用户名: 密码: 验证码:
脂钙蛋白-2在肺动脉高压中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因异常的肺动脉平滑肌细胞增生、迁移以及对凋亡的抵抗引起的小肺动脉重构是肺动脉高压的重要病理特征。然而,正常的肺动脉平滑肌细胞增生与凋亡之间的平衡如何被破坏,如何转变为高增生倾向并抵抗凋亡,其中的细胞和分子机制仍不明确。最近在恶性疾病中的研究表明,由不同原因导致的内质网应激可能是促使细胞恶性转化的共同因素。联系到各种类型的肺动脉高压均存在不同程度的内质网应激,后者可能在肺动脉平滑肌细胞的增生性转化中发挥重要作用。脂钙蛋白-2(Lipocalin2, Lcn2),又被称为中性粒细胞明胶酶相关的Lipocalin (NGAL),近来发现其在很多良恶性疾病中对细胞的生存发挥重要作用。Lcn2可促进细胞摄取铁,而铁可促进细胞氧化应激;Lcn2可促进细胞迁移和侵袭,并促进细胞恶性转化;针对不同类型的细胞,Lcn2具有促进或抑制凋亡的作用。Lcn2的这些功能作用均与肺动脉高压时发生的病理变化密切相关,而目前尚未见Lcn2与肺动脉高压相关的研究报道,这促使我们对Lcn2在肺动脉高压中的可能作用展开研究。本研究主要考察了Lcn2对肺动脉平滑肌细胞凋亡、增生、迁移的影响,以及相关的分子机理;考察了在野百合碱诱导的大鼠肺动脉高压模型中Lcn2以及相关蛋白的表达变化;还检测了先天性心脏病相关的肺动脉高压患者的血浆Lcn2水平,以及与疾病临床特征的相关性。结果表明,Lcn2通过上调SOD的表达可降低细胞ROS水平,进而可抑制多种因素诱导的肺动脉平滑肌细胞凋亡;Lcn2通过促进细胞摄取铁引起轻度内质网应激,进而可促进细胞增生;Lcn2还可促进肺动脉平滑肌细胞迁移。在野百合碱诱导的大鼠肺动脉高压模型中,Lcn2的表达显著上调;与不伴肺动脉高压的单纯先天性心脏病患者相比,先天性心脏病相关的肺动脉高压患者的血浆Lcn2水平显著上调,而且血浆Lcn2水平与肺动脉压力存在较强的统计学相关性。研究结果提示,Lcn2可能在肺动脉高压的发生以及进展中发挥重要作用。
A key feature of pulmonary arterial hypertension (PH) is the remodeling of small pulmonary arteries, which is due to abnormal pulmonary artery smooth muscle cell (PASMC) proliferation, migration and resistance to apoptosis. While the cellular mechanisms of how the normal PASMC switched to proliferative and resistant to apoptosis remains unknown. Recent studies show that endoplasmic reticulum stress (ERS) may be the original reason in cell metastatic transvertion. Considering that ERS is a conmen feature in PH of every type, it is assumed play important roles in PH. Lipocalin2(Lcn2), also known as neutrophil gelatinase-associated lipocalin (NGAL), is reported recently play roles in cell survival in a wide array of benign and malignant conditions. Lcn2is reported could augment cellular Iron level and the later is a known promotion factor in cell oxidative stress. Lcn2is also reported play roles in cell migration and invasion and could promote cancer metastasis. While in cell apoptosis, conflicting observations were reported about Lcn2in different cell types. All these functions of Lcn2are tightly concerned in PH, and remarkably, there is no report about roles of Lcn2in PH and in survival of PASMC until now. This elicits us to study the roles of Lcn2in PH. In this study, we investigated weather Lcn2regulate human PASMC apoptosis, proliferation and migration, and the mechanism involved. We investigated the level of Lcn2in rat PH model induced by monocrotaline. We also examined the plasma level of Lcn2in patients of congenital heart disease associated PH (CHD-PH), and investigated the association between Lcn2level and features of CHD-PH. In our results, Lcn2up-regulates the expression of superoxide dismutases (SOD1and SOD2) and lowers the cellular ROS. Lcn2greatly decreased the sensitivity of HPASMC to serum deprivation, H2O2and hypoxia. Through Ki67and BrdU examination, Lcn2was proved could promote HPASMC proliferation, which is due to slightly increased ERS via promoting HPASMC uptake iron. Lcn2could also promote HPASMC migration. The expression of Lcn2is elevated in rat PH model, and interestingly, the plasma Lcn2levels in patients with congenital heart disease associated PH was significantly higher than those with congenital heart diseases but no PH (CHD-nonPH). There is a significant correlation between Plasma Lcn2level and the key parameters of PH. Lcn2plays a key role in the pathogenesis and progression of PH.
引文
[1]Shah SJ. Pulmonary hypertension. JAMA 2012;308(13):1366-74.
    [2]Runo JR, Loyd JE. Primary pulmonary hypertension. Lancet 2003,361.1533-44.
    [3]Stenmark KR, Mecham RP. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol 1997;59:89-144.
    [4]Perros F, Montani D, Dorfmuller P, Durand-Gasselin I, Tcherakian C, Le Pavec J, et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2008; 178(1):81-8.
