nanowires via a Ga Ga2O3/ZnGa2O4 epitaxial relationship [J]. Journal Physical Chemistry B,2005,109(28):13572-13577.
    [92]Ataev B M, Bagamadova A M, Djabrailov A M, et al. Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD [J]. Thin Solid Films,1995,260 (1):19-20.
    [93]Wu X L, Siu G G, Fu C L, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films [J]. Applied Physics Letters,2001,78 (16):2285-2287.
    [94]Ortiz A, Alonso J C, Andrade E, et al. Structural and optical characteristics of gallium oxide thin films deposited by ultrasonic spray pyrolysis [J]. Journal of the Electrochemical Society,2001,148(2):F26-F29.
    [95]Geng B Y, Liu X W, Wei X W, et al. Low-temperature growth of β Ga2O3 nanobelts through a simple thermochemical route and their phonon spectra properties [J]. Applied Physics Letters,2005,87(11):113101-3.
    [96]He C, Klaus K. Different roles of surface nitrates in the selective catalytic reduction of NO by propane over CoOx/Al2O3 and Ga2O3/Al2O3:intermediates or spectators [J]. Journal of Physical Chemistry C,2011,115(4):1248-1254.
    [97]He C, Martin P, Josef F, et al. In situ infrared spectroscopic studies on the mechanism of the selective catalytic reduction of NO by C3H8 over Ga2O3/Al2O3:high efficiency of the reducing agent [J]. Journal of Physical Chemistry B,2005,109(33):15906-15914.
    [98]Rambabu U, Munirathnam N R, Prakash T L, et al. Synthesis and characterization of morphologically different highpurity gallium oxide nanopowders [J]. Journal of Materials Science,2007,42(22):9262-9266.
    [99]Lee J Y, Lee J H, Kim H S, et al. A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED [J]. Thin Solid Films,2009,517(17):5157-5160.
    [100]Nogales E, Mendez B, Piquerasi J, et al. Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices [J]. Nanotechnology,2009, 20(11):115201-5.
    [101]Zhang J, Jiang F. Catalytic growth of Ga2O3 nanowires by physical evaporation and their photoluminescence properties [J]. Chemical Physics,2003,289(2-3):243-249.
    [102]Kim H W, Shim S H. Bicrystalline gallium oxide nanobelts [J]. Thin Solid Films,2007, 515(12):5158-5162.
    [103]Wellenius P, Suresh A, Foreman J V, et al. A visible transparent electroluminescent europium doped gallium oxide device [J]. Materials Science and Engineering B,2008, 146(1-3):252-255.
    [104]Kuo C L, Huang M H. The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates [J]. Nanotechnology,2008,19(15):55604-7.
    [105]Lo K C, Ho H P, Fu K Y, et al. Preparation of GaN thin film and Ga2O3 nanoribbons by plasma immersion ion implantation of N into GaAs [J]. Journal of Applied Physics, 2004,95(12):8178-8184.
    [106]Hofmann D M, Hofstaetter A, Leiter F, et al. Hydrogen:A relevant shallow donor in zinc oxide [J]. Physical Review Letters,2002,88(4):045504(1-4).
    [107]Vanheusden K, Seager C H, Warren W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Applied Physics Letters,1996,68 (3):403-405.
    [108]Guo B, Qiu Z R, Wong K S. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon [J]. Applied Physics Letters,2003,82 (14):2290-2292.
    [109]Liang C H, Meng G W, Wang G Z, et al. Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires [J]. Appllied Physics Letter,2001,78(21):3202-3204.
    [110]Sahana M B, Sudakar C, Dixit A, et al. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes [J]. Applied Physics Letters,2003,83 (14):2943-2945.
    [111]Lin K F, Cheng H M, Hsu H C, et al. Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method [J]. Chemical Physics Letter,2005,409(4-6): 208-211.
