用户名: 密码: 验证码:
湿炼法NR/nSiO_2和NR/炭黑复合材料的制备、结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶,尤其汽车轮胎用橡胶必须用补强剂补强,其硫化胶的性能才符合使用要求。炭黑是橡胶最主要、补强效果最好、用量最大的补强剂,其次是白炭黑,但补强效果不如炭黑,应用也不普遍。然而用白炭黑补强橡胶制造的汽车轮胎具有抗湿滑性能好和滚动阻力低的显著优点。目前用白炭黑补强橡胶制备轮胎胎面胶已成为研究热点。
     自橡胶工业诞生以来,橡胶加工行业一直以固体橡胶和粉体填料为原料,用机械混炼法即干炼法生产混炼胶。干炼法工艺复杂,设备投资大,劳动强度高,所用补强剂尤其炭黑会造成黑色污染。加工汽车轮胎胶料所用炭黑或白炭黑属纳米粉体,表面能高,用机械湿炼法很难达到纳米级分散,而往往以粒径较大的聚集体分布于橡胶基体中,从而损害其硫化胶的物理机械性能。湿炼法是指以橡胶胶乳和填料浆液为原料,通过液相混合将填料粒子分散于橡胶乳胶粒之间,构成湿炼体系,凝聚共沉后形成橡胶/填料复合材料的技术过程。湿炼法可容易地克服干炼法难以克服的缺点。
     本文首先用原位生成-湿炼法制备天然橡胶(NR)/二氧化硅(SiO_2)纳米复合材料。其过程是用NR胶乳与SiO_2的前驱体硅溶胶混合,利用硅溶胶受热生成SiO_2凝胶的性质,对湿炼体系加热,使硅溶胶在NR胶乳中原位生成纳米二氧化硅粒子(nSiO_2),然后凝聚共沉,获得NR/nSiO_2复合材料。系统研究了硅溶胶粒子及nSiO_2粒子表面处理剂的类型及用量,硅溶胶的类型、粒径及浓度,NR胶乳的浓度,硅溶胶转化为nSiO_2凝胶粒子的反应温度与反应时间,凝聚剂的类型及用量,nSiO_2的用量等湿炼条件以及不同硫化配方对原位生成-湿炼法NR/nSiO_2硫化胶物理机械性能的影响,确定了能使硫化胶达到最佳性能的湿炼条件和硫化配方,并与干炼法NR/白炭黑硫化胶进行了系统比较。结果表明,影响硫化胶物理机械性能的关键因素是硅溶胶的类型和表面处理剂的类型,当以中性硅溶胶为SiO_2前驱体和醇醚作表面处理剂时,其硫化胶在SiO_2用量为50~90phr的范围内具有优良的物理机械性能,尤其300%定伸应力、拉伸强度、撕裂强度、耐磨性能、压缩疲劳生热及其永久变形都达到良好水平。用FTIR、DSC和TG、DTG对复合材料及其硫化胶进行了分析,测定了NR/nSiO_2复合材料的结合胶含量及其硫化胶的交联程度。结果表明,在湿炼体系中硅溶胶全部转化为nSiO_2,随着SiO_2用量的增加,复合材料及其硫化胶的Tg变化不明显,起始热分解温度则逐渐提高。用DMA和RPA对硫化胶进行了系统分析。结果表明,随着SiO_2用量的增加,硫化胶的抗湿滑性能有所下降,滚动阻力有所增大,Payne效应即SiO_2网络结构程度增大。SEM分析显示,硅溶胶在NR胶乳中原位生成了平均粒径为50nm的nSiO_2粒子,硫化胶拉伸断面呈“瓣膜”结构,无裸露的nSiO_2聚集体及裂纹存在,表明nSiO_2在NR基体中的良好预分散赋予了其硫化胶以特殊的“瓣膜”结构为特征的基体剪切屈服的补强机理,使硫化胶具有优良的物理机械性能和动态力学性能。
     本文还用天然胶乳和二氧化硅纳米分散体(DnSiO_2)为主要原料,以湿炼法成功制备出NR/DnSiO_2复合材料。研究了随着SiO_2用量的增加硫化胶的物理机械性能及微观结构的变化规律,并与SiO_2用量相等的原位生成-湿炼法NR/nSiO_2硫化胶进行了比较。结果表明,湿炼法NR/DnSiO_2硫化胶在SiO_2用量为50~80phr的范围内,300%定伸应力略高,抗湿滑性能较低,滚动阻力较大,Payne效应明显较大,在NR/DnSiO_2复合材料中,SiO_2以粒径为150~210nm的聚集体存在;在SiO_2用量为50phr和60phr时撕裂强度和耐屈挠龟裂性能较优,其他物理机械性能相近,而拉伸断面呈“瓣膜”结构即补强机理为基体剪切屈服,无裸露的nSiO_2粒子存在,故硫化胶的综合性能较好;但在SiO_2用量为70phr和80phr时各项物理机械性能明显降低,拉伸断面无“瓣膜”结构存在,nSiO_2粒子分散不良,存在粒径为23~28μm的nSiO_2聚集体,故其硫化胶的综合性能明显较差。
     通过比较分析表明,在SiO_2用量和硫化配方相同的条件下,硫化胶的综合性能以原位生成-湿炼法NR/nSiO_2最好,湿炼法NR/DnSiO_2次之,干炼法NR/白炭黑最差。
     本文最后用NR胶乳与炭黑(N234)浆液以湿炼法制备了NR/N234复合材料,研究了随着炭黑用量的增加其硫化胶物理机械性能与结构的变化规律,并与干炼法NR/N234硫化胶进行了系统比较。结果表明,湿炼法NR/N234硫化胶的物理机械性能较好,尤其300%定伸应力、拉伸强度、撕裂强度和回弹值明显较高,而压缩疲劳温升及其永久变形大幅度降低,Payne效应明显较低,抗湿滑性能较好,而滚动阻力则相近。
     研究结果表明,SiO_2用量为50~70phr的原位生成-湿炼法NR/nSiO_2、SiO_2用量为50~60phr的湿炼法NR/DnSiO_2和炭黑N234用量为45~55phr的NR/N234三类硫化胶的综合性能符合载重子午线轮胎胎面胶的要求,是优良的载重子午线轮胎胎面用胶料。
Only after the rubbers, especially the rubbers used for preparing car tires, reinforcedwith a reinforcing agent, the performance of the vulcanizates could meet the requirement forapplication. The carbon black is the most important reinforcing agent, and has the bestreinforcement effect to rubber and the maximum consumption. The white carbon black (SiO_2powder) is followed. The reinforcement effect of SiO_2is not better than that of carbon black,and the application of SiO_2was not universal too. But the rubber tire with silica as reinforcingagent had a significant advantage of a high wet skid resistance and low rolling resistance. Thestudy on rubber and silica composites being used to prepare tire tread has become a hot topicat present.
