用户名: 密码: 验证码:
栅介质的介电特性对AlGaN/GaN MISHEMTs性能影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于自发极化和压电极化作用,AlGaN/GaN异质结界面具有很高浓度的二维电子气(2DEG),基于AlGaN/GaN异质结的场效应晶体管(heterostructurefiled-effect-transistors, HFETs,也常称为高电子迁移率晶体管,high-electron-mobilitytransistors, HEMTs)具有输出功率大、效率高等优点,被认为是高频、高温、大功率半导体器件的重要候选材料。
     由于具有优异的频率特性,针对高频领域应用的AlGaN/GaN HEMTs器件常采用MESHEMTs结构(即:金属-半导体高电子迁移率晶体管,metal-semiconductorhigh-electron-mobility transistors),然而,其严重的电流崩塌效应和较大的栅泄漏电流成为AlGaN/GaN MESHEMTs应用的主要问题,栅介质的引入(即:金属-绝缘体-半导体高电子迁移率晶体管,metal-insulator-semiconductor high-electron-mobilitytransistors,MISHEMTs)成为可行的解决之道,它不仅可以有效抑制电流崩塌,而且可极大地降低栅漏电。然而,目前对AlGaN/GaN MISHEMTs器件的研究主要集中在非极性栅介质材料对器件性能的影响方面,且仅关注和利用了栅介质的绝缘特性,很少涉及极性栅介质在AlGaN/GaN MISHEMTs中的应用,栅介质极化特性对AlGaN/GaN MISHEMTs器件性能的影响研究。
     本论文对比研究了非极性栅介质和极性栅介质对AlGaN/GaNMISHEMTs特性的影响,非极性栅介质选择Al_2O_3薄膜作为研究对象,并选用了两种具有代表性的典型极性介电材料,研究极化特性对AlGaN/GaN MISHEMTs性能的影响,一种极性介电薄膜为掺钠的Beta氧化铝(β-Al_2O_3,sodium-beta-aluminium,简写为SBA),该介电材料是在Beta氧化铝骨架结构中插入带正电的钠离子而形成的一种极性介电材料,被归于电解质,也称为钠离子导体(电子的绝缘体);另一种极性介电材料则为铁电体,考虑到工艺兼容性,本论文选择了一种新的铁电体材料—HfTiO铁电薄膜作为栅介质,因此,整个论文由以下几方面研究工作构成:
     1、首先,本论文采用分子束外延方法(MBE)在AlGaN/GaN异质结场效应晶体管源、漏之间沉积Al_2O_3薄膜,并研制MISHEMTs结构的AlGaN/GaN异质结场效应晶体管,测量了MISHEMTs特性以及AlGaN/GaN异质结2DEG浓度、迁移率,对比研究了介电薄膜对MISHEMTs特性以及AlGaN/GaN异质结2DEG输运特性的影响,研究结果显示:Al_2O_3薄膜的沉积使2DEG浓度和迁移率均有所提高,2DEG浓度约增加30%,迁移率约提高23%。器件特性的对比研究也显示:Al_2O_3薄膜的引入使AlGaN/GaN器件直流输出特性得到了显著提高,与传统MESHEMTs相比,栅泄漏电流减小了约2个数量级,器件最大输出电流密度从590mA/mm提高到790mA/mm,约提高了34%;0V栅压下,器件饱和直流输出电流密度从360mA/mm提高到700mA/mm,约提高了94%;器件最大跨导从120mS/mm增加到170mS/mm,约增加了42%。通过高分辨率X射线衍射(HRXRD)对比分析表明:Al_2O_3薄膜的沉积在AlGaN势垒层中引入了张应力,从而导致AlGaN/GaN界面2DEG浓度和迁移率的提高。在实验基础上,论文还进一步采用经验公式及第一性原理计算的方法,对以上的影响因素从理论上进行了解释。
     2、在非极性介质(Al_2O_3薄膜)对AlGaN/GaN界面2DEG输运特性及器件性能影响研究基础上,通过在MBE生长过程中引入Na的分子束流,从而在Al_2O_3薄膜中掺入Na。对所生长薄膜的微观结构分析结果显示:所生长薄膜为非晶薄膜,X射线光电子能谱(XPS)对薄膜中的Na1s和Al2p分析,结果显示与SBA的特征峰位相一致;对所生长薄膜的介电特性测量表明:在1MHz频率下,薄膜的介电常数约为50,远高于Al_2O_3薄膜的介电常数,这说明:Na+在电场作用下产生了电极化,且薄膜的绝缘特性良好,适合作为介质材料使用;在此基础上,论文进一步研制了以SBA薄膜为栅介质的AlGaN/GaN MISHEMTs。对器件特性的对比研究显示:当SBA薄膜与AlGaN势垒层之间的界面特性为AlOx/AlGaN时,栅介质对器件特性的影响与Al_2O_3栅介质的影响规律相一致,特别是阈值电压向更加负的方向移动;而当SBA薄膜与AlGaN势垒层之间的界面特性为Na+/AlGaN时,栅介质对器件阈值电压的影响规律却完全不同,界面正电荷使得器件阈值电压向正方向移动了约2V,从而显示出极性介质与半导体的界面特性对器件性能具有重要影响。
     3、在初步显示出极性电介质对器件特性影响规律基础上,本论文进一步研究了另一种典型极性电介质——铁电对AlGaN/GaN MISHEMTs器件特性的影响。采用MBE方法制备了HfTiO薄膜,分别从材料特征、器件特性以及影响机理等方面开展了研究。材料介电特性研究显示:HfTiO薄膜具有铁电性,属于铪基铁电体中的一员,并通过铪/钛比的调整、薄膜沉积温度的优化、薄膜氧含量的调控等技术措施优化了HfTiO薄膜的铁电特性。在此基础上,论文进一步研制了以HfTiO铁电薄膜为栅介质的AlGaN/GaN MISHEMTs。对器件特性研究结果显示:HfTiO铁电薄膜的引入使器件阈值电压也发生了向正方向移动,从原来的-4V调节到-0.6V。阈值电压的正向移动与沟道2DEG注入并积聚于HfTiO/AlGaN界面有关。
Due to the spontaneous polarization and piezoelectric polarization, a highconcentration of two-dimensional electron gas (2DEG) exists at the AlGaN/GaN hetero-junction interface. Because of the superior properties of the AlGaN/GaN hetero-structure field-effect transistors (HFETs), AlGaN/GaN hererojunction is considered tobe an important candidate material for high-frequency, high-temperature andhigh-power semiconductor device. The AlGaN/GaN HFETs is also called as high-electron-mobility transistors (HEMTs).