    [112]Wu X C, Song W H, Huang W D, et al. Crystalline gallium oxide nanowires:intensive blue light emitters [J]. Chemical Physics Letters,2000,328(1-2):5-9.
    [113]Hung S C, Huang P J, Chan C E, et al. Surface morphology and optical properties of ZnO epi layers grown on Si (111) by metal organic chemical vapor deposition [J]. Appl ied Surface Science,2009,255(15):6809-6813.
    [114]Du G T, Liu W F, Bian J M, et al. Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis [J]. Applied Physics Letters,2006,89 (5):052113(1-3).
    [115]Zhang H, Liu H, Feng L. Influence of annealing temperature on the properties of ZnO:Zr films deposited by direct current magnetron sputtering [J]. Vacuum,2010, 84(6):833-836.
    [116]Lennon C, Tapia R B, Kodama R, et al. Effects of annealing in a partially reducing atmosphere on sputtered Al-doped ZnO thin films [J]. Journal of Electron Materials, 2009,38(8):1568-1573.
    [117]Cao H, Zhao Y G, Ho S T, et al. Random laser action in semiconductor powder [J]. Physical Review Letters,1999,82(11):2278-2281.
    [118]Cao H, Zhao Y G, Ong H C, et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films [J]. Applied Physics Letters,1998,73 (25):3656-3658.
    [119]Mohamed M, Irmscher K, Janowitz C, et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3 [J]. Applied Physics Letters,2012, 101(13):132106-5.
    [120]Richard P, Sato T, Souma S, et al. Observation of momentum space semi-localization in Si-doped β-GazO3 [J]. Applied Physics Letters,2012,101(23):232105-5.
    [121]Huang C Y, Horng R H, Wuu D S, et al. Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition [J]. Applied Physics Letters,2013,102(1):011119-3.
    [122]Alivov Y I, Van Nostrand J E, Look D C, et al. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes [J]. Applied Physics Letters,2003, 83(14):2943-2945.
    [123]Yu Q X, Xu B, Wu Q H, et al. Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode [J]. Applied Physics Letters,2003,83 (23):4713-4715.
    [124]Ide T, Shimizu M, Nakajima A, et al. Gate-length dependence of DC characteristics in submicron-gate AlGaN/GaN high electron mobility transistors [J]. Japanese Journal of Applied Physics,2007,46(4B):2334-2337.
    [125]Zhao D G, Jiang D S, Zhu J J, et al. Al composition variations in AlGaN films grown on low-temperature GaN buffer layer by metalorganic chemical vapor deposition [J]. Journal of Crystal Growth,2008,310(24):5266-5269.
    [126]张修太.掺杂Ga2O3:Mn电致发光薄膜的制备及其特性研究[D].南京:东南大学,2005.
    [127]张易军.掺杂Ga2O3薄膜的理论与实验研究[D].烟台:鲁东大学,2011.
    [128]Zhang J, Jiang F. Catalytic growth of Ga2O3 nanowires by physical evaporation and their photoluminescence properties [J]. Chemical Physics,2003,289(2-3):243-249.
    [129]Yang H, Shi R, Yu J, et al. Single-Crystalline β-Ga2O3 hexagonal nanodisks:synthesis, growth mechanism, and photocatalytic activities [J]. Journal of Physical Chemist C, 2009,113(52):21548-21554.
    [130]Abdullah H, Norazia M N, Shaari S, et al. Influence of post-annealing temperature on the properties exhibited by nanostructured In doped ZnO thin films [J]. Thin Solid Films,2010,518(24):e174-e180.
    [131]Hung S C, Huang P J, Chan C E. Surface morphology and optical properties of ZnO epilayers grown on Si(111)by metal organic chemical vapor deposition [J]. Applied Surface Science,2009,255(15):6809-6813.
    [132]Li Q, Chen Y Q, Zhang X H, et al. Annealing effect on the morphologies and photoluminescence properties of ZnO nanocombs [J]. Journal of Physics and Chemistry of Solids,2009,70(12):1482-1486.