     Since the birth of the rubber industry, the solid rubbers and the powder fillers were usedas raw material, and the mechanical refining method, or dry refining method was used topreparing masterbatch stock along with the rubber processing industry. The dry refiningmethod has the shortcomings of complex process, big investment for equipment and highlabor intensity. Reinforcing agents, especially carbon black, could be caused the blackpollution. The carbon black and the silica used to reinforcing rubber were nano-powders withhigh surface energy, so it is difficult to disperse the carbon black or the silica particles torubber matrix with mechanical shearing. The nano-particles often aggregated with severalmicrons in the rubber matrix, causing to damaging the physical and mechanical properties ofvulcanizates. The wet refining method is a novel technology for preparing masterbatch usingthe rubber latex and filler slurry as raw material. The filler particles were dispersed uniformlybetween the rubber latex particles by liquid mixing, and the wet refining system were formed.After coagulation-coprecipitation, the rubber/filler composites were obtained. The wetrefining method could easily overcome the shortcomings which are difficult to be overcomeby dry refining method.
     In this article, firstly, the NR/nano-silica composites were prepared by the in situgeneration-wet refining method. Using the character of silica sol easy forming silica gel whenheated, the natural rubber latex (NR) was mixed with silica sol (silica precursor), and then thewet refining system was heated until the silica sol generating in-situ the nano-silica particles (nSiO_2) in the NR latex. The NR/nSiO_2nano-composites were obtained by means ofcoagulation. The effects of wet refining conditions and the different vulcanization recipeswere studied on the physical and mechanical properties of the NR/nSiO_2vulcanizates. Thewet refining conditions were involved the types and the contents of the surface active agentfor the silica sol particles and the nSiO_2particles, the type particle size and concentration ofthe silica sol, the concentration of NR latex, the reaction temperature and reaction time for theconversion of the silica sol into the nSiO_2gel particles, the types and the dosages offlocculant and the nSiO_2contents of the materbatch stock and so on. The optimiumconditions of wet refining and vulcanization recipe were determined with which thevulcanizates obtained had the best physical and mechanical properties. The results obtainedwere compared with the NR/SiO_2vulcanizates based on traditional dry mixing of bale naturalrubber and white carbon black. The results showed that the key factors affecting the physicaland mechanical properties of the vulcanizates were the type of the surface-active agent andthe type of the silica sol. When using the hydroxylether as the surface-active agent and aneutral silica sol as SiO_2precursor, the vulcanizates had excellent physical and mechanicalproperties with the SiO_2contents50~90phr. In particular,300%modulus, tensile strength,tear strength, abrasion resistance, compression fatigue heat and permanent deformation of thevulcanizates achieved a good level. The composites and its vulcanizates were analyzed byFourier transform infrared spectroscopy (FTIR)、differential scanning calorimetry (DSC) andthermal gravimetric analysis (TG、DTG). The bound rubber content of the NR/nSiO_2composites and the cross-linking degree of its vulcanizates were measured. The resultsindicated that silica sol in wet refining system was completely converted into nSiO_2. With theSiO_2contents increasing, the Tg of the composites and its vulcanizates did not changesignificantly and the initial thermal decomposition temperature gradually increased. TheNR/SiO_2vulcanizate was studied using rubber processing analyzer (RPA) and dynamicviscoelastic analysis (DMA). The results showed that, with the SiO_2content increasing, thePayne effect, or the SiO_2network architecture of the vulcanizates increased, the wet skidresistance decreased and rolling resistance increased. The scanning electron microscopy(SEM) analysis showed that, in the NR latex, the silica sol converted in-situ into SiO_2 surfaces of the vulcanizates shown a "valves" structure. This novel structure had not beenreported before. There were no bare nSiO_2aggregates and cracks existing on the tensilefracture surfaces. It was indicated that reinforcement mechanism of the NR/nSiO_2vulcanizates was NR matrix shear yield with the character of the "valve" structure. A goodpre-dispersity of nSiO_2particles in NR matrix and the reinforcement mechanism of matrixshear yield charactered by the special "valves" structure were the main reasons forvulcanizates having excellent physical mechanical properties and dynamic mechanicalproperties.