    [5]Burg ED, Remillard CV, Yuan JX. Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis:Pharmacotherapeutic implications. Br J Pharmacol 2008; 153(Suppl 1):S99-S111.
    [6]Rajagopalan N, Simon MA, Suffoletto MS, Shah H, Edelman K, Ma thier MA, et al. Noninvasive estimation of pulmonary vascular resistance in pulmonary hypertension. Echocardiography 2009;26:489-94.
    [7]Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, et al. Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 2010; 121:2747-54.
    [8]Peter Dromparis, Roxane Paulin, Trevor H Stenson, Alois Haromy, Gopinath Sutendra and Evangelos D Michelakis. Attenuating Endoplasmic Reticulum Stress as a Novel Therapeutic Strategy in Pulmonary Hypertension. Circulation 2013;127:115-25.
    [9]El Chami H, Hassoun PM. Immune and inflammatory mechanisms in pulmonary arterial hypertension. Prog Cardiovasc Dis 2012; 55(2):218-28.
    [10]Dorfmuller P, Perros F, Balabanian K, Humbert M. Inflammation in pulmonary arterial hypertension. Eur Respir J 2003;22:358-63.
    [II]Perros F, Dorfmuller P, Souza R, Durand-Gasselin I, Godot V, Capel F, et al. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J 2007;29:937-43.
    [12]Sanchez O, Marcos E, Perros F, Fadel E, Tu L, Humbert M, et al. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2007; 176:1041-7.
    [13]Subhankar Chakrabortya, Sukhwinder Kaura, Sushovan Guhab, Surinder K. Batra. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochimica et Biophysica Acta2012;1826:129-169.
    [14]D.R. Flower, A.C. Nort h, C.E. Sansom, The lipocalin protein family:structural and sequence overview, Biochim. Biophys. Acta 1482 (2000) 9-24.
    [15]DH Goetz, MA Holmes, N Borregaard, ME Bluhm, KN Raymond, RK Strong. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 2002;10:1033-43.
    [16]Parisa Bahmani, Raheleh Halabian, Mehdi Rouhbakhsh, Amaneh Mohammadi Roushandeh, Nasser Masroori, Majid Ebrahimi, et al. Neutrophil Gelatinase-Associated Lipocalin induces the expression of hemeoxygenase-1 and superoxide dismutase. Cell Stress and Chaperones 2010;15:395-403.
    [17]Mehryar Habibi Roudkenar, Raheleh Halabian, Zahra Ghasemipour, Amaneh Mohammadi Roushandeh, Mahdi Rouhbakhsh, Mahin Nekogoftar, et al. Neutrophil Gelatinase-associated Lipocalin Acts as a Protective Factor against H2O2 Toxicity. Archives of Medical Research 2008;39:560-6.
    [18]Roudkenar MH, Halabian R, Bahmani P, Roushandeh AM, Kuwahara Y, Fukumoto M. Neutrophil gelatinase-associated lipocalin:a new antioxidant that exerts its cytoprotective effect independent on Heme Oxygenase-1. Free Radic Res 2011;45(7):810-9.
    [19]B.C. te Boekhorst, S.M. Bovens, W.E. Hellings, P.H. van der Kraak, K.W. van de Kolk, A. Vink, F.L et al. Molecular MRI of murine atherosclerotic plaque targeting NGAL:a protein associated with unstable human plaque characteristics. Cardiovasc. Res.89 (2011) 680-688.
    [20]Nilsen-Hamilton M, Liu Q, Ryon J, Bendickson L, Lepont P, Chang Q. Tissue involution and the acute phase response. Ann NY Acad Sci 2003;995:94-108.
    [21]Wang Y, Lam KS, Kraegen EW, Sweeney G, Zhang J, Tso AW, et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem 2007;53:34-41.
    [22]Farkas L, Gauldie J, Voelkel NF, Kolb M. Pulmonary hypertension and idiopathic pulmonary fibrosis:A tale of angiogenesis, a poptosis and growth factors. Am J Respir Cell Mol Biol. 2011;45:1-15.
    [23]Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S. Pathology of pulmonary hypertension. Clin Chest Med.2007;28:23-42.
    [24]刘晓燕.分泌型簇蛋白在体-肺分流性肺动脉高压中的作用[D].北京,北京协和医学院阜外心血管病医院.2013.
    [25]Chen J, Baydoun AR, Xu R, Deng L, Liu X, Zhu W, et al. Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Stem Cells 2008;26(1):135-45.
    [26]Mari C Asensio-Lo'pez, Jesu'sSa'nchez-Ma's, Domingo A Pascual-Figal, Sergio Abenza, et al. Involvement of ferritin heavy chain in the preventive effect of metformin against doxorubicin-induced cardiotoxicity. Free Radic Biol Med.2013; 57(10):188-200.
    [27]Guoxiong Xu, JinHee Ahn, SoYoung Chang, Megumi Eguchi, Arnaud Ogier, SungJun Han, et al. Lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation. J Biol Chem 2012;287:4808-4817.
    [28]I-Lun Hsin, Yueh-Chieh Hsiao, Ming-Fang Wu, Ming-Shiou Jang, Sheau-Chung Tang, Yu-Wen Lin, et al. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells. Toxicology and applied pharmacology 2012;263:330-337.