     For the excellent frequency characteristics, the high-frequency AlGaN/GaNHEMTs often used to be the metal-semiconductor high-electron-mobility transistors(MESHEMTs) structure. However, the practical application of AlGaN/GaNMESHEMTs was limited by the serious current collapse and large gate leakage current.The gate dielectrics can not only effectively suppress the current collapse, but alsogreatly reduce the gate leakage. The structure of device with gate dielectrics is called asmetal-insulator-semiconductor high-electron-mobility transistors (MISHEMTs).However, the study of AlGaN/GaN MISHEMTs mainly focused on the non-polar gatedielectrics. Little attention was paid to the effect of the polarization of gate dielectricson the performance of AlGaN/GaN MISHEMTs.
     This dissertation compares the impacts of non-polar gate dielectrics and polar gatedielectrics on the performance of the AlGaN/GaN MISHEMTs. The Al_2O_3thin filmswere used as the non-polar gate dielectrics. The impacts of the polarizationcharacteristics on the performance of the AlGaN/GaN MISHEMTs were selected tworepresentative typical polar dielectric materials. One was the beta alumina dopedsodium (β-Al_2O_3, sodium-beta-aluminium, abbreviated as SBA). The SBA has aunusual crystal structure that is distinctly two dimensional, with an about1.13nmaluminium ixude layer and a sodium ions. The sodium ions can move freely only indirections parallel to the lattice planes, but restricted to a few angstroms in thedirectiona normal to the planes. Therefore, it’s not only an excellent ionic conductor, butalso an outstanding dielectric. For the polarization of sodium ions, the SBA is also an electrolyte. The other polar dielectric material was the ferroelectric. Considering thecompatibility, a new ferroelectric material—HfTiO ferroelectric thin film was chose as agate dielectric.
     The first phase of this work involved the non-polar dielectric—Al_2O_3thin film.The Al_2O_3thin films were deposited between the source and drain of the AlGaN/GaNHFETs by molecular beam epitaxy (MBE). The AlGaN/GaN MISHEMTs structureswere prepared. The performance of the MISHEMTs, as well as the concentration andmobility of2DEG were measured. The results show: the2DEG concentration andmobility were increased by the Al_2O_3thin films. The maximum increase of2DEGconcentration and mobility were30%and23%respectively. The comparative study ofthe device performance show that the DC output characteristics of the AlGaN/GaNMISHEMTs have been significantly improved attributing to the Al_2O_3films. Comparedwith the conventional MESHEMTs, the gate leakage current is reduced by about twoorders of magnitude. The maximum output drain current density was increased from590to790mA/mm, which is about34%improvement. When the gate bias is0V, thesaturation output current densities of the AlGaN/GaN MESHEMTs and MISHEMTswere360and700mA/mm respectively, which is increased by about94%. Themaximum transconductance was increased from120to170mS/mm, which is about42%improvement. The comparative analysis of high-resolution X-ray diffraction(HRXRD) shows that the tensile stress was introduced into the AlGaN barrier layer afterthe deposition of Al_2O_3thin films, resulting in the improvement of2DEG concentrationand mobility. The effect factor was explained by the theoretical results of empiricalformula method and the First Principles.
     The second phase of this work involved the SBA electrolyte thin film. The sodiumions were doped into Al_2O_3thin film by the introduction of Na molecular during theMBE growth process. The microstructure analysis of the prepared thin films shows thatthe grown thin films were amorphous. The X-ray photoelectron spectroscopy (XPS)analysis result was consistent with the characteristic peak of SBA. The measurements ofdielectric properties show that the dielectric constant of the film was about50at1MHzfrequency, which is lager than that of Al_2O_3thin film. The result suggests that thesodium ions exhibit the polar property. The result also shows that the SBA thin filmexhibits good insulation characteristic. Therefore, it’s suitable for gate dielectric material. Then, the AlGaN/GaN MISHEMTs with SBA gate dielectrics were prepared.The results show: when it forms the AlOx/AlGaN interface between SBA thin films andAlGaN barrier layer, the impacts on the device performance were the same as Al_2O_3gate dielectric, specially the threshold voltage shifted more negatively. However, whenit forms the Na+/AlGaN interface between SBA thin films and AlGaN barrier layer, theeffect of the gate dielectric on the threshold voltage of MISHEMTs was completelydifferent. The threshold voltage of MISHEMTs shifted positively about2V by theinfluence of the interface positive charge. The results suggest the important influence ofthe interface characteristics of polar dielectrics and semiconductor on the deviceperformance.
     The final phase of this work involved the HfTiO ferroelectric thin film. The furtherstudy of the effects of another typical polar dielectric—ferroelectric on thecharacteristics of AlGaN/GaN MISHEMTs was carried out. The HfTiO thin films wereprepared by MBE. The material characteristics studies show that the HfTiO thin filmexhibits ferroelectric properties, which belongs to the class of the HfO_2-basedferroelectrics. The ferroelectric properties of HfTiO thin film were improved byadjusting the ratio of titanium and hafnium in the film, optimizing the film depositiontemperature and regulating the oxygen content of the film. The device performancesstudy results show that the device threshold voltage is also shifted positively from-4to-0.6V. The positively shift of the threshold voltage related to the channel2DEG wereinjected into and accumulation at the interface of HfTiO thin film and AlGaN barrierlayer.