     The NR/DnSiO_2composites and its vulcanizates were successfully prepared by the wetrefining method with natural latex and silica nano-dispersion (DnSiO_2) liquid as the main rawmaterial, under the condition without adding any surface-active agent for nSiO_2particles. Thevariation of mechanical properties and the microstructure of the vulcanizates was studiedwith the SiO_2contents increasing, and compared with the NR/nSiO_2vulcanizates prepared byin situ generation-wet refining method under the condition of the same SiO_2content. Theresults showed that, when the SiO_2contents were varied from50phr to80phr, the NR/DnSiO_2vulcanizates had slightly higher300%modulus, lower rolling resistance, significantly higherpayne effect and the SiO_2existed in the morphology of aggregates with average particle sizeof150~210nm in the NR/DnSiO_2composites, when the SiO_2contents at50phr and60phr, theNR/DnSiO_2vulcanizates had better tear strength, higher flex cracking resistance performance,similar other physical and mechanical properties and the "valve" structure without bare nSiO_2aggregates showed on the tensile fracture surface of the vulcanizates, which meant that thereinforcement mechanism was matrix shear yield, so that the vulcanizates had bettercomprehensive performance. But when the SiO_2contents at70phr and80phr, there was no"valve" structure on the tensile fracture surface of the NR/DnSiO_2vulcanizates in which theSiO_2particles were poorly dispersion and existed in aggregates with particle diameter of23μm~28μm. As a result, the overall performance of the vulcanizates was significantlyreduced.
     The comparative analysis above showed that under the same SiO_2contents and samevulcanization recipe. among the three types of vulcanizates, the NR/nSiO_2vulcanizates hadthe best comprehensive performance, followed by the NR/DnSiO_2vulcanizates and the NR/silica vulcanizates, the worst
     Finally the NR/N234composites prepared by wet refining method and traditional dryrefining method. The physical and mechanical properties and the structures of the two typesof vulcanizates were investigated. The results showed that compared with the vulcanizates ofthe NR/N234prepared by dry refining method, the NR/N234vulcanizates prepared by wetrefining method had better physical and mechanical properties, in particularly significantlyhigher300%modulus, tensile strength, tear strength and resilience value, and significantlylower compression fatigue temperature rise, compression permanent deformation, andpayne effect, better wet skid resistance and similar the rolling resistance.
     The results showed that the comprehensive performance of three types of vulcanizes,involving the NR/nSiO_2vulcanizes prepared by in situ generation-wet refining method withSiO_2content of50~70phr, NR/DnSiO_2vulcanizes prepared by wet refining method with SiO_2contents of50~60phr and the NR/N234vulcanizes prepared by wet refining method withcarbon black N234contents of45~55phr, met the requirements for preparation of the radialtruck tire tread, and were the excellent composites of NR to prepare radial truck tire tread.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.25-39
    [2] Roy R. Selective laser sintering characteristics of nylon-b/clay-reiforced nanoconposites[J]. Journal of Applied Polymer Sci.1987,238:1664-1673
    [3]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.32-43
    [4]张立德,牟季美.纳米材料[M].沈阳:辽宁科学技术出版社,1994.19-27
    [5] Andrievski R. A.Insitu formed silica particle in rubber vulcanixate by the sol-gelmethod[J]. Polymer,1997,38(7):4417-4423
    [6] Lu J, Tinkhan M.无机材料表面结构分析[J].物理.1998,27(3):137-145
    [7] Feldhein D L, Keating C D[J]. Chem Soc.Rev.1998,27:1-12
    [8] Bomal Y, Touzet S, Barruel R, et al. SiO2用于降低轮胎滚动阻力的研究[J].轮胎工业,2002,22(6):358-363