    [29]Trachootham D, Alexandre J, Huang P:Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009; 8:579-91
    [30]Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress:cell life and death decisions. J Clin Invest.2005;115:2656-2664.
    [31]Wang Z, Tang X, Li Y, Leu C, Guo L, Zheng X, Zhu D.20-Hydroxyeicosatetraenoic asid inhhibits the apoptotic responss in pulmonary artery smooth muscle cells. Eur J Pharmacol. 2008;588(1):9-17.
    [32]Nadanaka S, Okada T, Yoshida H, Mori K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol Cell Biol.2007;27:1027-1043.
    [33]Oyadomari, S., Mori, M.,. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ.2004,11:381-389.
    [34]Sutendra G, Dromparis P, Wright P, Bonnet S, Haromy A, Hao Z, et al. The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med. 2011;3:88ra55.
    [35]Terrence CT, Darrell HC, Lesley AJ, Subramaniam VN, Andrew DC, Denis IC, et al. Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury. Laboratory Investigation.2013; 93:1295-1312
    [36]Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell.2010; 140:900-917.
    [37]Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep.2006;7:880-885.
    [38]Schewe DM, Aguirre-Ghiso JA. ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci USA.2008;105:10519-10524.
    [39]Thomas M, Yu Z, Dadgar N, Varambally S, Yu J, Chinnaiyan AM, Lieberman AP. The unfolded protein response modulates toxicity of the expanded glutamine androgen receptor. J Biol Chem.2005;280:21264-21271.
    [40]Dromparis P, Sutendra G, Michelakis ED. The role of mitochondria in pulmonary vascular remodeling. J Mol Med (Berl).2010;88:1003-1010.
    [41]Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD, Dyck JR, Michelakis ED. Fatty acid oxidation and malonyl-CoA de-carboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med.2010;2:44ra58.
    [42]Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R, Archer SL. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats:role of increased expression and activity of voltage-gated potassium channels. Circulation.2002; 105:244-250.
    [43]McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED. Dichloroacetate prevents and reverses pulmonary hyper-tension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res.2004;95:830-840.
    [44]Jason LJ, Amrita D, Michelle S, Sarah JG and Andrew C. NewbyMatrix Metalloproteinase (MMP)-3 Activates MMP-9 Mediated Vascular Smooth Muscle Cell Migration and Neointima Formation in Mice. Arterioscler Thromb Vasc Biol.2011;31:e35-e44.
    [45]Yan L, Borregaard N, Kjeldsen L, Moses MA. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 2001.276:37258-37265.
    [46]Elneihoum AM, Falke P, Axelsson L, Lundberg E, Lindgarde F, Ohlsson K Leukocyte activation detected by increased plasma levels of inflammatory mediators in patients with ischemic cerebrovascular diseases. Stroke 1996.27:1734-1738.
    [47]Elneihoum AM, Falke P, Hedblad B, Lindgarde F, Ohlsson K Leukocyte activation in atherosclerosis:correlation with risk factors. Atherosclerosis,1997.131:79-84.
    [48]Kenagy, R. D., and A. W. Clowes.1994. A possible role for MMP-2 and MMP-9 in the migration of primate arterial smooth muscle cells through native matrix. Ann. N. Y. Acad. Sci. 732:462-465.
    [49]Ali O, Growcott E, Butrous G and Wharton J. Pleiotropic effects of statins in distal human pulmonary artery smooth muscle cells. Respiratory Research 2011,12:137
    [50]Das M, Fessel J, Tang H and West J. A process-based review of mouse models of pulmonary hypertension. Pulm Circ 2012.2(4):415-433
    [51]孟刘坤.分泌性蛋白NBL1在体肺分流性肺动脉高压中的作用[D].北京,北京协和医学院阜外心血管病医院.2013.
    [52]Redout EM, Wagner MJ, Zuidwijk MJ, Boer C, Musters RJ, van Hard-eveld C, Paulus WJ, Simonides WS. Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res.2007.75:770-781.
    [53]Fike CD, Aschner JL, Zhang Y, Salvemini D, Kaplowitz MR. Superoxide and chronic hypoxia-induced pulmonary hypertension in newborn piglets. Chest 2005,128:555S-556S.
    [54]Brennan LA, Steinhorn RH, Wedgwood S, Mata-Greenwood E, Roark EA, Russell JA, Black SM. Increased superoxide generation is associated with pulmonary hypertension in fetal lambs:A role for NADPH oxidase. Circ Res 2003.92:683-691.
    [55]汪曾炜,刘维永,张宝仁.心脏外科学.第一版,北京:人民军医出版社,2003:409-410.
    [56]Soon, E.; Treacy, C. M.; Toshner, M. R.; MacKenzie-Ross, R.; Manglam, V.; Busbridge, M.; Sinclair-McGarvie, M.; Arnold, J.; Sheares, K. K.; Morrell, N. W.; Pepke-Zaba, J. Unexplained iron deficiency in idiopathic and heritable pulmonary arterial hypertension. Thorax 2011.66:326-332.
    [57]Ruiter, G; Lankhorst, S.; Boonstra, A.; Postmus, P. E.; Zweegman, S.; Westerhof, N.; vanderLaarse, WJ.;Vonk-Noordegraaf, A. Iron deficiency is common in idiopathic pulmonary arterial hypertension. Eur. Respir J 2011.37:1386-1391.