引文
[1] P. Kung, D. Walker, M. Hamilton, et al. Lateral epitaxial overgrowth of GaN films on sapphireand silicon substrates [J]. Appl. Phys. Lett.,1999,74(4):570-572
    [2] F. Wu, M. D. Craven, S. H. Lim, et al. Polarity determination of a-plane GaN on r-plane sappireand its effectson lateral overgrowth and heteroepitaxy [J]. J. Appl. Phys.,2003,94(2):942-947
    [3] J. Zhu, D. Zhao, W. B. Luo, et al. Epitaxial growth of cubic AlN films on SrTiO3(100) substratesby pulsed laser deposition [J]. J. Cryst. Growth,2008,310(4):731-737
    [4] O. Ambacher, B. Foutz, J. Smart, et al. Two dimensional electron gases induced by spontaneousand piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures [J]. J. Appl.Phys.,2000,87(1):334-344
    [5] K. S. Kim, A. Saxler, P. Kung, et al. Determination of the band-gap energy of Al1-xInxN grown bymetal–organic chemical-vapor deposition [J]. Appl. Phys. Lett.,1997,71(6):800-802
    [6] W. Shan, J. W. Ager, K. M. Yu, et al. Dependence of the fundamental band gap of AlxGa1-xN onalloy composition and pressure [J]. J. Appl. Phys.,1999,85(12):8505-8507
    [7] S. Pereira, M. R. Correia, T. Monteiro, et al. Compositional dependence of the strain-free opticalband gap in InxGa1–xN layers [J]. Appl. Phys. Lett.,2001,78(15):2137-2139
    [8] J. Wu, W. Walukiewicz, K. M. Yu, et al. Unusual properties of the fundamental band gap of InN[J]. Appl. Phys. Lett.,2002,80(21):3967-3769
    [9] J. Wu, W. Walukiewicz, K. M. Yu, et al. Small band gap bowing in In1-xGaxN alloys [J]. Appl.Phys. Lett.,2002,80(26):4741-4743
    [10]王三胜,顾彪,徐茵,等. GaN基材料生长及其在光电器件领域的应用[J].电子器件,2002,25(1):1-8
    [11]徐进,何乐年. GaN基发光二极管研究与进展[J].2003,23(2):139-142
    [12]王占国.半导体光电信息功能材料研究进展[J].新材料产业,2009,1:65-73
    [13] K. Domen, A. Kuramata, T. Tanahashi. Lasing mechanism of InGaN/GaN/AlGaNmultiquantum well laser diode [J]. Appl. Phys. Lett.,1998,72(11):1359-1361
    [14] J. C. Zolper. A review of junction field effect transistors for high-temperature and high-powerelectronics [J]. Solid State Electron.,1998,42(12):2153-2156
    [15]唐世军,徐永刚,陈堂胜,等.高功率GaN微波功率放大模块及其应[C].2010’全国半导体器件技术研讨会论文集,中国浙江杭州,2010,7-9
    [16]刘恩科,朱秉升,罗晋生,等.半导体物理学[M].北京:电子工业出版社,2003,74-77
    [17] S. J. Pearton, F. Ren. GaN electronics [J]. Adv. Mater.,2000,12(21):1571-1580
    [18] S. J. Pearton, F. Ren, A. P. Zhang, et al. GaN electronics for high power, hightemperatureapplications [J]. Mater. Sci. Eng. B,2001,82(1):227-231
    [19] A. P. Zhang, S. J. Pearton, F. Ren, et al. High power GaN electronic devices [J]. Crit. Rev. SolidState Mater. Scie.,2001,27(1):1-71
    [20]赵小玲,李清秀.国外军事和宇航应用宽带隙半导体技术的发展[J].半导体技术,2009,34(7):621-625
    [21] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, et al. Metal semiconductor field effect transistorbased on single crystal GaN [J]. Appl. Phys. Lett.,1993,62(15):1786-1787
    [22] O. Ambacher, J. Smart, J. R. Shealy, et al. Two-dimensional electron gases induced byspontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaNheterostructures [J]. J. Appl. Phys.,1999,85(6):3222-3233
    [23] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, et al. Polarization-induced charge and electronmobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy [J].J. Appl. Phys.,1999,86(8):4520-4526
    [24] Y. Duan, J. Li, S. S. Li, et al. Elasticity, band-gap bowing, and polarization of AlxGa1xN alloys[J]. J. Appl. Phys.,2008,103(2):023705
    [25]杜彦东,韩伟华,颜伟,等.增强型AlGaN/GaN HEMT器件工艺的研究进展[J].半导体技术,2011,36(10):771-777
    [26] M. A. Khan, Q. Chen, C. J. Sun, et al. Enhancement and depletion mode GaN/AlGaNheterostructure field effect transistors [J]. Appl. Phys. Lett.,1996,68(4):514-516
    [27] A. Endoh, Y. Yamashita, K. Ikeda, Non-recessed-gate enhancement-mode AlGaN/GaN highelectron mobility transistors with high RF performance [J]. Jpn. J. Appl. Phys.,2004,43(4B):2255-2258
    [28] Y. Wen, Z. He, J. Li, et al. Enhancement-mode AlGaN/GaN heterostructure field effecttransistors fabricated by selective area growth technique [J]. Appl. Phys. Lett.,2011,98(7):071208
    [29] V. Kumar, A. Kuliev, T. Tanaka, et al. High transconductance enhancement-mode AlGaN/GaNHEMTs on SiC substrate [J]. IEEE Electron. Lett.,2003,39(24):1758-1759
    [30] W. B. Lanford, T. Tanaka, Y. Otoki, et al. Recessed-gate enhancement-mode GaN HEMT withhigh threshold voltage [J]. IEEE Electron. Lett.,2005,41(7):449-450
    [31]郝跃,王冲,倪金玉,等.增强型AlGaN/GaN槽栅HEMT研制与特性分析[J].中国科学E辑:技术科学,2009,39(1):119-123
    [32] J. S. Moon, Shihchang Wu, D. Wong, et al. Gate-recessed AlGaN–GaN HEMTs forhigh-performance millimeter-wave applications [J]. IEEE Electron Device Lett.,2005,26(6):348-350
    [33] W. Saito, Y. Takada, M. Kuraguchi, et al. Recessed-gate structure approach toward normally offhigh-voltage AlGaN/GaN HEMT for power electronics applications [J]. IEEE Trans. ElectronDevices,2006,53(2):356-362
    [34] T. Palacios, C. S. Suh, A. Chakraborty, et al. High-performance e-mode AlGaN/GaN HEMTs [J].IEEE Electron Device Lett.,2006,27(6):428-430
    [35] T. Oka, T. Nozawa. AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltagenormally-off operation for power electronics applications [J]. IEEE Electron Device Lett.,2008,29(7):668-670
    [36] T. J. Anderson, M. J. Tadjer, M. A. Mastro, et al. An AlN/ultrathin AlGaN/GaN HEMT structurefor enhancement-mode operation using selective etching [J]. IEEE Electron Device Lett.,2009,30(12):1251-1253
    [37] H. Kambayashi, Y. Satoh, Y. Niiyama, et al. Enhancement-mode GaN Hybrid MOS-HFETs onSi substrates with over70A operation [C]. ISPSD2009.21st International Symposium on,Barcelona,2009,21-24
    [38] C. Wang, J. Zhang, S. Quan, et al. An enhancement-mode AlGaN/GaN HEMT withrecessed-gate [J]. J. Semicond.2008,29(9):1682-1685
    [39] C. T. Chang, H. T.Hsu, E. Y. Chang, et al.30-GHz low-noise performance of100-nm-gate-recessed n-GaN/AlGaN/GaN HEMTs [J]. IEEE Electron Device Lett.,2010,31(2):105-107