    [9] Ward D A, Koei, et al. Preparing catalytic materials by the sol-gel method[J].Industrial Engineering Chmical Research,1995,34(2):2469-2478
    [10]沈军. SiO2气凝胶及其特性研究[J].无机材料学报.1995,10(1):69-74
    [11]程锐.硅烷偶联剂在填充白炭黑斜交轮胎胎面胶中的应用[J].轮胎工业,2001,10(21):600-605
    [12]中国化工学会橡胶专业委员会.橡胶助剂手册[M].北京:化学工业出版社,2000,457-467
    [13]胡庆福,李国庭,王金阁,等. CO2沉淀法制取高补强白炭黑[J].现代化工,2000,20(6):31-33
    [14]李国庭,王金阁,刘鸿雁,等.硫酸沉淀法制取高补强白炭黑[J].非金属矿,2000,23(2):24-31
    [15]郑典模,苏学军.化学沉淀法制备纳米SiO2的研究[J].南昌大学学报,2003,25(2):39-41
    [16]何清玉,郭锴,赵柄国,等.超重力法制备超细二氧化硅及影响因素的研究[J].北京化工大学学报,2006,33(1):16-19
    [17]李光,赵同建,符新,等.超细SiO2/NR复合材料的制备工艺及其力学性能[J].热带作物学报,2004,25(2):1-5
    [18]许珂敬,杨新春,段贤峰,等.多孔纳米SiO2微粉的制备与表征[J].硅酸盐通报,2001,1:58-62
    [19]贾宏,郭锴,郭奋.用超重力法制备纳米二氧化硅[J].材料研究学报,2001,2:120-124
    [20]汪国忠,张立德,何国良.粒度可控非晶纳米二氧化硅的制备[P].中国专利:公开号CN1145331A,1997-3–19
    [21]李中军,刘长让,王雪清,等.超细二氧化硅粉体的制备[J].应用化学,1998,6:79-81
    [22]李宏涛,宋晓秋,解耸林.湿法白炭黑超细粉在顺丁像胶中的应用[J].合成橡胶工业,2000,23(1):44-45
    [23]杨修造,顾俊.用氯化钠制备纳米超细非晶二氧化硅微粒的研究[J].化学世界,1995,10:517-521
    [24]唐芳琼.从碱金属的硅酸盐制备纳米二氧化硅颗粒的方法[P].中国专利:公开号CN1183379A,1998-6-3
    [25]施怀恩奥勒拉德.一种由橄榄石生产球形二氧化硅的方法[P].中国专利:公开号CN133586A,1996-10–16
    [26] Yoshimoto A, Tsustomu N. Structure and morphotogy of sol-gel preparedpolymer-ceramic composite t hin lims [J]. Non-Cryst Solids,1992,147:4607-4612
    [27]王明聪,尹轶飞.超微细二氧化硅的生产及应用[J].有机硅材料及应用,1997,5:11-12
    [28]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.40-45
    [29]王智,吴重庆.多孔纳米SiO2粉末工艺研究[J].激光杂志,1998,19(2):22-26
    [30]章永化,龚克成. Sol-Gel法制备有机/无机纳米复合材料的进展[J].高分子材料科学与工程,1997,13(4):14-19
    [31]夏和生,王琪.纳米技术进展[J].高分子材料科学与工程,2001,17(4):1-13
    [32] Ward D A, Koel. Preparing catalytic materials by t he sol-gel met hod[J]. Indust rialEngineering Chemical Research,1995,34(2):2469-2478
    [33]段先健,张立群.用溶胶-凝胶法原位生成SiO2增强橡胶[J].合成橡胶工业,2000,23(3):148-156
    [34]张宁,熊裕华.溶胶-凝胶法制备纳米二氧化硅[J].南昌大学学报(理科版),2003,27(3):268-270
    [35]郭宇,吴红梅,尹桂丽.溶胶-凝胶法制备纳米二氧化硅[J].天津化工,2005,19(1):35-36
    [36]唐新桂,周歧发.纳米级二氧化硅玻璃粉的制备及其特性[J].中山大学学报,1999,37(5):35-38
    [37]张竞敏,杨治中. SiO2纳米粒子的制备、测定及其分散性的研究[J].粗细化工,1997,14:14-20
    [38]唐电,王永康.纳米二氧化硅制备的初步研究[J].氯碱工业,1997,5:25-27
    [39]张立德,张彪.一种尺寸可控纳米二氧化硅的制备方法[P].中国专利:公开号CN1117022A,1996-2-21
    [40] Pelous J, Foret M, Vacher R. J Non-Cryst Solids,1992,145(1-3):63
    [41]王玲玲,方小龙,唐芳琼,等.单分散二氧化硅超细颗粒的制备[J].过程工程学报,2001,1(2):167-172
    [42]王玉琨,钟浩波,吴金桥.微乳液法制备条件对纳米SiO2粒子形貌和粒径分布的影响[J].精细化工,2002,19(8):466-469
    [43]王玉琨,钟浩波,吴金桥.微乳液法合成纳米二氧化硅粒子[J].西安石油学院学报(自然科学版),2003,18(3):61-66
    [44]佟树勋,张丽君,施丹昭.表面活性剂使白炭黑改性的研究[J].东北大学学报(自然科学版),2002,23(3):303-306
    [45]何凯,陈宏刚.表面改性剂在碳酸化法制备白炭黑过程中的作用[J].过程工程学报,2006,6(3):402-408
    [46]葛奉娟,朱捷.醇酯法表面改性超细二氧化硅的研究[J].安徽理工大学学报(自然科学版),2005,25(4):78-80
    [47]钱晓静,刘孝恒,陆路德,等.微波辐射下纳米二氧化硅接枝正辛醇的表面改性[J].合成化学,2005,13(1):80-82
    [48]熊平.纳米SiO2的改性及其分散性研究[J].江西师范大学学报(自然科学版),2007,(4):358-361
    [49]朱敏庄.橡胶工艺学[M].广东:华南理工大学出版社,1992.80-96
    [50]伍越寰,李伟昶,沈晓明.有机化学[M].合肥:中国科学技术大学出版社,2002.30-45
    [51]罗运军,桂红星.有机硅树脂及其应用[M].北京:化学工业出版社,2002.40-55
    [52]高昆玉.精细化学品分析[M].北京:化学工业出版社,2002.22-38
    [53] Joshi P G, Cruse R J, Pickwell R J, et al. Novel silane cou-pling agent[J]. TireTechnology International,2002,52(2):80-85
    [54]吉小利.纳米二氧化硅粉体的表面改性研究[J].安徽理工大学学报(自然科学版),2004,24(1):83-87
    [55]赵同建.硅酸钠/天然胶乳制备纳米SiO2/NR复合材料的研究[D].海南:华南热带农业大学(硕士论文),2004.58-76
    [56] Tsubokawa N, Ishida H. Graft polymerization of vinyl monomers by peroxyestergroups introduced onto the surface of inorganic ultrafine particles[J]. Polym J,1992,24(8):809-816
    [57] Tsubokawa N, Kogure A, Maruyama K. Graft polymerization of vinyl monomers frominorganic ultrafine particles initiated by azo groups introduced onto the surface[J].Polym J,1990,22(9):827-833
    [58] Tsubokawa N, Shirai Y, Tsuchida H. Photografting of vinyl polymers onto ultrafineinorganic particles: photopolymerization of vinyl monomers initiated by azogroupsintroduced onto these surface[J]. Polym Sci A: Polym Chem,1994,32(12):2327-2332