    [58]Rhodes, C. J.; Howard, L. S.; Busbridge, M.; Ashby, D.; Kondili, E.; Gibbs, J. S.; Wharton, J.; Wilkins, M. R. Iron deficiency and raised hepcidin in idiopathic pulmonary arterial hypertension:clinical prevalence, outcomes, and mechanistic insights. J. Am. Coll. Cardiol 2011.58:300-309.
    [59]Rhodes, C. J.; Wharton, J.; Howard, L.; Gibbs, J. S.; Vonk-Noordegraaf, A.; Wilkins, M. R. Iron deficiency in pulmonary arterial hypertension:a potential therapeutic target. Eur. Respir. J 2011.38:1453-1460.
    [60]Jeffrey J. Rodvold, Navin R. Mahadevan, Maurizio Zanetti. Lipocalin 2 in cancer:When good immunity goes bad. Cancer Letters 2012.316:132-138.
    [1]Flower, D.R. The lipocalin protein family:structure and function. Biochem. J.1996.318, 1-14
    [2]Skerra, A. Lipocalins as a scaffold. Biochim. Biophys. Acta.2000.1482,337-350.
    [3]Subhankar Chakrabortya, Sukhwinder Kaura, Sushovan Guhab, Surinder K. Batra. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochimica et Biophysica Acta 2012; 1826:129-169.
    [4]S. Hraba-Renevey, H. Turler, M. Kress, C. Salomon, R. Weil. SV40-induced expression of mouse gene 24p3 involves a post-transcriptional mechanism. Oncogene 1989 (4) 601-608.
    [5]S. Triebel, J. Blaser, H. Reinke, H. Tschesche. A 25 kDa alpha 2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase, FEBS Lett.1992 (314) 386-388.
    [6]S.T. Chu, H.J. Lin, H.L. Huang, Y.H. Chen, The hydrophobic pocket of 24p3 protein from mouse uterine luminal fluid:fatty acid and retinol binding activity and predicted structural similarity to lipocalins, J. Pept. Res.52 (1998) 390-397.
    [7]L. Axelsson, M. Bergenfeldt, K. Ohlsson, Studies of the release and turnover of a human neutrophil lipocalin, Scand. J. Clin. Lab. Invest.55 (1995) 577-588.
    [8]L. Kjeldsen, J.B. Cowland, N. Borregaard, Human neutroph il gelatinase-associat ed lipocalin and homologous proteins in rat and mouse, Biochim. Biophys. Acta 1482 (2000) 272-283.
    [9]C. Le, V,.J. Calafat, N. Borregaard, Sorting of the sp eci fie granule protein, NGAL, during granulocytic maturation of HL-60 cells, Blood 89 (1997)2113-2121.
    [10]J.B. Cowland, O.E. Sorensen, M. Sehested, N. Borre gaard, Neutrophil gelatinase-associat ed lipocalin is up-regulate d in human epithelial cells by IL-1 beta, but not by TNF-alpha, J. Immunol.171 (2003)6630-6639
    [11]N. Borregaard, O.E. Sorensen, K. Theilgaard-Monch, Neutrophil granules:a library of innate immunity proteins, Trends Immunol.28 (2007) 340-345.
    [12]L. Mallbris, K.P.O' Brien, A. Hulthen, B. Sandstedt, J. B. Cowland, N. B orregaard, M. Stahle-Backdahl. Neutrophil gelatinase-associated lipocalin is a marker for dysregulated keratinocyte differentiation in human skin. Exp. Dermatol.11 (2002) 584-591
    [13]H.C. Owen, S.J. Roberts, S.F. Ahmed, C. Farquharson, Dexametha sone-induced expression of the glucocorticoid response gene lipocalin 2 in chondrocyte s, Am. J. Physiol. Endocrinol. Metab.294 (2008) E1023-E1034.
    [14]H.L. Huang, S.T. Chu, Y.H. Chen, Ova rian steroids regulate 24p3 expression in mouse uterus during the natural estrous cycle and the preimplantation period. J. Endocrinol.162 (1999) 11-19.
    [15]F. Aigner, H.T. Maier, H.G. Schwelberger, E.A. Wallnofer, A. Amberger, P. Obrist, T. Berg er, T.W. Mak, M. Maglione, R. Margreiter, S. Schneeberger, J. Troppmair, Lipocalin-2 regulates the in fl ammatory response during ischemia and reperfu-sion of the transplanted heart, Am. J. Transplant.7 (2007) 779-788.
    [16]E. Garay-Rojas, M. Harper, S. Hraba-R enevey, M. Kress, An apparent autocrine mechanism amplifies the dexamethasone-and retinoic acid-induced expression of mouse lipocalin-encoding gene 24p3, Gene 170 (1996) 173-180
    [17]DH Goetz, MA Holmes, N Borregaard, ME Bluhm, KN Raymond, RK Strong. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 2002; 10:1033-43.
    [18]Parisa Bahmani, Raheleh Halabian, Mehdi Rouhbakhsh, Amaneh Mohammadi Roushandeh, Nasser Masroori, Majid Ebrahimi, et al. Neutrophil Gelatinase-Associated Lipocalin induces the expression of hemeoxygenase-1 and superoxide dismutase. Cell Stress and Chaperones 2010;15:395-403.