    [40] M. Kanamura, T. Ohki, T. Kikkawa, et al. Enhancement-mode GaN MIS-HEMTs withn-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics [J]. IEEE Electron Device Lett.,2010,31(3):189-191
    [41] S. D. Burnham, K. Boutros, P. Hashimoto, et al. Gate-recessed normally-off GaN-on-Si HEMTusing a new O2-BCl3digital etching technique [J]. Phys. Stat. Sol. C,2010,7(7-8):2010–2012
    [42] X. Hu, G. Simin, J. Yang, et al. Enhancement mode AIGaN/GaN HFET with selectively grownpn junction gate [J]. IEEE Electron. Lett.,2000,36(8):753-754
    [43] N. Tsuyukuchi, K. Nagamatsu, Y. Hirose, et al. Low-leakage-current enhancement-modeAlGaN/GaN heterostructure field-effect transistor using p-type gate contact [J]. Jpn. J. Appl.Phys.,2006,45(11): L319-L321
    [44] T. Fujii, N. Tsuyukuchi, Y. Hirose, et al. Fabrication of enhancement-mode AlxGa1–xN/GaNjunction heterostructure field-effect transistors with p-type GaN gate contact [J]. Phys. Stat. Sol.(c),2007,4(7):2708–2711
    [45] O. Hilt, A. Knauer, F. Brunner, et al. Normally-off AlGaN/GaN HFET with p-type GaN gateand AlGaN buffer [C]. Proceedings of the22nd International Symposium on PowerSemiconductor Devices&ICs, Hiroshima,2010,347-350
    [46] Y. Uemoto, M. Hikita, H. Ueno, et al. Gate Injection Transistor (GIT)—A normally-offAlGaN/GaN power transistor using conductivity modulation [J]. IEEE Trans. Electron Devices,2007,54(12):3393-3399
    [47] S. L. Selvaraj, K. Nagai, T. Egawa. MOCVD grown normally-OFF type AlGaN/GaN HEMTson4inch Si using p-InGaN cap layer with high breakdown [C]. Device Research Conference,Indiana,2010,135-136
    [48] T. Mizutani, M. Ito, S. Kishimoto, et al. AlGaN/GaN HEMTs with thin InGaN cap layer fornormally off operation [J]. IEEE Electron Device Lett.,2007,28(7):549-551
    [49] C. Yi, R. Wang, W. Huang, et al. Reliability of enhancement-mode AlGaN/GaN HEMTsfabricated by fluorine plasma treatment [C]. IEDM2007, IEEE International, Washington, DC,2007,389-392
    [50] Y. Cai, Y. Zhou, K. J. Chen, et al. High-performance enhancement-mode AlGaN/GaN HEMTsusing fluoride-based plasma treatment [J]. IEEE Electron Device Lett.,2005,26(7):435-437
    [51] T. Palacios, C. S. Suh, A. Chakraborty, et al. High-performance E-mode AlGaN/GaN HEMTs[J]. IEEE Electron Device Lett.,2006,27(6):428-430
    [52] S. Jia, Y. Cai, D. Wang, et al. Enhancement-mode AlGaN/GaN HEMTs on silicon substrate [J].Phys. Stat. Sol.(c),2006,3(6):2368–2372
    [53] R. Wang, Y. Cai, W. Tang, et al. Planar integration of E/D-mode AlGaN/GaN HEMTs usingfluoride-based plasma treatment [J]. IEEE Electron Device Lett.,2006,27(8):633-635
    [54] R. Wang, Y. Cai, C. W. Tang, et al. Enhancement-mode Si3N4/AlGaN/GaN MISHFETs [J].IEEE Electron Device Lett.,2006,27(10):793-795
    [55] C. S. Suh, Y. Dora, N. Fichtenbaum, et al. High-breakdown enhancement-mode AlGaN/GaNHEMTs with integrated slant field-plate [C]. IEDM '06. International, San Francisco,2006,1-3
    [56] S. Quan, Y. Hao, X. Ma, et al. Enhancement-mode AlGaN/GaN HEMTs fabricated by fluorineplasma treatment [J]. J. Semicond.,2009,30(12):124002
    [57] G. Vanko, T. Lalinsky,. Ha ík, et al. Impact of SF6plasma treatment on performance ofAlGaN/GaN HEMT [J]. Vacuum,2010,84(1):235-237
    [58] Z. Feng, S. Xie, R. Zhou, et al. A high-performance enhancement-mode AlGaN/GaN HEMT [J].J. Semicond.,2010,31(8):084001
    [59] Z. H. Feng, R. Zhou, S. Y. Xie, et al.18-GHz3.65-W/mm enhancement-mode AlGaN/GaNHFET using fluorine plasma ion implantation [J]. IEEE Electron Device Lett.,2010,31(12):1386-1388
    [60] T. Mizutani, A. Kawano, S. Kishimoto, et al. Drain current DLTS of normally-off AlGaN/GaNHEMTs [J]. Phys. Stat. Sol.(c),2007,4(4):1536–1539
    [61] S. Sugiura, Y. Hayashi, S. Kishimoto, et al. Fabrication of normally-off mode GaN andAlGaN/GaN MOSFETs with HfO2gate insulator [J]. Solid-State Electronics,2010,54(1):79-83
    [62] G. Li, T. Zimmermann, Y. Cao, et al. Threshold voltage control in Al0.72Ga0.28N/AlN/GaNHEMTs by work-function engineering [J]. IEEE Electron Device Lett.,2010,31(9):954-956
    [63] T. Fujiwara, S. Rajan, S. Keller, et al. Enhancement-mode m-plane AlGaN/GaN heterojunctionfield-effect transistors [J]. Appl. Phys. Express,2009,2(1):011001
    [64] T. Fujiwara, S. Keller, J. S. Speck, et al. Low ohmic contact resistance m-plane AlGaN/GaNheterojunction field-effect transistors with enhancement-mode operations [J]. Appl. Phys.Express,2010,3(10):101002
    [65] M. Kuroda, T. Ueda, T. Tanaka, et al. Nonpolar AlGaN/GaN metal–insulator–semiconductorheterojunction field-effect transistors with a normally off operation [J]. IEEE Trans. ElectronDevices,2010,57(2):368-370
    [66] M. Kanamura, T. Ohki, T. Kikkawa, et al. High current operation of enhancement-mode GaNMIS-HEMTs with triple cap structure using atomic layer deposited Al2O3gate insulator[C].Device Research Conference,2009. DRC2009, Pennsylvania,2009,165-166
    [67] T. Sugiyama, D. Iida, M. Iwaya, et al. Threshold voltage control using SiNxin normally offAlGaN/GaN HFET with p-GaN gate [J]. Phys. Stat. Sol. C,2010,7(7-8):1980–1982
    [68] H. Kambayashi, Y. Satoh, S. Ootomo, et al. Over100A operation normally-off AlGaN/GaNhybrid MOS-HFET on Si substrate with high-breakdown voltage [J]. Solid-State Electronics,2010,54(6):660-664
    [69] B. Lu, O. I. Saadat, T. Palacios. High-performance integrated dual-gate AlGaN/GaNenhancement-mode transistor [J]. IEEE Electron Device Lett.,2010,31(9):990-992
    [70] C. T. Chang, T. H. Hsu, E.Y. Chang, et al. Normally-off operation AlGaN/GaN MOS-HEMTwith high threshold voltage [J]. IEEE Electron Lett.,2010,46(18):1280-1281
    [71] X. H. Ma, H. Y. Yu, S. Quan, et al. Enhancement-mode AlGaN/GaN high electronic mobilitytransistors with thin barrier [J]. Chin. Phys. B,2011,20(2):027303
    [72] M. A. Khan, M. S. Shur, Q. C. Chen, et al. Current/voltage characteristic collapse inAIGaN/GaN heterostructure insulated gate field effect transistors at high drain bias [J]. IEEEElectron. Lett.,1994,30(25):2175-2176
