用户名: 密码: 验证码:
中药活性成分在线色谱筛选新模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中药活性物质是指中药及其复方中发挥作用的化学成分,它是阐明中药作用奥秘的关键。由于中药作用的整体性、中药成分和作用机制的复杂性,使得中药效应物质基础的阐明一直进展缓慢。寻找适于中药复杂体系效应物质基础的研究方法,进而建立科学的质量控制方法,一直是中药研究的关键科学问题。长期以来,国内中药活性物质基础研究的主流模式是在化学成分提取、分离和结构鉴定的基础上利用药理模型对所得的纯化合物进行生物活性测试。多年来,这种研究方法阐明了一些中药的效应物质基础。但是,常规的提取分离手段只能分析中药的主要特征性成分,而不能评价这些成分是否具有活性。
     本论文的研究目的是构建不同层次的中药药效物质基础的在线筛选色谱模型,并以各类提取物的抗氧化或细胞毒性指标的测定结果进行验证,使效应成分的分离与筛选相结合,克服以往先从中药中分离单体或部位,再分析其药效,致使成分分离与效应筛选脱节的弊端。主要研究工作如下:
     1.构建抗肿瘤药物的脂筏色谱在线筛选模型并研究其热力学机理,将由U251细胞提取的脂筏固化于硅胶载体上制备酪氨酸蛋白激酶受体(TrkA)-脂筏色谱柱,进行色谱保留特性研究。由于构建的脂筏-硅胶固定相富含TrkA,固定相能与以TrkA为靶点的药物特异性结合产生保留,而非TrkA靶点的药物在该脂筏色谱柱中无保留行为。经不同时间和不同流动相的使用,证明TrkA-脂筏固定相色谱系统稳定,使用寿命长。首次进行脂筏色谱的机理研究,以TrkA为靶点的药物来他替尼为例,考察了脂筏色谱柱填料粒径、温度、流速对色谱行为的影响,探讨了溶质在固定相和流动相之间的迁移焓变、迁移熵变等热力学参数的变化。结果发现适宜的填料粒径有利于来他替尼在脂筏色谱上的保留及分离;在柱温37℃,流速0.2ml/min的色谱条件下能得到较适宜的保留效果。对于来他替尼而言,与脂筏固定相作用过程的AH0、△S0均为负值,说明这种脂筏固定相的分离机理是氢键或范德华力等协同作用的结果。
     2.将构建的脂筏色谱系统应用于中药五倍子的抗肿瘤活性成分筛选,得到的在色谱柱上有保留行为的乙醚部分显示出良好的抑制U251肿瘤细胞毒性。为进一步证明这种柱上保留行为是TrkA与药物间结合力的结果,而非脂筏中其他蛋白的作用,我们在细胞试验的对照组中加入了低浓度的TrkA信号阻断剂,观察在TrkA脂筏柱上有保留的物质在细胞试验中饱和TrkA后,是否还能继续抑制U251细胞的增值。实验结果可见,脂筏色谱筛选出的具有明显保留行为的中药提取物与特异性TrkA抑制剂来他替尼一样,在TrkA信号阻断前体现出良好的抑制细胞增值的效果,信号阻断后则几乎无细胞抑制作用。而氟尿嘧啶并非以TrkA作为靶点,所以在TrkA信号阻断前后均体现出良好的肿瘤细胞抑制效果,证明脂筏色谱是一种针对TrkA的高选择性、高特异性的生物亲和色谱新技术。本实验为TrkA抑制剂的高效筛选提供了范例,证实了脂筏色谱在中药活性成分高效筛选中的应用可能。说明富含TrkA受体的脂筏-硅胶色谱是一种具有生物亲和特性、能够选择性识别与TrkA受体作用的药物的新型先导化合物筛选模型。
     3.1,1-二苯基-2-苦肼基自由基(DPPH·)-检测器后衍生化高效液相色谱(HPLC)法在线筛选抗氧化活性成分技术的构建及在水飞蓟素及其脱氢衍生物中的应用。首次合成水飞蓟素的脱氢衍生物,超高效液相色谱(UPLC)-质谱(MS)联用鉴别水飞蓟素脱氢化物的组成;对水飞蓟素及其脱氢衍生物进行DPPH·清除能力、还原力、超氧自由基清除能力、Fe3+还原实验、羟基自由基清除能力等体外抗氧化能力的评价;同时研制DPPH-检测器后衍生化HPLC技术进行抗氧化活性成分的快速在线筛选,并通过动物体内抗氧化实验进行验证。结果发现,体内外抗氧化能力的评价试验中,几乎所有脱氢化物的抗氧化活性指标均明显大于脱氢前的药物,表明水飞蓟素的脱氢化衍生物具有更强的抗氧化活性。DPPH-HPLC法在线筛选出脱氢水飞蓟素的主要抗氧化活性成分为2,3-去氢水飞蓟宾和2,3-去氢水飞蓟亭。说明所构建的中药抗氧化药效物质基础的活性筛选-化学在线分析方法具有切实的可行性。
     4. DPPH-薄层色谱(TLC)生物自显影法在线筛选抗氧化活性成分技术的构建及其在绵茵陈中的应用。采用HPLC及TLC法测定绵茵陈提取物中绿原酸的含量,紫外法离线测定提取液清除DPPH·的能力。另建立DPPH-TLC生物自显影法在线分析绵茵陈提取物中的抗氧化成分。结果表明,由生物自显影扫描法测得薄层色谱色谱峰总积分值明显大于绿原酸单峰面积,表明绵茵陈中除了绿原酸外,还存在其它抗氧化能力较强的活性成分。说明以DPPH·作显色剂,双波长扫描,可利用TLC-生物自显影技术对天然提取物中具有自由基清除及抗氧化活性的活性成分进行快速筛选与评价。
With the development and modernization of traditional Chinese medicines (TCMs), screening active components in complex systes have introduced a key resolution to explore new drugs in TCMs. However, one TCM herb may contain up to hundreds or even thousands of different constituents, but only a few compounds are responsible for the pharmaceutical or toxic effects. With the interference of other components in TCMs, it is extremely difficult to screen the bioactive ingredients rapidly and efficiently.