    [19]Mehryar Habibi Roudkenar, Raheleh Halabian, Zahra Ghasemipour, Amaneh Mohammadi Roushandeh, Mahdi Rouhbakhsh, Mahin Nekogoftar, et al. Neutrophil Gelatinase-associated Lipocalin Acts as a Protective Factor against H2O2 Toxicity. Archives of Medical Research 2008;39:560-6.
    [20]Roudkenar MH, Halabian R, Bahmani P, Roushandeh AM, Kuwahara Y, Fukumoto M. Neutrophil gelatinase-associated lipocalin:a new antioxidant that exerts its cytoprotective effect independent on Heme Oxygenase-1. Free Radic Res 2011; 45(7):810-9.
    [21]B.C. te Boekhorst, S.M. Bovens, W.E. Hellings, P.H. van der Kraak, K.W. van de Kolk, A. Vink, F.L et al. Molecular MRI of murine atherosclerotic plaque targeting NGAL:a protein associated with unstable human plaque characteristics. Cardiovasc. Res.89 (2011) 680-688.
    [22]Nilsen-Hamilton M, Liu Q, Ryon J, Bendickson L, Lepont P, Chang Q. Tissue involution and the acute phase response. Ann NY Acad Sci 2003;995:94-108.
    [23]Wang Y, Lam KS, Kraegen EW, Sweeney G, Zhang J, Tso AW, et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem 2007;53:34-41.
    [24]C.J. Carrano, K.N. Raymond, Coordination chemistry of microbial iron transport compounds: rhodotorulic acid and iron uptake in Rhodotorulapi limanae, J. Bacteriol.136 (1978) 69-74.
    [25]M. Miethke, A. Skerra, Neutrophil gelatinase-associated lipocalin expresses antimicrobi al activity by interfering with L-norepinephrine-mediated bacterial iron acquisition, Antimicrob. Agents Chemother.54 (2010) 1580-1589.
    [26]M.A. Holmes, W. Paulsene, X. Jide, C. Ratledge, R.K. Strong, Siderocalin (Lcn 2) also binds carboxymycob actins, potentially defending against mycobacterial infections through iron sequestration, Structure 13 (2005) 29-41.
    [27]T. H. Flo, K. D. Smith, S. Sato, D. J. Rodriguez, M. A. Holmes, R. K. Strong, S. Akira, A. Aderem. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron, Nature 432 (2004) 917-921.
    [28]M. Nairz, I. Theurl, A. Schroll, M. Theurl, G. Fritsche, E. Lindner, M. Seifert, M. L. Crouch, K. Hantke, S. Akira, F.C. Fang, G. Weiss, Absence of functional Hfe protects mice from invasive Salmonella enterica serovar Typhimurium infection via induction of lipocalin-2, Blood 114 (2009)3642-3651.
    [29]E. Andre, T. Stoeger, S. Takenaka, M. Bahnweg, B. Ritter, E. Karg, B. Lentner, C. Reinhard, H. Schulz, M. Wjst, Inhalation of ultrafine carbon particles triggers biphasic pro-inflammatory response in the mouse lung, Eur. Respir. J.28 (2006) 275-285.
    [30]D.P. Jones, Redefinin g oxid at ive s tress, Antiox id. R edox Sig nal.8 (2006) 1865-1879.
    [31]M.H. Roudkenar, R. Halabian, A. Oodi, A.M. Roushandeh, P. Yaghmai, M.R. Najar, N. Amirizadeh, M.A. Shokrgozar, Upregulation of neutrophil gelatinase-associa ted lipocalin, NGAL/Lcn2, in beta-thalassemia patients, Arch. Med. Res.39 (2008) 402-407.
    [32]M. H. Roudkenar, Y. Kuwahara, T. Baba, A. M. Roushandeh, S. Ebishima, S. Abe, Y. Ohkubo, M. Fukumoto, Oxidative stress induced lipocalin 2 gene expression:addressing its expression under the harmful conditions, J. Radiat. Res. (Tokyo) 48 (2007) 39-44
    [33]G. Bao, M. Clifton, T.M. Hoette, K. Mori, S.X. Deng, A. Qiu, M. Viltard, D. Williams, N. Paragas, T. Leete, R. Kulkarni, X. Li, B. Lee, A. Kalandadze, A.J. Ratner, J.C. Pizarro, K.M. Schmidt-Ott, D.W. Landry, K.N. Raymond, R.K. Strong, J. Barasch, Iron traf fics in circulation bound to a siderocalin (Ngal)-catechol complex, Nat. Chem. Biol.6 (2010) 602-609
    [34]A. Iannetti, F. Paci fico, R. Acquaviv a, A. Lavorgna, E. Crescenzi, C. Vascotto, G. Tell, A.M. Salzano, A. Scaloni, E. Vuttariello, G. Chiappetta, S. Formisano, A. Leonardi, The neutroph il gelatinase-as sociated lipocalin (NGAL), a NF-kappaB-regulated gene, is a survival factor for thyroid neoplastic cells, Proc. Natl. Acad. Sci. U. S. A.105 (2008) 14058-14063.