    [73] P. B. Klein, S. C. Binari, K. Ikossi-Anastasiou, et al. Investigation of traps producing currentcollapse in AIGaN/GaN high electron mobility transistors [J]. IEEE Electron. Lett.,2001,37(10):661-662
    [74] Y. F. Wu, B. P. Keller, S. Keller, et al. Measured microwave power performance of AlGaN/GaNMODFET [J]. IEEE Electron Device Lett.,1996,17(9):455-457
    [75] C. Nguyen, N. X. Nguyen, D. E. Grider. Drain current compression in GaN MODFETs underlarge-signal modulation at microwave frequencies [J]. IEEE Electron. Lett.,1999,35(16):1380-1382
    [76] B. M. Green, K. K. Chu, E. M. Chumbes, et al. The effect of surface passivation on themicrowave characteristics of undoped AlGaN/GaN HEMT’s [J]. IEEE Electron Device Lett.,2000,21(6):268-270
    [77] A. V. Vertiatchikh, L. F. Eastman. Effect of the surface and barrier defects on the AlGaN/GaNHEMT low-frequency [J]. IEEE Electron Device Lett.,2003,24(9):535-537
    [78] P. D. Ye, B. Yang, K. K. Ng, et al. GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3as gate dielectric [J]. Appl. Phys. Lett.,2005,86(6):063501
    [79]王翠梅,王晓亮,王军喜. AlGaN/GaN HEMT电流崩塌效应研究进展[J].固体电子学研究与进展,2005,25(1):35-41
    [80] J. J. Freedsman, T. Kubo, T. Egawa. Effect of AlN growth temperature on trap densities ofin-situ metal-organic chemical vapor deposition grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors [J]. AIP Adv.,2012,2(2):022134
    [81] H. A. Shih, M. Kudo, T. K. Suzuki. Analysis of AlN/AlGaN/GaN metal-insulator-semiconductor structure by using capacitance-frequency-temperature mapping [J]. Appl. Phys.Lett.,2012,101(4):043501
    [82] S. Huang, Q. Jiang, S. Yang, et al. Effective passivation of AlGaN/GaN HEMTs by ALD-grownAlN thin film [J]. IEEE Electron Device Lett.,2012,33(4):516-518
    [83] K. Y. Park, H. I. Cho, J. H. Lee, et al. Fabrication of AlGaN/GaN MIS-HFET using an Al2O3high k dielectric [J]. Phys. Stat. Sol.(c),2003,0(7):2351–2354
    [84] T. Hashizume, S. Ootomo, H. Hasegawa. Suppression of current collapse in insulated gateAlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3dielectric [J]. Appl.Phys. Lett.,2003,83(14):2952-2954
    [85] D. H. Kim, V. Kumar, G. Chen, et al. ALD Al2O3passivated MBE-grown AlGaN/GaN HEMTson6H-SiC [J]. IEEE Electron. Lett.,2007,43(2):129-130
    [86] D. Gregu ová, R. Stoklas, K. i o, et al. AlGaN/GaN metal–oxide–semiconductorheterostructure field-effect transistors with4nm thick Al2O3gate oxide [J]. Semicond. Sci.Technol.,2007,22(8):947–951
    [87] P. Kordo, D. Gregu ová, R. Stoklas, et al. Improved transport properties of Al2O3/AlGaN/GaNmetal-oxide-semiconductor heterostructure field-effect transistor [J]. Appl. Phys. Lett.,2007,90(12):123513
    [88] X. H. Ma, C. Y. Pan, L. Y. Yang, et al. Characterization of Al2O3/GaN/AlGaN/GaN metalinsulator semiconductor high electron mobility transistors with different gate recess depths [J].Chin. Phys. B,2008,20(2):027304
    [89] Y. Z. Yue, Y. Hao, J. C. Zhang, et al. A study on Al2O3passivation in GaN MOS-HEMT bypulsed stress [J]. Chin. Phys. B,2008,17(4):1405-1409
    [90] Y. Z. Yue, Y. Hao, J. C. Zhang. AlGaN/GaN MOS-HEMT with stack gate HfO2/Al2O3structuregrown by stomic layer deposition [C]. CSIC’08. IEEE, California,2008,1-4
    [91] Q. Feng, Y. Tian, Z. W. Bi, et al. The improvement of Al2O3/AlGaN/GaN MISHEMTperformance by N2plasma pretreatment [J]. Chin. Phys. B,2009,18(7):3014-3017
    [92] O. I. Saadat, J. W. Chung, E. L. Piner, et al. Gate-first AlGaN/GaN HEMT technology forhigh-frequency applications [J]. IEEE Electron Device Lett.,2009,30(12):1254-1256
    [93] R. C. Fitch, D. E. Walker, K. D. Chabak, et al. Comparison of passivation layers forAlGaN/GaN high electron mobility transistors [J]. J. Vac. Sci. Technol. B,2011,29(6):061204
    [94] Z. H. Liu, G. I. Ng, S. Arulkumaran, et al. Temperature-dependent forward gate currenttransport in atomic-layerdeposited Al2O3/AlGaN/GaN metal-insulator-semiconductor highelectron mobility transistor [J]. Appl. Phys. Lett.,2011,98(16):163501
    [95] D. Ji, B. Liu, Y. Lu, et al. Polarization-induced remote interfacial charge scattering inAl2O3/AlGaN/GaN double heterojunction high electron mobility transistors [J]. Appl. Phys.Lett.,2012,100(13):132105
    [96] M. V. Hove, S. Boulay, S. R. Bahl, et al. CMOS process-compatible high-power low-leakageAlGaN/GaN MISHEMT on silicon [J]. IEEE Electron Device Lett.,2012,33(5):667-669
    [97] H. Y. Liu, B. Y. Chou, W. C. Hsu, et al. A simple gate-dielectric fabrication process forAlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors [J]. IEEE ElectronDevice Lett.,2012,33(7):997-999
    [98] C. Liu, E. F. Chor, L. S. Tan. Enhanced device performance of AlGaN/GaN HEMTs using HfO2high-k dielectric for surface passivation and gate oxide [J]. Semicond. Sci. Technol.,2007,22(5):522–527
    [99] J. Shi, L. F. Eastman, X. Xin, et al. High performance AlGaN/GaN power switch with HfO2insulation [J]. Appl. Phys. Lett.,2009,95(4):042103
    [100] F. Tian, E. F. Chor. Physical and electrical characteristics of hafnium oxide films onAlGaN/GaN heterostructure grown by pulsed laser deposition [J]. Thin Solid Films,2010,518(24): e121-e124
    [101] J. Shi, L. F. Eastman. Correlation between AlGaN/GaN MISHFET performance and HfO2insulation layer quality [J]. IEEE Electron Device Lett.,2011,32(3):312-314
    [102] L. B. Chang, A. Das, R. M. Lin, et al. An observation of charge trapping phenomena inGaN/AlGaN/Gd2O3/Ni–Au structure [J]. Appl. Phys. Lett.,2011,98(22):222106
    [103] H. C. Chiu, C. W. Lin, C. H. Chen, et al. Low hysteresis dispersion La2O3AlGaN/GaNMOS-HEMTs [J]. J. Electrochem. Soc.,2010,157(2): H160-H164
    [104] B. P. Gila, M. Hlad, A. H. Onstine, et al. Improved oxide passivation of AlGaN/GaN highelectron mobility transistors [J]. Appl. Phys. Lett.,2005,87(16):163503
    [105] R. Mehandru, B. Luo, J. Kim, F. Ren, et al. AlGaN/GaN metal–oxide–semiconductor highelectron mobility transistors using Sc2O3as the gate oxide and surface passivation [J]. Appl.Phys. Lett.,2003,82(15):2530-2532