     By far, a variety of strategies have been developed to separate and analyze the constituents of TCM for identification of bioactive compounds and quality control, including screening with animal models, cell bioassays, enzyme/receptor models and traditional chromatographies. The establishment and application of these models play a positive role for screening of active components. However, these methods suffer from some shortcomings such as weak selectivity and lack of the information of screened components of TCMs. So it is often time-consuming and inefficient to separate lead compound from TCMs following with the bioassay guidance, resulting from the poor affinity and selectivity of conventional procedures.
     This paper mainly focuses on the research of construction and application of some biochromatographic models, and aims to establish some new methods for screening bioactive components. The paper contains up to six chapters. The author's main contributions are as follows:
     1. In this paper we have, for the first time, established a lipid raft stationary phase chromatography (LRSC) to develop a high throughput screening of potential therapeutic compounds for cancer treatment. The stable lipid rafts abundant with one receptor tyrosine kinase, tropomyosin-related kinase A (TrkA) obtained from U251cells were constructed to prepare the stationary phase. An unrelated TrkA inhibitor (gemcitabine) and TrkA targeted anti-tumor drugs (lestaurtinib and gefitinib) were analyzed on LRSC to evaluate the specific affinity of the column. Using lestaurtinib as a model, the retention behavior was investigated and the thermodynamic parameters of transfer from mobile phase to stationary phase were discussed. The results showed that the ideal resolution of lestaurtinib on lipid raft chromatography could be achieved with eligible partical size (10~50μm) of stationary phase at a flow rate of0.2mL/min at37℃. The standard enthalpy change (AH0) and entropy change (ΔS) in chromatographic system were determined by Van't Hoff relationship (lnk-1/T). The binding constants, changes of enthalpy, entropy and Gibbs free energy were obtained as negative value by using lestaurtinib as a model. The retention mechanism of solutes on the prepared stationary phase involves synergistic interaction of hydrogen bonding and van der Waals force.
     2. The established LRSC was further applied for the screening of potential therapeutic compounds in cancer treatment using Chinese gallnut as a model. The chromatographic column manifested desirable affinity when the ether fraction of Chinese gallnut was injected into LRSC. The established LRSC system can recognize target components through affinity interactions between the components and TrkA signaling pathway on the lipid rafts. The methyl thiazolyl tetrazolium assay confirmed the anti-tumor effect of the screened ether fraction of Chinese gallnut and further proved the selectivity of LRSC on TrkA-targeted drugs. The mode of the newly constructed LRSC was identified as an efficient approach to screen anti-tumor components in TCMs.