    [35]T. Miyamoto, H. Kashima, A. Suzuki, N. Kikuchi, I. Konishi, N. Seki, T. Shiozawa, Laser-captur ed microdissection-micr oarray analysis of the genes involved in endometrial carcinogenesis:stepwise up-regulation of lipocalin2 expression in normal and neoplastic endometria and its functional relevance, Hum. Pathol.42 (2011) 1265-1274.
    [36]H. Shi, Y. Gu, J. Yang, L. Xu, W. Mi, W. Yu, Lipocalin 2 promotes lung metastas is of murine breast cancer cells, J. Exp. Clin. Cancer Res.27 (2008) 83
    [37]M.S. Duxbury, H. Ito, M.J. Zinn er, S.W. Ashley, E.E. Whang, Focal adhesion kinase gene silencing promotes anoikis and suppresses metastas is of human pancreatic adeno carcinoma cells, Surgery 135 (2004) 555-562.
    [38]P. Baril, R. Gangeswaran, P.C. Maho n, K. Cau lee, H.M. Kocher, T. Harada, M. Zhu, H. Kalthoff, T. Crnogorac-Jurcevic, N.R. Lemoine, Periostin promotes invasive-ness and resistance of pancreatic cancer cells to hypoxia-induced cell death:role of the beta4 integrin and the PI3k pathway, Oncogene 26 (2007) 2082-2094.
    [39]E.K. Lee, H.J. Kim, K.J. Lee, H.J. Lee, J.S. Lee, D.G. Kim, S.W. Hong, Y. Yoon, J.S. Kim, Inhibit ion of the proliferation and invasion of hepatocellular carcinoma cells by lipocalin 2 through blockade of JNK and PI3K/Akt signaling, Int. J. Oncol.38 (2011) 325-333.
    [40]Z. Tong, S. Chakraborty, B. Sung, P. Koolwal, S. Kaur, B. B. Aggarwal, S. A. Mani, R. S. Bresalier, S. K. Batra, S. Guha, Epidermal growth factor down-regulates the expression of neutrophil gelatinase-associat edlipocalin (NGAL) through E-cadherin in pancreatic cancer cells, Cancer 117 (2011) 2408-2418
    [41]A. Yndestad, L. Landro, T. Ueland, C.P. Dahl, T.H. Flo, L.E. Vinge, T. Espevik, S.S. Frol and, C. Husberg, G. Christensen, K. Dickstein, J. Kjekshus, E. Oie, L. Gullestad, P. Aukrust, Increased systemic and myocardial expression of neutrophil gelatinase-as sociated lipocalin in clinical and experimental heart failure I, Eur. Heart J.30 (2009) 1229-1236.
    [42]T.E. Van Dyke, M. Schweinebraten, L.J. Cianciola, S. Offenbacher, R.J. Genco, Neutrophilc hemotaxis in families with localized juvenile periodontitis, J. Periodontal Res.20 (1985) 503-514.
    [43]L. Landro, J.K. Damas, T.H. Flo, L. Heggelund, T. Ueland, G.E. Tjonnfjord, T. Espevik, P. Aukrust, S.S. Froland, Decreased serum lipocalin-2 levels in human immunode-ficiency virus-infected patients:increase during highly active anti-retroviral therapy, Clin. Exp. Immunol. 152(2008)57-63.
    [44]I. Anwaar, A. Gottsater, B. Hedb lad, B. Palmqvist,I. Mattiasson, F. Lindgarde, End othelial derived vasoac tive factors and leukocyte derived in flammatory mediato rs in subjects with asymptomatic atherosclerosis, Angiology 49 (1998) 957-966.
    [45]D.X. Bu, A.L. Hemdah I, A. Gabrielsen, J. Fuxe, C. Zhu, P. Eriksson, Z.Q. Yan, Inducti on of neutrophil gelatinase-associated lipocalin in vascular injury via activation of nuclear factor-kappaB, Am. J. Pathol.169 (2006) 2245-2253.
    [46]A. Sahinarslan, S.A. Kocaman, D. Bas, A. Akyel, U. Ercin, O. Zengin, T. Timurkaynak, Plasma neutrophil gelatinase-associated lipocalin levels in acute myocardial infarction and stable coronary artery disease, Coron. Artery Dis.22 (2011) 333-338.
    [47]B. S. Pukstad, L. Ryan, T. H. Flo, J. Stenvik, R. Moseley, K. Harding, D. W. Thomas, T. Espevik, Non-healing is associated with persistent stimulation of the innate immune response in chronic venous leg ulcers, J. Dermatol. Sci.59 (2010) 115-122.
    [48]S.Y. Lee, D.H. Kim, S.A. Sung, M.G. Kim, W.Y. Cho, H.K. Kim, S.K. Jo, Sphing osine-1-phosphate reduces hepatic ischaemia/reperfusion-induced acute kidney injury through attenuation of endothelial injury in mice, Nephrology 16 (2011) 163-173.
    [49]B.K. Tan, R. Adya, X. Shan, F. Syed, K.C. Lewandowski, J.P. O'Hare, H.S. Randeva, Ex vivo and in vivo regulation of lipocalin-2, a novel adipokine, by insulin, Diabetes Care 32 (2009) 129-131.