    [106] S. Arulkumaran, T. Egawa, H. Ishikawa, et al. Surface passivation effects on AlGaN/GaNhigh-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride [J]. Appl. Phys.Lett.,2004,84(4):613-615
    [107] M. Higashiwaki, N. Onojima, T. Matsui, et al. Effects of SiN passivation by catalytic chemicalvapor deposition on electrical properties of AlGaN/GaN heterostructure field-effect transistors[J]. J. Appl. Phys.,2006,100(3):033714
    [108] L. Yang, Y. Hao, X. H. Ma, et al. Various recipes of SiN passivated AlGaN/GaN high electronmobility transistors in correlation with current slump [J]. Chin. Phys. Lett.,2009,26(11):117104
    [109] F. Ren, Z. B. Hao, L. Wang, et al. Effects of SiNxon two-dimensional electron gas and currentcollapse of AlGaN/GaN high electron mobility transistors [J]. Chin. Phys. B,2010,19(1):017306
    [110] L. Yang, G. Z. Hu, Y. Hao, et al. Electric-stress reliability and current collapse of differentthickness SiNxpassivated AlGaN/GaN high electron mobility transistors [J]. Chin. Phys. B,2010,19(4):047301
    [111] P. Kordo, G. Heidelberger, J. Bernát, et al. High-power SiO2/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors [J]. Appl. Phys. Lett.,2005,87(14):143501
    [112] C. C. Hu, M. S. Lin, T. Y. Wu, et al. AlGaN/GaN metal–oxide–semiconductor high-electronmobility transistor with liquid-phase-deposited barium-doped TiO2as a gate dielectric [J].IEEE Trans. Electron Devices,2012,59(1):121-127
    [113] C. T. Lee, Y. L. Chiou, C. S. Lee. AlGaN/GaN MOS-HEMTs with gate ZnO dielectric layer [J].IEEE Electron Device Lett.,2010,31(11):1220-1223
    [114] G. Vanko, M. Vallo, J. Bruncko, et al. Laser ablated ZnO layers for ALGaN/GaN HEMTpassivation [J]. Vacuum,2012,86(6):672-674
    [115] J. Kuzmík, G. Konstantinidis, S. Harasek, et al. ZrO2/(Al)GaN metal–oxide–semiconductorstructures: characterization and application [J]. Semicond. Sci. Technol.,2004,19(12):1364–1368
    [116] K. Balachander, S. Arulkumaran, H. Ishikawa, et al. Studies on electron beam evaporatedZrO2/AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors [J]. Phys.Stat. Sol.(a),2005,202(2): R16–R18
    [117] Y. Dora, S. Han, D. Klenov, et al. ZrO2gate dielectrics produced by ultraviolet ozoneoxidation for GaN and AlGaN/GaN transistors [J]. J. Vac. Sci. Technol. B,2006,24(2):575-581
    [118] E. Harvard, R. Brown, J. R. Shealy. Performance of AlGaN/GaN high-electron mobilitytransistors with AlSiN passivation [J]. IEEE Trans. Electron Devices,2011,58(1):87-94
    [119] H. Sazaw, K. Hirata, M. Kosaki, et al. Evaluation of AlGaN/GaN-HFET with HfAlO gateinsulator [J]. Phys. Stat. Sol.(c),2007,4(7):2748–2751
    [120] S. Yang, S. Huang, H. Chen, et al. AlGaN/GaN MISHEMTs with high-k LaLuO3gatedielectric [J]. IEEE Electron Device Lett.,2012,33(7):979-981
    [121] Z. W. Bi, Q. Feng, J. C. Zhang, et al. The effects of proton irradiation on the electricalproperties of NbAlO/AlGaN/GaN MIS-HEMT [J]. Sci. China-Phys. Mech. Astron.,2012,55(1):40-43
    [122] C. M. Jeon, J. L. Lee. Effects of tensile stress induced by silicon nitride passivation onelectrical characteristics of AlGaN/GaN heterostructure field-effect transistors [J]. Appl. Phys.Lett.,2005,86(17):172101
    [123] D. J. Chen, Y. Q. Tao, C. Chen, et al. Improved transport properties of the two-dimensionalelectron gas in AlGaN/GaN heterostructures by AlN surface passivation layer [J]. Appl. Phys.Lett.,2006,89(25):252104
    [124]陈国强,徐峰.不同钝化介质层对AlGaN/GaN异质结二维电子气密度的影响[J].南京工程学院学报(自然科学版),2007,5(2):40-44
    [125] K. Ueno, S. Nakamura, H. Shimotani, et al. Electric-field-induced superconductivity in aninsulator [J]. Nat. Mater.,2008,7(11):855-858
    [126] H. Yuan, H. Shimotani, A. Tsukazaki, et al. High-density carrier accumulation in ZnOfield-effect transistors gated by electric double layers of ionic liquids [J]. Adv. Funct. Mater.,2009,19(7):1046-1053
    [127] M. Endo, D. Chiba, H. Shimotani, et al. Electric double layer transistor with a (Ga, Mn)Aschannel [J]. Appl. Phys. Lett.,2010,96(2):022515
    [128] J. T. Ye, S. Inoue1, K. Kobayashi, et al. Liquid-gated interface superconductivity on anatomically flat film [J]. Nat. Mater.,2010,9(2):125-128
    [129] H. Yuan, H. Shimotani, J. Ye, et al. Electrostatic and electrochemical nature of liquid-gatedelectric-double-layer transistors based on oxide semiconductors [J]. J. Am. Chem. Soc.,2010,132(51):18402–18407
    [130] H. Yuan, H. Liu, H. Shimotani, et al. Liquid-gated ambipolar transport in ultrathin films of atopological insulator Bi2Te3[J]. Nano Lett.,2011,11(7):2601-2605
    [131] K. Ueno, S. Nakamura, H. Shimotani, et al. Discovery of superconductivity in KTaO3byelectrostatic carrier doping [J]. Nature Nanotechnology,2011,6(7):408-412
    [132] J. Yea, M. F. Craciunc, M. Koshino, et al. Accessing the transport properties of graphene andits multilayers at high carrier density [J]. Proc. Natl. Acad. Sci. USA,2011,108(32):13002-13006
    [133]王萍,解廷月,李海.脉冲激光沉积技术[J].山西大同大学学报(自然科学版),2008,24(4):19-22
    [134] A.Y. Cho. How molecular beam epitaxy (MBE) began and its projection into the future [J]. J.Cryst. Growth,1999,201-202(3):1-7
    [135]王冲,冯倩,郝跃,等. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究[J].物理学报,2006,55(11):6085-6089
    [136]李诚瞻,刘丹,郑英奎,等.钝化前表面预处理对AlGaN/GaN HEMTs性能的影响[J].半导体学报,2008,29(2):329-333
    [137]王磊,王嘉星,汪莱,等.表面处理对AlGaN欧姆接触的影响及机理[J].半导体光电,2011,32(5):650-652
    [138]许振嘉.半导体的检测与分析(第二版)[M].北京:科学出版社,2007,28-86
    [139] M. A. Moram, M E Vickers. X-ray diffraction of III-nitrides [J]. Rep. Prog. Phys.,2009,72(3):036502
    [140] R. L. Opila, J. E. Jr. Thin films and interfaces in microelectronics: composition and chemistryas function of depth [J]. Prog. Surf. Sci.,2002,69(4-6):125-163
    [141]李鸿渐,石瑛.测量计算金属—半导体接触电阻率的方法[J].半导体技术,2008,133(12):155-159
    [142]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001:190-198.