     3. In this study,2,3-dehydrosilymarin, a compound exhibiting remarkable antiradical/antioxidant activity, was synthesized from silymarin for the first time. The structures of its main components were verified by ultra-performance liquid chromatography/mass spectrometry (UPLC-MS) and other spectral analysis. The solubility, radical scavenging capacity and liver protecting activity of2,3-dehydrosilymarin were studied with silybin, dehydrosilybin and silymarin employed as controls. The antioxidant activities of silymarin and its derivatives were measured by determining their reducing activity, scavenging DPPH-free radical, superoxide radical, hydroxyl radical and the Fe2+concentration by reduction experiment. In addition, a rapid screening method, online high-performance liquid chromatography/1,1-dipheny1-2-picrylhydrazyl (DPPH-HPLC) system, was developed for identifying individual antioxidants. Both in-vitro and in-vivo results markedly proved that dehydrosilymarin has decent aqueous solubility and remarkable antiradical/antioxidation capacity. Moreover,2,3-dehydrosilybin and2,3-dehydrosilychristin were identified as the two major active compounds comprising2,3-dehydrosilymarin. Our results suggest that2,3-dehydrosilymarin may be a promising and potent alternative for inhibition of free radical and prevention of oxidation. The established on-line HPLC radical scavenging activity measurement makes it possible to directly identify active constituents in complex matrices.
     4. An HPLC method and a single wavelength TLC-scanning method were used to determinate the concertration of chlorogenic acid of Herba Artemisiae scopariae extracts. Their free radical scavenging activities were measured with offline UV-2,2-diphenyl-l-picrylhydrazyl (DPPH·) method. The chromatograms were obtained after spraying with DPPH-solution and the peak areas of the spots on TLC were calculated to evaluate the antioxidant capacity of Herba Artemisiae scopariae extracts. The contents of chlorogenic acid determined by TLC-bioautography were consistent with the routine method, and the total integral value measured by bioautography was significantly higher than the single peak area of chlorogenic acid. The results indicated that Herba Artemisiae scopariae had many antioxidant active ingredients including chlorogenic acid. With DPPH as color developing reagent and dual wavelength scanning, TLC-bioautography can be used for fast selecting and evaluating the antioxidant capacity of traditional Chinese medicines.
引文
1.吴茜,毕志明,李萍,等.基于整体观的中药药效物质基础的生物活性筛选/化学在线分析研究新进展[J].中国药科大学学报,2007,38(4):289-293.
    2. Lin BQ, Ji H, Li P, et al. Inhibitors of acetylcholine esterase in vitro-screening of steroidals from Fritillariae species [J]. Planta Med,2006,72(9):814-818.
    3. Lin BQ, Ji H, Li P, et al. Selective anticholinergic effect of alka loids and their derivatives from Bulbs Fritillaria[J]. Eur J Pharmacol,2006,551(1-3):125-130.
    4. Jiang Y, Li P, Li HJ, et al. New steroidal alkaloids from the bulbs of Fritillaria puqiensis [J]. Steroids,2006,71(9):843-848.
    5. Li HJ, Jiang Y, Li P, et al. A novel veratramine alkaloid from the bulbs of Fritillaria puqiensis [J]. Chem Pharm Bull(Tokyo),2006,54(5):722-724.
    6. Liao LP, Li SL, Li P. Simultaneous determination of triterpenoids and triterpenoid saponins in Ilex chinensis Sims leaves by high-perfor mance liquid chromatography coupled with evaporative light scattering detection[J]. J Sep Sci,2005,28(16) 2061-2066.
    7. Jiang Y, Li HJ, Li P, et al. Steroidal alkaloids from the bulbs of Fritillaria puqiensis [J]. J Nat Prod,2005,68(2):264-267.
    8.周兴旺.生物医学新兴学科与中药现代化——现代组合成分药物的研究[J]中草药,2007,38(3):321-326.
    9.李萍,齐炼文,闻晓东,等.中药效应物质基础和质量控制研究的思路与方法[J].中国天然药物,2007,5(1):1-9.
    10.杨奎,郭力,周明媚,等.中药复方组合化学研究方法初探[J].中药药理与临床,1998,14(3):42-44.
    11刘华栋,任启生,宋欣荣.中药复方化学研究概况[J].中国实验方剂学,2004,10(6):67-70.
    12曹治权.中药药效的物质基础和作用机理的研究新思路-中药中化学物种形态和生物活性关系的研究[J].上海中医药大学学报,2000,14(1):36-40.