    [59] Tsubokawa N, Kimoto T, Endoh T. Surface grafting of polymers onto ultrafine silica:cationic polymerization initiated by oxoam inium perch lorate groups introduced ontoultrafine silica surface[J]. Polym Bull,1994,33(2):187-194
    [60] Tsubokawa N, Saitoh K, Shirai Y. Surface grafting of polymers onto ultrafine silica:cationic polymerization initiated by benzylium perch lorate groups introduced ontoultrafine silica surface[J]. Polym Bull,1995,35(4):399-406
    [61] Tsubokawa N, Seno K. Radical graft polymerization of vinyl monomers onto bariumsurface initiated by azogroups introduced onto the surface[J]. J Macromol SciPureAppl Chem:A,1996,33(1):23-31
    [62] Shirai Y, Tsubokawa N. Grafting of polymers onto ultrafine inorganic particle surface:graft polymerization of vinyl monomers initiated by the system consisting oftrichloroacetyl groups on the surface and molybdenum hexacarbonyl[J]. ReactiveFunctional Polym,1997,32(2):153-160
    [63] Hayashi S, Takeuchi Y, Eguchi M, et al. Graft polymerization of vinyl monomersinitiated by peroxycarbonate groups introduced onto silica surface by michaeladdition[J]. J Appl Polym Sci,1999,71(9):1491-1497
    [64]郭朝霞,李莹,于建.聚芳酯树枝状分子接枝改性纳米二氧化硅[J].高等学校化学学报,2003,24(6):1139-1141
    [65]容敏智.纳米SiO2增韧增强聚丙烯的界面效应与逾渗行为[J].复合材料学报,2002,19(1):14-20
    [66]吴春蕾.纳米SiO2表面接枝聚合改性及其聚丙烯基复合材料的力学性能[J].复合材料学报,2002,19(6):61-67
    [67] Liu Peng, Tian Jun, Liu Weimin, et al. Radical graft polymerization of styrene ontonano sized silica[J]. China Synthetic Rubber Industry,2002,25(4):261-262
    [68]王文生.纳米SiO2表面接枝改性研究[J].山西化工,2007(02):3-6
    [69]赵辉.超支化聚(胺-酯)接枝改性纳米二氧化硅增韧增强PVC的研究[J].高分子材料科学与工程,2005,21(5):258-261
    [70] Zheng Y P, Zheng Y. Effects of nanoparticles SiO2on the performance of nanocomposites[J]. Materials Letters,2003,57:2940-2944
    [71] Jennifer A. Balmer, etc. Time-resolved small-sngle X-ray scattering studies ofpolymer-silica nanocomposite particles: initial formation and subsequent silicaredistribution[J]. Journal of the american chemical society,2011,133:826–837
    [72] Le Du, et al. Controllable preparation of SiO2nanoparticles using a microfiltrationmembrane dispersion microreactor[J]. American Chemical Society,2011,50(14):8536–8541
    [73]王象民.一种新的塑料和橡胶用填料分散助剂[J].橡胶参考资料,2009,(1):32-33
    [74]王梦蛟,王婷,王应龙,等.连续液相混炼工艺生产的NR炭黑母炼胶[J].轮胎工业,2004(04):135-143
    [75]刘祥首,马卫华,杨绪杰.纳米粒子催化马来酞亚胺溶液聚合[J].高分子材料,1997,(4):1-4
    [76] Siegf ried Woff, Meng Jiao Wang, Ewe-HongTan. Fill-erelastomer interactions PartVII Study on bound rubber[J]. Rubb Chen Technol,1993,(2):16-172
    [77]张喜亮,贾德民.乙烯基单体接枝改性炭黑的结构对橡胶性能的影响的研究及碳纳米层片的发现[D].广州:华南理工大学,2001.4:19-51
    [78] Ou YC, Yu Z Z. Effects of alkylation of silica filler on rubber rein-forcement[J].Rubber Chemistry and Technology,1994,67(5):833-844
    [79] Na-Ranog N, Kajornchaiyakulv. Using modified silicas in the rubber industry [A].Symp Technol End Uses Nat Rubber[C]. Rubb Research Institute of Thailand,Thailand,1996:119-122
    [80]葛会勤.反应共混改性纳米二氧化硅/炭黑填充溶聚丁苯橡胶的结构与性能[J].合成橡胶工业,2007,(05):369-373
    [81]钟学林,符新.纳米SiO2/胶清橡胶复合材料力学性能的研究[J].化学工程师,2008,(08):51-53
    [82]何映平,陈国雄,梁友军.纳米SiO2改性天然胶乳的制备及其性能研究[J].特种橡胶制品,2002,23(6):1-4
    [83]吴绍吟.纳米CaCO3的特点与应用[J].橡胶工业,1999,46(3):146-151.
    [84]吴绍吟,李红英,马文石.纳米CaCO3对溶聚丁苯橡胶胶料的补强作用[J].橡胶工业,1999,46(8):456-459
    [85]王炼石,周奕雨,杨春农.超细CaCO3填充粉末NR的制备及其硫化胶的力学性能[J].橡胶工业,2000,47(9):530-533
    [86]王江.纳米CaCO3/天然橡胶复合材料的研究[D].广州:华南热带农业大学,2003.6:88-106
    [87]钟学林,符新.纳米CaCO3/胶清橡胶复合材料的研究[J].化学工程师,2008,(7):63-70
    [88]游长江,段晓霞,丁奎,等.丁腈橡胶/聚氯乙烯/有机蒙脱土纳米复合材料的结构与性能[J].合成橡胶工业,2005,28(6):465-469
    [89]赵同建,符新,王江,等.纳米SiO2/NR复合材料制备新工艺的研究[J].弹性体,2004,14(4):12-17
    [90]刘景春,韩建成.跨世纪高科技材料纳米SiO2的应用领域[J].化工新型材料,1998,(7):3-6
    [91]赵治国,王炼石,王芳,等.就地反应法制备天然橡胶/二氧化硅复合材料[J].合成橡胶工业,2006,29(2):142-145