    [143]何小威,陈虎,刘征,等译.固态电子器件(第6版)[M].北京:人民邮电出版社,2009,178
    [144] H. W. Jang, C. M. Jeon, K. H. Kim, et al. Mechanism of two-dimensional electron gasformation in AlxGa1-xN/GaN heterostructures [J]. Appl. Phys. Lett.,2002,81(7):1249-1251
    [145] G. Koley, M. G. Spencer. On the origin of the two-dimensional electron gas at the AlGaN/GaNheterostructure interface [J]. Appl. Phys. Lett.,2002,86(4):042107
    [146] J. F. Zhang, W. Mao, J. C. Zhang, et al. The low-temperature mobility of two-dimensionalelectron gas in AlGaN/GaN heterostructures [J]. Chin. Phys. B,2008,17(7):2689-2695
    [147] I. H. Tan, G. L. Snider, L. D. Chang, et al. A self-consistent solution of schr dinger-poissonequations using a nonuniform mesh [J]. J. Appl. Phys.,1990,68(8):4071-4076
    [148]张旻.介质调制AlGaN/GaN增强型器件模拟研究[D].成都:电子科技大学,2011,8-18
    [149] M. D. Segall, Philip J. D. Lindan, M. J. Probert, et al. First-principles simulation: ideas,illustrations and the CASTEP code [J]. J. Phys.: Condens. Matter.,2002,14(11):2717-2744
    [150] Z. H. Liu, G. I. Ng, S. Arulkumaran, et al. Improved two-dimensional electron gas transportcharacteristics in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistorwith atomic layer-deposited Al2O3as gate insulator [J]. Appl. Phys. Lett.,2009,95(22):223501
    [151] B. N. Pal, B. M. Dhar, K. C. See, et al. Solution-deposited sodium beta-alumina gatedielectrics for low-voltage and transparent field-effect transistors [J]. Nat. Mater.,2009,8(11):898-903
    [152] H. Klauk. Oxide dielectrics: A change of direction [J]. Nat. Mater.,2009,8(11):853-854
    [153]温廷琏. β氧化铝—一种快离子导体[J].硅酸盐学报,1979,7(4):380-387
    [154]许敏. AlGaN/GaN基HEMT材料性能与测试技术的研究[D].天津:河北工业大学,2007,19-21
    [155]陈世杰,王文武,蔡雪梅,等.高k栅介质/金属栅结构CMOS器件的等效氧化层厚度控制技术[J].电子工业专用设备,2010,39(3):11-16
    [156] Y. Cai, Y. Zhou, K. M. Lau, et al. Control of threshold voltage of AlGaN/GaN HEMTs byfluoride-based plasma treatment: from depletion mode to enhancement mode [J]. IEEE Trans.Electron Devices,2006,53(9):2207-2215
    [157]杜彦东,韩伟华,颜伟,等.增强型AlGaN/GaN HEMT器件工艺的研究进展[J].半导体技术,2011,36(10):771-777
    [158] S. Huang, H. Chen, K. J. Chen, et al. Effects of the fluorine plasma treatment on the surfacepotential and Schottky barrier height of AlxGa1xN/GaN heterostructures [J]. Appl. Phys. Lett.,2010,96(23):233510
    [159] R. O. Ansell. Review: The chemical and electronchemical stability of beta-alumina [J]. J.Mater. Sci.,1986,21(2):365-379
    [160]周文. AlGaN/GaN上STO薄膜的制备以及电学性能研究[D].成都:电子科技大学,2010,24-26
    [161]张鹏,黄云,李斌. PHEMT器件界面态分析方法综述[J].电子产品可靠性与环境试验,2008,26(3):20-23
    [162] W. L. Liu1Y. L. Chen, A. A. Balandin, et al. Capacitance–voltage spectroscopy of trappingstates in GaN/AlGaN heterostructure [J]. J. Nanoelectron. Optoelectron.,2006,1(2):258-263
    [163] M. Miczek, C. Mizue, T. Hashizume, et al. Effects of interface states and temperature on theC-V behavior of metal/insulator/AlGaN/GaN heterostructure capacitors [J]. J. Appl. Phys.,2008,103(10):104510
    [164]王鑫华,庞磊,陈晓娟,等. GaN HEMT栅边缘电容用于缺陷的研究[J].物理学报,2011,60(9):097101
    [165] E. J. Miller, X. Z. Dang, H. H. Wieder, et al. Trap characterization by gate-drain conductanceand capacitancedispersion studies of an AlGaN/GaN heterostructure field-effect transistor [J].J. Appl. Phys.,2000,87(11):8070-8073
    [166] R. Stoklas, D. Gregu ová, J. Novák, et al. Investigation of trapping effects in AlGaN/GaN/Sifield-effect transistors by frequency dependent capacitance and conductance analysis [J]. Appl.Phys. Lett.,2008,93(12):124103
    [167] P. Kordo, R. Stoklas, D. Gregu ová, et al. Characterization of AlGaN/GaNmetal-oxide-semiconductor field-effect transistors by frequency dependent conductanceanalysis [J]. Appl. Phys. Lett.,2009,94(22):223512
    [168] P. Kordo, R. Stoklas, D. Gregu ová, et al. Trapping effects in Al2O3/AlGaN/GaNmetal-oxide-semiconductor heterostructure field-effect transistor investigated by temperaturedependent conductance measurements [J]. Appl. Phys. Lett.,2010,96(1):013505
    [169] T. S. B scke, J. Müller, D. Br uhaus, et al. Ferroelectricity in hafnium oxide thin films [J].Appl. Phys. Lett.,2011,99(10):102903
    [170] J. Müller, T. S. B scke, D. Br uhaus, et al. Ferroelectric Zr0.5Hf0.5O2thin films for nonvolatilememory applications [J]. Appl. Phys. Lett.,2011,99(11):112901
    [171] M. Li, Z. Zhang, S. A. Campbell, et al. Electrical and material characterizations ofhigh-permittivity HfxTi1xO2gate insulators [J]. J. Appl. Phys.,2005,98(5):054506
    [172] J. Rüstig. Memory development and manufacturing [R]. Germany: Qimonda,2006
    [173] K. Tomida, M. Popovici, K. Opsomer, et al. Non-linear dielectric constant increase with Ticomposition in high-k ALD-HfTiOxfilms after O2crystallization annealing [J]. IOP Conf.Series: Materials Science and Engineering,2010,8(1):012023