    [50]H. Bachorzewska-Gajewska, J. Malyszko, E. Sitniews ka, J.S. Malyszko, K. Pawlak, M. Mysliwiec, S. Lawnicki, M. Szmitkowski, S. Dobrzycki, Could neutrophil-gelatinase-as sociated lipocalin and cystatin C predict the development of contrast-induced nephropathy after percuta neous coronary interventions in pati ents with stable angina and normal serum creatinine values? Kidney Blood Press. Res.30 (2007) 408-415.
    [51]R. Hirsch, C. Dent, H. Pfriem, J. Allen, R.H. Beekman III, Q. Ma, S. Dastrala, M. Bennett, M. Mitsnefes, P. Devarajan, NGAL is an early predictive biomarker of contrast-induced nephropathy in children, Pediatr. Nephrol.22 (2007) 2089-2095.
    [52]W. Ling, N. Zhaohui, H. Ben, G. Leyi, L. Jianping, D. Huili, Q. Jiaqi, Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography, Nephron Clin. Pract.108 (2008) c176-c181.
    [53]M. Bennett, C. L. Dent, Q. Ma, S. Dastrala, F. Grenier, R. Workman, H. Syed, S. Ali, J. Barasch, P. Devarajan, Urine NGAL predicts severity of acute kidney injury after cardiac surgery:a prospective study, Clin. J. Am. Soc. Nephrol.3 (2008) 665-673.
    [54]P. Kumpers, C. Hafer, A. Lukasz, R. Lichtinghagen, K. Brand, D. Fliser, R. Faulhaber-Walter, J.T. Kielstein, Serum neutrophil gelatinase-associated lipocalin at inception of renal replacement therapy predicts survival in critically ill patients with acute kidney injury, Crit. Care 14 (2010) R9.
    [55]V. Hvidberg, C. Jacobsen, R.K. Strong, J.B. Cowland, S.K. Moestrup, N. Borregaard, The endocytic receptor megalin bind s the iron transpor ting neutroph il-gelatinase-as sociated lipocalin with high affi nity and mediates its cellular uptake, FEBS Lett.579 (2005) 773-777.
    [56]C.R. Parikh, S.G. Coca, Acute kidney injury:defining prerenal azotemia in clinical practice and research, Nat. Rev. Nephrol.6 (2010) 641-642
    [57]P. Stenvinkel, Chronic kidney disease:a public health priority and harbinger of premature cardiovascular disease, J. Intern. Med.268 (2010) 456-467.
    [58]A. Viau, K. K. El, D. Laouari, M. Burtin, C. Nguyen, K. Mori, E. Pillebout, T. Berger, T.W. Mak, B. Knebelmann, G. Friedlander, J. Barasch, F. Terzi, Lipocalin 2 is essential for chronic kidney disease progression in mice and humans, J. Clin. Invest.120 (2010) 4065-4076.
    [59]V.E. Torres, P.C. Harris, Mechanism s of disease:autosomal dominant and recessive polycystic kidney diseases, Nat. Clin. Pract. Nephrol.2 (2006) 40-55.
    [60]M. Kusaka, Y. Kuroyanagi, H. Kowa, K. Nagaoka, T. Mori, K. Yamada, R. Shiroki, H. Kurahashi, K. Hoshinaga, Genomewide expression profiles of rat model renal isografts from brain dead donors, Transplantation 83 (2007) 62-70.
    [61]M. Nacht, A.T. Ferguson, W. Zhang, J.M. Petroziello, B.P. Cook, Y.H. Gao, S. Maguire, D. Riley, G. Coppola, G.M. Landes, S.L. Madden, S. Sukumar, Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer, Cancer Res.59 (1999) 5464-5470.
    [62]M. Bau er, J.C. Eickhoff, M.N. Gould, C. Mundhenke, N. Maass, A. Friedl, Neutrophil gelatinase-as sociated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer, Breast Cancer Res. Treat.108 (2008) 389-397.
    [63]S.P. Stoesz, A. Friedl, J.D. Haag, M.J. Lindstrom, G.M. Clark, M.N. Gould, Heterogeneous expression of the lipocalin NGAL in primary breast cancers, Int. J. Cancer 79 (1998) 565 572.
    [64]R. Lim, N. Ahmed, N. Borregaard, C. Riley, R. Wafai, E.W. Thompson, M.A. Quinn, G.E. Rice, Neutrophil gelatinase-as sociated lipocalin (NGAL) an early-screening bioma rker for ovarian cancer:NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition, Int. J. Cancer 120 (2007) 2426-2434.
    [65]H. Cho, J.H. Kim, Lipocalin2 expressions correlate significantly with tumor differen tiation in epithelial ovarian cancer, J. Histochem. Cytochem.57 (2009) 513-521.
    [66]C. Emmanuel, N. Gava, C. Kennedy, R. L. Balleine, R. Sharma, G. Wain, A. Brand, R.Hogg, D.Etemadmoghadam, J.George, M.J.Birrer, C.L.Clarke, G.Chenevix-Trench, D.D. Bowtell, P.R. Harnett, A. deFazio, Comparison of expression profiles in ovarian epithelium in vivo and ovarian cancer identifies novel candidate genes involved in disease pathogenesis, PLoS One 6 (2011)e17617.