    [92]魏福庆,李志君,张财民,等.超微细SiO2的制备及其对天然橡胶硫化胶结构与性能的影响[J].弹性体,2003,13(6):4-8
    [93]段先健,张立群,伍社毛,等.用溶胶-凝胶法原位生成SiO2增强橡胶[J].合成橡胶工业,2000,23(3):148-152
    [94]徐莉,刘琴,祁欣,等.溶胶凝胶技术制备纳米材料的研究进展[J].南京林业大学学报(自然科学版),2002,(4):81-84
    [95]李曦,孙江勤,张超灿.溶胶-凝胶法制备有机-无机杂化纳米级功能材料[J].湖北化工,2000,(3):5-7
    [96] Tanahashi H, Osanai S,/ShigekuniM, et al. Reinforcement of ac-rylonitrile-butadienerubber by silica generated in situ[J]. Rubber Chem Technol,1998,71(1):38-52
    [97] Gerard J F, K ddami H, Pasault J P. Nanocomposites p repared by Sol-gel process:In-situ synthesis of silica particles in polyurathanes[A]. Ext Abstr-Eurofillers97, IntConf Filled polymer Fillers,2nd[C]. London, UK: Plast Fedn1997,407-411
    [98] Abe Y, Honda Y, Gunji T. Preperation and p roperties of silicon-cotaining polymerhybrids from3-metharyloxyp ropyltrimethoxysilane[J]. Applied OrganometallicChemistry,1998,12(10):749-755
    [99]谈定生,严年喜,施亚钧.无机粉体的聚合物胶囊化过程研究[J].高分子材料科学与工程,1999,15(6):101-104
    [100]魏福庆,李志君,张财明,等.超微细SiO2的制备及其对天然橡胶硫化胶结构与性能的影响[J].弹性体,2003,13(6):4-8
    [101]段先健,张立群.用溶胶-凝胶法原位生成SiO2增强橡胶[J].合成橡胶工业,2000,23(3):148-156
    [102]汪志芬,符新,邓晟,等.工业水玻璃制备SiO2/NR复合材料的研究[J].弹性体,2007,17(6):21-24
    [103]李中军,申小清,马福勤.乙酸乙酯在水玻璃溶液中的水解反应研究[J].化学世界,1999,(7):369-372
    [104]陈海燕.以硅酸钠为硅源原位生成SiO2增强橡胶[J].泰州职业技术学院学报.2002,(12):55-59
    [105]陈伟坚,方海旋,符新.纳米SiO2/NR复合材料制备工艺的研究[J].化学工程师,2008,(2):62-64
    [106]赵同建.硅酸钠/天然胶乳制备纳米SiO2/NR复合材料的研究[D].海南:华南热带农业大学,2004,56-87
    [107]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2003,105-116
    [108]杜仕国.复合材料用硅烷偶联剂的研究进展[J].玻璃钢/复合材料,1996,23(4):32-37
    [109] Schmidt H K, Geiter E, Mennig M, et al. The SolGel process for nano-technologies:New nanocomposites with interesting optical and mechanical properties[J]. J Sol-GelSci Technol,1998,13(3):404-408
    [110] Arkles B. Tailoring surfaces with silanes[J]. Chem Tech,1997,7:766-770
    [111] Winkler R P, Arpac E, Schirra H, et al. Aqueous wet coatings for transparent plasticglazing[J]. Thin Solid Films,1999,351(2):209-216
    [112]庞金兴,熊焰,张超灿,等.纳米SiO2/有机硅/聚丙烯酸酯复合乳液的合成[J].武汉理工大学学报,2001,23(12):16-19
    [113] Shoichiro Y, Keisuke J, Kimio K. Physical properties and structure oforganic-inorganic hybrid materials prodtced by sol-gel process[J]. Materi Sci Eng,1998,6(1):75-79
    [114] Daniels M W, Francis L F.Silane adsorption behavior, microstructure and propertiesof glyci-doxypropyltrimethoxy silane-modified colloidal silica coatings[J]. J ColloidInterface Sci,1998,205(2):191-198
    [115]张洪杰,符连社,林君,等.稀土/高分子杂化发光材料的研究[J].发光学报,2002,23(3):228-229
    [116]张超灿,孙江勤,李曦,等.溶胶-凝胶制备PMMA/SiO2透明纳米复合材料的研究[J].玻璃钢/复合材料,2000,27(4):18-28
    [117]尚修勇,朱子康,印杰,等.偶联剂对PI/SiO2纳米复合材料形态结构及性能的影响[J].复合材料学报,2000,17(4):15
    [118]贾红兵,金志刚,吉庆敏,等.不同硅烷偶联剂对纳米白炭黑填充胶料性能的影响[J].橡胶工业,1999,46(l):590-593
    [119]马洪洋,王静媛,于晓强.溶胶凝胶法合成聚(甲基丙烯酸乙酯-甲基丙烯酸环氧丙酯)/SiO2杂化聚合物材料[J].高分子学报,2000,44(4):402-405
    [120] J. Fr hlich*, W. Niedermeier, H.-D. Luginsland. The effect of filler–filler andfiller–elastomer interaction on rubber reinforcement[J]. Composites: Part A36(2005):449–460
    [121]米雄飞.高耐磨炭黑填充型粉末天然橡胶的研究[D].广州:华南理工大学:2001,75-81
    [122]曹智灵.炭黑对硫化胶基本性能定伸应力的影响[J].贵州化工,2007,32(2):42–44
    [123]何燕,马连湘,黄素逸,等.轮胎橡胶材料生热率的测定及分析[J].橡胶工业,2004,51(1):53-55
    [124] M. Bogun. Rubber/Filler Composite[J]. KGK,2004,57(7/8):366-368
    [125] Wang T, Wang M J, et al. Effect of compound processing on filler flocculation[J].Kautschuk und Gummi Kunststoffe,2000,53(9):8-10,
    [126] Wang M J. New developments in carbon black dispersion[J]. Kautschuk GummiKunststoffe,2005,58(12):626-637
    [127] Shell J, Wang T, Tokita N, etc. NR elastomer composite: Process, material andperformance characteristics. Rubber World.2000,221(6):40-46
    [128] Wang M J. New developments in carbon black dispersion. Kautschuk GummiKunststoffe.2005,58(12):626-637
    [129]王炼石,张安强等.炭黑填充型粉末橡胶的制备方法.中国发明专利,专利号:02152077.1,2002