    [174] K. Kita, K. Kyuno, A. Toriumi. Permittivity increase of yttrium-doped HfO2through structuralphase transformation [J]. Appl. Phys. Lett.,2005,86(10):102906
    [175] J. P. Coutures, J. Coutures. The system HfO2-TiO2[J]. J. Am. Ceram. Soc.,1987,70(6):383-387
    [176] C. K. Lee, E. Cho, H. S. Lee, et al. First-principles study on doping and phase stability ofHfO2[J]. Phys. Rev. B,2008,78(1):012102
    [177] G. Dutta. A first-principles study of enhanced dielectric responses in Ti and Ce doped HfO2[J].Appl. Phys. Lett.,2009,94(1):012907
    [178] M. C. Cisneros-Morales, C. R. Aita. Mixed cation phases in sputter deposited HfO2–TiO2nanolaminates [J]. Appl. Phys. Lett.,2008,93(2):021915
    [179] M. C. Cisneros-Morales, C. R. Aita. Intrinsic metastability of orthorhombic HfTiO4in thinfilm hafnia-titania [J]. Appl. Phys. Lett.,2011,98(5):051909
    [180] M. C. Cisneros-Morales, C. R. Aita. Phase selection and transition in Hf-rich hafnia-titaniananolaminates [J]. J. Appl. Phys.,2011,109(12):123523
    [181] L. F. Schneemeyer, R. B. van Dover, R. M. Fleming. High dielectric constant Hf–Sn–Ti–Othin films [J]. Appl. Phys. Lett.,1999,75(13):1967-1969
    [182] Q. Fang, J. Y. Zhang, Z. M. Wang, et al. Investigation of TiO2-doped HfO2thin films depositedby photo-CVD [J]. Thin Solid Films,2003,428(1-2):263-268
    [183] H. J. Li, J. Price, M. Gardner, et al. High permittivity quaternary metal (HfTaTiOx) oxide layeras an alternative high-k gate dielectric [J]. Appl. Phys. Lett.,2006,89(10):103523
    [184] D. Martin, M. Grube, P. Reinig, et al. Influence of composition and bottom electrodeproperties on the local conductivity of TiN/HfTiO2and TiN/Ru/HfTiO2stacks [J]. Appl. Phys.Lett.,2011,98(1):012901
    [185] L. M. Lin, P. T. Lai. Improved high-field reliability for a SiC metal–oxide–semiconductordevice by the incorporation of nitrogen into its HfTiO gate dielectric [J]. J. Appl. Phys.,2007,102(5):054515
    [186]季峰,徐静平,张洪强,等. HfTiO氮化退火对MOS器件电特性的影响[J].固体电子学研究与进展,2008,28(3):330-333
    [187] C. Y. Chen, J. C. Chou, H. T. Chou. Characteristics of cost-effective ultrathin HfTiOxfilm assensitive membrane in ISFET fabricated by anodization [J]. J. Electrochem. Soc.,2009,156(4):H225-H228
    [188] J. P. Xu, X. Zou, C. X. Li, et al. Improved electrical properties of HfTiO/GeOxNygatedielectric Ge MOS capacitors by using wet–NO Ge-surface pretreatment [J]. Appl. Phys. A,2009,94(2):419-422
    [189] C. X. Li, P. T. Lai. Wide-bandgap high-k Y2O3as passivating interlayer for enhancing theelectrical properties and high-field reliability of n-Ge metal-oxidesemiconductor capacitorswith high-k HfTiO gate dielectric [J]. Appl. Phys. Lett.,2009,95(2):022910
    [190] B. Y. Tsui, H. H. Hsu, C. H. Cheng. High-performance metal–insulator–metal capacitors withHfTiO/Y2O3stacked dielectric [J]. IEEE Electron Device Lett.,2010,31(8):875-877
    [191] F. Chen, X. Bin, C. Hella, et al. A study of mixtures of HfO2and TiO2as high-k gatedielectrics [J]. Microelectron. Eng.,2004,72(1-4):263-266
    [192] V. Mikhelashvili, G. Eisenstein. Electrical properties of Al2O3–HfTiO laminate gate dielectricstacks with an equivalent oxide thickness below0.8nm [J]. Thin Solid Films,2007,515(7-8):3704-3708
    [193] V. Mikhelashvili, G. Eisenstein. High-k Al2O3HfTiO nanolaminates with less than0.8-nmequivalent oxide thickness [J]. IEEE Electron Device Lett.,2007,28(1):24-26
    [194] K. Ramani, R.K. Singh, V. Craciun. Hf–O–N and HfO2barrier layers for Hf–Ti–O gatedielectric thin films [J]. Microelectron. Eng.,2008,85(8):1758-1761
    [195] D. Mu oz Ramo, A. L. Shluger, G. Bersuker. Ab initio study of charge trapping and dielectricproperties of Ti-doped HfO2[J]. Phys. Rev. B,2009,79(3):035306
    [196]曾亦可,刘梅冬,王培英,等.铁电薄膜电滞回线测量研究[J].功能材料,1998,29(6):600-603
    [197] I. Stolichnov, L. Malin, P. Muralt, et al. Ferroelectric gate for control of transport properties oftwo-dimensional electron gas at AlGaN/GaN heterostructures [J]. Appl. Phys. Lett.,2006,88(4):043512
    [198] J. S. Lee, J. Cho, C. Lee, et al. Layer-by-layer assembled charge-trap memory devices withadjustable electronic properties [J]. Nat. Nanotechnol.,2007,2(12):790-795
    [199] X. Wang, K. Han, W. Wang, et al. Comprehensive understanding of the effect of electric dipoleat high-k/SiO2interface on the flatband voltage shift in metal-oxide-semiconductor device [J].Appl. Phys. Lett.,2010,97(6):062901
    [200] L. Lin, J. Robertson. Atomic mechanism of electric dipole formed at high-K: SiO2interface [J].J. Appl. Phys.,2011,109(9):094502
    [201]张家龙,何怡刚.浮栅技术及其应用[J].现代电子技术,2004,27(24):8-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700