    [67]V. Catalan, J. Gomez-Ambrosi, A. Rodriguez, B. Ramirez, C. Silva, F. Rotellar, J. L Hernandez-Lizoain, J. Baixauli, V. Valenti, F. Pardo, J. Salvador, G. Fruhbeck, Up-regulation of the novel proin flammatory adipokines lipocalin-2, chitinase-3 like-1 and osteopontin as well as angiogenic-related factors in visceral adipose tissue of patients with colon cancer, J. Nutr. Biochem.22 (2011) 634-641.
    [68]Y. Sun, K. Yokoi, H. Li, J. Gao, L. Hu, B. Liu, K. Chen, S.R. Hamilton, D. Fan, B. Sun, W. Zhang, NGAL expres sion is elevated in both colorectal adenoma-c arcinoma sequence and cancer progression and enhances tumorigenesis in xenograft mouse models, Clin. Cancer Res. 17(2011)4331-4340.
    [69]N. Moniaux, S. Chakraborty, M. Yalniz, J. Gonzalez, V. K. Shostrom, J. Standop, S.M. Lele, M. Ouellette, P.M. Pour, A.R. Sasson, R.E. Brand, M.A. Hollingsworth, M. Jain, S.K. Batra, Early diagnosis of pancreatic cancer:neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia, Br. J. Cancer 98 (2008) 1540-1547.
    [70]A. Hiukk a, M. Maranghi, N. Matikainen, M.R. Taskinen, PPARalpha:an emerging therape utic target in diabetic microva scular damage, Nat. Rev. Endocrinol.6 (2010) 454-463.
    [71]J.K. Reddy, S. Rao, D.E. Moody, Hepatocellular carcinomas in acatalase mic mice treated with nafenopin, a hypolipidemic peroxisome proliferator, Cancer Res.36 (1976) 1211-1217.
    [72]K. Meyer, J.S. Lee, P.A. Dyck, W.Q. Cao, M.S. Rao, S.S. Thorgeirsson, J.K. Reddy, Molecular profiling of hepatocellular carcinomas developing spontaneously in acyl-CoAoxidase deficient mice:comparison with liver tumors induced in wild-type mice by a peroxisome proliferator and a genotoxic carcinogen, Carcino-genesis 24 (2003) 975-984.
    [73]E.R. Smith, D. Zurakowsk i, A. Saad, R.M. Scott, M.A. Moses, Urinary biomarkers predict brain tumor presence and response to therapy, Clin. Cancer Res.14 (2008) 2378-2386.
    [74]V. Barresi, G Tuccari, G. Barresi, NGAL immunohistochemical expression in brain primary and metastatic tumors, Clin. Neuropathol.29 (2010) 317-322.
    [75]X. Leng, H. Lin, T. Ding, Y. Wang, Y. Wu, S. Klumpp, T. Sun, Y. Zhou, P. Monaco, J. Belmont, A. Aderem, S. Akira, R. Strong, R. Arlinghaus, Lipocalin 2 is required for BCR-ABL-induced tumorigenesis, Oncogene 27 (2008) 6110-6119.
    [76]R. Arlinghaus, X. Leng, Requirement of lipocalin 2 for chronic myeloid leukemia, Leuk. Ly mphoma 49 (2008) 600-603.
    [77]H. Lin, G Monaco, T. Sun, X. Ling, C. Stephens, S. Xie, J. Belmont, R. Arlinghaus, Bcr-Abl-mediated suppression of normal hematopoiesis in leukemia, Oncogene 24 (2005) 3246-3256.
    [78]L.R. Devi reddy, C. Gaz in, X. Zhu, M.R. Green, A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake, Cell 123 (2005) 1293-1305.
    [79]Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N. The endocytic receptor m egalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 2005.579(3):773-777.
    [80]Devireddy LR, Gazin C, Zhu X, Green MR.2005. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123(7):1293-1305.
    [81]E. Garay-Rojas, M. Harper, S. Hraba-R enevey, M. Kress, An apparent autocrine mechanism amplifies the dexamethasone-and retinoic acid-induced expression of mouse lipocalin-encoding gene 24p3, Gene 170 (1996) 173-180.
    [82]D.X. Bu, A.L. Hemdah 1, A. Gabrielsen, J. Fuxe, C. Zhu, P. Eriksson, Z.Q. Yan, Inducti on of neutrophil gelatinase-associated lipocalin in vascular injury via activation of nuclear factor-kappaB, Am. J. Pathol.169 (2006) 2245-2253.
    [83]F. Paci fico, E. Cresc enzi, S. Mellone, A. Iannetti, N. Porrino, D. Liguoro, F. Moscato, M. Grieco, S. Formisano, A. Leonardi, Nuclear factor-{k appa}B contributes to anaplas tic thyroid carcinomas thro ugh up-regulation of miR-146a, J. Clin. End ocrinol. Metab.95 (2010) 1421-1430.
    [84]P. Seth, D. Porter, J. Lahti-Domenici, Y. Geng, A. Richardson, K. Polyak, Cellular and molecular targets of estrogen in normal human breast tissue, Cancer Res.62 (2002) 4540-4544.
    [85]H. Gao, M. Liang, A. Bergdahl, A. Hamren, M. W. Lindholm, K. Dahlman-Wright, B. O. Nilsson, Estrogen attenuates vascular expression of inflammation associated genes and adhesion of monocytes to endothelial cells, Inflamm. Res.55 (2006) 349-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700