    [130]朱敏主编.橡胶化学与物理.北京:化学工业出版社.1984:p275-280
    [131]闫卫国,李森,张艳丽等. CEC在光面抗切割工程机械轮胎胎面胶中的应用[J].轮胎工业.2005,25(7):409-411
    [132] Ting W, Wang M. J, Shell J. CEC and its application in off-the-road tires[J]. RubberWorld A.2003,227(6):33-38
    [133] Anqiang Zhang, Yaling Lin, Lianshi Wang. Carbon black filled powdered naturalrubber: Preparation, particle size distribution, mechanical properties, and structures.Journal of Applied Polymer Science,2006,101(3):1763-1774
    [134]王炼石,张安强等.炭黑填充型粉末橡胶的制备方法.中国发明专利,专利号:02152077.1,2002
    [135]王炼石,米雄飞,张安强.高耐磨炭黑填充型粉末NR研究(Ⅲ)硫化胶的物理机械性能[J].弹性体.2006,16(6):1-5
    [136]张安强,王炼石,林雅铃,等.半补强炭黑填充型粉末氯丁橡胶(Ⅱ)物理机械性能[J].弹性体.2004,14(4):5-11
    [137] Edwards D C.Polymer-filler interaction in rubber reinforcement[J]. Journal ofmaterials science,1990,25:4175-4185
    [138] Wolff S, et al. Filler-elastomer interaction Part×Study on bound rubber[J]. Rubberchemistry and technology,1993,66(2):163-177
    [139]张立群,贾德民.橡胶的纳米增强技术与理论[A].2004国际橡胶会议论文集[C].2004.57-66
    [140]李赓.再生炭黑橡胶补强性能的研究[D].杭州:浙江大学.2006
    [141] Dannenberg E M. Bound rubber and carbon black reinforcement. Rubber chemistryand technology,1986,59(3):512-524
    [142] Dannenberg E M. Effects of surface chemical interactions on the properties offiller-reinforecd rubbers. Rubber chemistry and technology,1975,48(3):410-444
    [143] Kaufman S, Slichter Wp, Davis Dd. Nuclear magnetic resonance study ofrubber-carbon black interactions. Rubber chemistry and technology.1971,44(3):843-844
    [144] Jean L Leblane. Rubber-filler interaction and rheological properties in filledcompounds[J]. Progress in polymer science,2002,27:627-687
    [145]王梦姣.聚合物-填料和填料-填料相互作用对填充硫化胶动态力学性能的影响[J].轮胎工业,2000,20(10):601-605
    [146]谢志民,王友善,马娟娜.填充橡胶中的炭黑网络研究[J].橡胶工业,2008,55:404-407
    [147] Rajdip Bandyopadhyaya, Weizhi Rong, Sheldon K Friedlander. Dynamics of chainaggregates of carbon nanoparticles in isolation and in polymer films: implications fornanocomposite materials[J]. Chemical Material,2004,16:3147-3154
    [148]邓本诚,纪奎江主编.橡胶工艺原理.北京:化学工业出版社,1984,75-80
    [149]朱敏庄.橡胶工艺学.广州:华南理工大学出版社,1993,55-60
    [150] Donnet J B, Bariou B, Schultz J, et al. Reinforcing properties of carbon black mixturesin natural rubber. J Inst Rubber Ind.1972,6(3):119-120
    [151] Donnet J B. New insights on the mechanism of filler reinforcement of elastomers.Kautschuk and Gummi Kunststoffe.1986,39(11):1082-1083
    [152]汪志芬,李思东,王江,等.淀粉/天然橡胶复合材料的结构与热稳定性研究[J].广东化工,2008,35(5):10-11
    [153] Hepburn C. Filler reinforcement of rubber[J]. Plastics and Rubber International,1984,9(2):11-12
    [154] Monhanadas K S, Kuiakose B. Studies on the effect of fillers on air permeability ofnatural rubber vulcanizates[J]. Kautschuk Gummi Kunststoffe,1997,50(7/8):545-548
    [155]曹秀华,王炼石,周奕雨. NR/高岭土复合材料的制备及其硫化胶的力学性能[J].橡胶工业,2001,48(8):466-470
    [156]曹秀华,王炼石.碱活化改性高岭土/NR复合材料的结构和性能研究[J].橡胶工业,2007,54(7):394-397
    [157]霍智辉,王炼石.甜菜碱改性高岭土/NR复合材料的性能研究[J].橡胶工业,2006,53(2):75-79
    [158]王庆国,谢竞慧,乔金樑,等.亲水性纳米白炭黑在橡胶基体中的良好分散与性能影响[J].中国科学,2012,42(5):590-596
    [159]杨蕾,林华,张可喜,等.不同改性剂对纳米SiO2/NR复合材料结构与力学性能的影响[J].材料导报,2011,25(18):174-187
    [160]徐苏华,古菊,罗远芳,等.纳米微晶纤维素对白炭黑/天然橡胶复合材料性能的影响[J].复合材料学报,2011,28(6):39-44
    [161]张可喜,汪志芬,符新,等.甲基丙烯酸甲酯改性白炭黑/NR复合材料的研究[J].热带农业科学,2009,29(12):9-11
    [162]邱权芳,彭政.胶乳共混法天然橡胶/二氧化硅纳米复合材料微观结构与性能控制[D].海南:海南大学,2010,75-78
    [163] A. P. Meera, Sylvere Said, Yves Grohens, et al. Tensile stress relaxation studies ofTiO2and nanosilica filled natural rubber composites[J]. American Chemical Society,2009,48:3410–3416
    [164] V.M. Kulika, A.V. Boikob, S.P. Bardakhanovb, et al. Viscoelastic properties ofsilicone rubber with admixture of SiO2nanoparticles[J]. Materials Science andEngineering A,2011,528:5729–5732
    [165]张茂峰,王鑫,姜菲,等.聚苯胺改性蒙脱土/天然橡胶纳米复合材料的制备与性能[J].合成橡胶工业,2012,35(1):59-63