    [133]Pang M L, Shen W Y, Lin J. Enhanced photoluminescence of Ga2O3:Dy3- phosphor films by Li'doping [J]. Journal of Applied Physics,2005,97(3):033511-5.
    [134]Emilio N, Jose A G, Bianchi M, et al. Red luminescence of Cr in β Ga2O3 nanowires [J]. Journal of Applied Physics,2007,101(3):033517-4.
    [135]Godhuli S, Dibyendu G, Subhadra C. Crystallization and optical properties of finite sized β-Ga2O3 in sol-gel derived Ga2O3:SiO2 nanocomposites [J]. Journal of Physics: Condensed Matter,2006,18(49):11167-11176.
    [136]Liu Y D, Liang H W, Xu L, et al. Cu related doublets green band emission in ZnO:Cu thin films [J]. Journal of Applied Physics,2010,108(1):113507-4.
    [137]Cheng B, Edward T S. Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3 [J]. Journal Materials Chemmistry,2001,11(1):2901-2902.
    [138]Toh C C, Liu X D, Ho P, et al. Magnetic Properties of Cu Nanoclusters Embedded in ZnO Thin Films, IEEE Transactions on Magentics [J].2011,47(10):4003-4006.
    [139]Simon P, Bernhard K, Bernd J. Growth and stability of Ga2O3 nanospheres [J]. Thin Solid Films,2008,516(15):4742-4749.
    [140]Ghita R V, Logofatu C, Negrial, et al. XPS study of Ti/oxidized GaAs interface [J]. Journal of Optoelectronics and Advanced Materials,2006,8(1):31-36.
    [141]Fu L, Liu Y Q, Hu P G, et al. Ga2O3 Nanoribbons:Synthesis, Characterization and Electronic Properties [J], Chemical Material,2003,15(22):4287-4291.
    [142]Tetsuya S, Manabu Y, Li D L, et al. Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation [J]. Applied Catalysis A:General 2006,303(1):62-71.
    [143]Leea J B, Leea H J, Seob S H, Park J S. Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications [J]. Thin Solid Films,2001,398-399: 641-646.
    [144]Wang L W, Kang Y F, Wang Y, et al. CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection [J]. Materials Science and Engineering C,2012, 32(7):2079-2085.
    [145]Song Y P, Zhang H Z, Lin C, et al. Luminescence emission originating from nitrogen doping of β-Ga2O3 nanowires [J]. Physical Review B,2004,69(7):075304-7.
    [146]Chang P C, Fan Z Y, Tseng W Y. β-Ga2O3 nanowires:Synthesis, characterization, and p-channel field-effect transistor [J]. Applied physics letters,2005,87(22): 222102-3.
    [147]Srihari V, Sridharan V, Sahu H K, et al. Combustion synthesis of Ga203 nanoparticles [J]. Journal of Materials Science,2009,44(2):671-675.
    [148]Mazeina L, Bermudez V M, Perkins F K, et al. Interaction of functionalized Ga203 NW-based room temperature gas sensors with different hydrocarbons [J]. Sensors and Actuators B,2010,151(1):114-120.
    [149]Ristica M, Popovicb S, Musica S. Application of sol-gel method in the synthesis of gallium(III)-oxide [J]. Materials Letters,2005,59(10):1227-1233.
    [150]Liu X M, Yu C C, Li C X, Lin J, Comparative Study of Ga2O3:Dy3- Phosphors Prepared by Three Methods [J]. Journal of the Electrochemical Society,2007,154(6):P86-P91.
    [151]Tsaya C Y, Fana K S, Lei C M. Synthesis and characterization of sol-gel derived gallium-doped zinc oxide thin films [J]. Journal of Alloys and Compounds,2012, 512(1):216-222.
    [152]Ho C H, Tseng C Y, Tien L C. Thermoreflectance characterization of β-Ga2O3 thin-film nanostrips [J]. Optics Express,2010,18(16):16360-16369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700