    [166]郑华,宋国君. NBR/OMMT纳米复合材料的性能研究[J].特种橡胶制品,2011,32(5):8-12
    [167]王立,高利,宋国君.天然橡胶/有机蒙脱土纳米复合材料的硫化特性[J].特种橡胶制品,2010,31(4):5-7
    [168]曾宗强,黄茂芳,余和平,等.改性纳米碳酸钙填充天然胶乳的超微结构及热稳定性[J].高分子材料科学与工程,2011,27(8):99-101
    [169]钱红莲,杨春亮,王平粤.纳米碳酸钙在环氧化天然橡胶中的应用[J].橡胶工业,2006,53(2):89-92
    [170]古菊,贾德民,罗远芳,等.天然橡胶/固相法改性纳米碳酸钙复合材料的微观形态与力学性能[J].合成橡胶工业,2005,28(5):374-377
    [171] Boehm, H.P. Some aspects of the surface chemistry of carbon blacks and othercarbons[J]. Carbon.1994,32(5):759-769
    [172] Jean L Leblanc.Rubber-filler interactions and rheological properties in filledcompounds[J]. Progress in Polymer Science.2002,27:627-687
    [173] Leblanc J L, Hardy P. Evolution of bound rubber during the storage of uncuredcompounds[J]. Kautschuk Gummi Kunststoffe.1991,48(3):178-179
    [174] P. Hajji, L. David, J.F. Gerard, J.P. Pascault, G. Vigier. Synthesis, structure, andmorphology of polymer-silica hybrid nanocomposites based on hydroxyethylmethacrylate[J]. Journal of Poylmer Science part B-Polymer Physics,1999,37(22):3172-3187
    [175] Yen-ChunChou, Yu-Yong Wang, et al. Transparent photo-curable co-polyacrylate/Silica nanocomposites prepared by sol-gel process[J]. J Appl Polym Sci,2007,105:2073-2082
    [176] Pankow O, Schmidt-Naake G. Preparation and characterization of organic/inorganicpolymer composites based on mg-silicates[J]. Macromol. Mater. Eng.2004,289,990-996
    [177]朱玉俊.弹性体的力学改性-填充补强及共混.北京:科学技术出版社,1992.2-112
    [178]曾幸荣,吴振耀,侯有军,等.高分子近代测试分析技术[M].广州:华南理工大学出版社,2007:73-74
    [179] Anqiang Zhang, Yaling Lin, Lianshi Wang. Carbon black filled powdered naturalrubber: Preparation, particle size distribution, mechanical properties, and structures[J].Journal of Applied Polymer Science,2006,101(3):1763-1774
    [180] Wagner M P. Fine-particle silicas in tire treads, carcass, and steel-belt skim[J]. RubberChemistry and Technology,1977,50(2):356-363
    [181] Sandstrom Paul H, Bauer Richard G, Burlett Donald J, et al. Tire with silica reinforcedtread[P]. US Patent5,336,730,1994
    [182] Byers John T. Fillers for balancing passenger tire tread properties[J]. RubberChemistry and Technology,2002,75(3):527-547
    [183] Okel Timothy A, Patkar Shailesh D, et al. Advances in precipitated silicas forpassenger and truck tyre treads[J]. Progress in Rubber and Plastics Technology,1999,15(1):1-27
    [184]王炼石,胡洪军,周奕雨.高耐磨炭黑填充型粉末SBR研究—Ⅲ.硫化胶的热空气老化性能[J].合成橡胶工业,2004,27(1):6-9
    [185] Nordsiek K H. The―Integral rubber‖concept–an approach to an ideal tire treadrubber[J]. Kautschuk Gummi Kunststoffe,1991,44(12):1119
    [186] Sattelmeyer R. Novolak resins in tread compounds[J]. Kautschuk Gummi Kunststoffe.1994,47(9):659-665
    [187] Wang T, Wang M.J, Shell J, et al. The effect of composite: processing on fillerflocculation[J]. Kautschuk und Gummi Kunststoffe,2000,53(9):8-10
    [188] Wang M J. Effect of polymer-filler and filler-filler interactions dynamic properties offilled vulcanizates[J]. Rubber Chemistry and Technology.1998,71(3):520-589
    [189] Solomon, D.H.; Hawthorne, D.G. Chemistry of pigments and fillers[J]. Chapter3th.Inorganic pigments. John Wiley and sons, New York, Chichester, Brisbome, Singapore,1983,86-88
    [190]矶田孝一,藤本武彦.表面活性剂[M].天津:轻工业出版社.北京,1973:76-80
    [191] Wolff, S.; Wang, M. J.; Tan, E. H. Dynamic properties of carbon black-filledvulcanizates and shift factors[J]. Kautachuk and Gummi Kunststoffe,1995,48(2):82-83
    [192] M-J. Wang, M. D. Morris and Y. Kutsovsky. Effect of fumed silica surface area onsilicone rubber reinforcement[J]. Elastomere und kunststoffe elastomers and plastics,2008,3:107-117
    [193]王炼石,周奕雨,蔡彤旻,PS/粉末SBR-g-S共混体研究I.相结构、冲击断裂机理与冲击韧性[J].高分子材料科学与工程,2000,16(3):113-11
    [194] Sattelmeyer R. Novolak resins in tread compounds[J]. Kautschuk Gummi Kunststoffe.1994,47(9):659-665

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700