    13盛良.论中药四气五味的宏观化学成分说[J].上海中医药杂志,2008,42(7):63-67.
    14.刘荣华,余伯阳,陈兰英,等.山楂叶抗大鼠PMN呼吸爆发谱效关系研究[J]. 中国中药杂志,2008,33(15):1884-1889.
    15. Ding XP, Qi J, Chang YX, et al. Quality control of flavonoids in Ginkgo biloba leaves by high-performance liquid chromatography with diode array detection and on-line radical scavenging activity detection[J]. J Chromatogr A,2009,1216 (11): 2204-2210.
    16. Ding XP, Wang XT, Chen LL, et al. Quality and antioxidant activity detection of Crataegus leaves using on-line high-performance liquid chromatography with diode array detector coupled to chemiluminescence detection[J]. Food Chem,2010,120: 929-933.
    17.耿雪飞,郑永杰,赵明,UM Byunghun基于HPLC-ABTS体系筛选细叶杜香抗氧化活性成分[J].化学工程师,2011,(10):70-73.
    18. Wu JH, Huang CY, Tung YT, et al. Online RP-HPLC-DPPH Screening Method for Detection of Radical-Scavenging Phytochemicals from Flowers of Acacia confusa [J].J Agric Food Chem,2008,56(2):328-332.
    19.刘洁.β2-肾上腺素受体亲和色谱在黄连活性成分筛选及其相互作用研究中的应用[D].西北大学,2008.
    20.朴胜华,罗朵生.中药物质基础研究方法评述[J].中国药房,2012,23(23):2194-2196.
    21.王序,韩桂秋,李荣芷,等.现代生物分析法对常用中药的筛选研究[J].北京医科大学学报,1986,18(1):31-36.
    22.汪海林,邹汉法,孔亮,等.分子生物色谱用于中药活性成分筛选及质量控制方法的研究[J].色谱,1999,17(2):123-127.
    23.孔亮,邹汉法,汪海林,等.以人血清白蛋白为固定相的分子生物色谱分析几种中药活性成分的研究[J].高等学校化学学报,2000,21(1):36-40.
    24. Luo HP, Chen LR, Li ZQ, et al. Frontal immunoaffinity chromatograph with mass spectrometric detection:A method for finding active compounds from traditional Chinese medicine herb [J]. Analytical Chemistry,2003,75 (16):3994-3998.
    25. Ueda EK, Gout PW, Morganti L.Current and prospec-tive applications of metalion-protein binding[J].J Chromatogr A,2003,988(1):1-23.
    26邹汉法,汪海林.生物色谱技术分离、鉴定和筛选中药活性成分[J].世界科学技术—中药现代化,2000,2(2):9-14.
    27.郑晓晖,赵新峰,杨荣,等.β-2-肾上腺素受体亲和色谱及其在苦杏仁活性成 分筛选中的应用[J].科学通报,2007,52(18):2111-2115.
    28. Mao X, Kong L, Luo Q, et al. Screening and analysis of permeable compounds in Radix Angelica Ginensis with immobilized liposome chromatography[J]. J Chromatogr B,2002,779(2):331.
    29.周晓云.酶学原理与酶工程[M].北京:中国轻工业出版社,2005:86.
    30.梁伟娜.基质金属蛋白酶抑制剂生物分子色谱筛选方法的研究和应用[D].山东大学,2009:4-122.
    31.洪韫嘉.中草药中血管紧张素转化酶抑制剂筛选方法的研究[D].湖南师范大学,2008:1-57.
    32.张志琪,张延妮,田振军.药物筛选模型和技术及其在中药活性成分研究中的应用[J].中国中药杂志,2003,28(10):907-910.
    33.董倩倩,李萍,闻晓东.丹参成分在Caco-22细胞中吸收的研究[J].中国天然药物,2007,5(1):59-62.
    34.陈丙銮,李松林,李萍,等.黄酮类化合物在Caco-2细胞模型中的吸收规律[J].中国天然药物,2006,4(4):299-302.
    35.陈媛媛,郭姣.细胞膜色谱技术在中药活性成分筛选中的应用进展[J].中草药,2012,43(2):383-387.
    36.方艺霖,张艺,肖小河,等.细胞膜色谱技术用于中药活性成分筛选的研究进展[J].中草药,2008,39(7):1119-1121.
    37.曹岩,景晶,吕狄亚,等.用细胞膜色谱法和HPLC-TOF/MS研究附子中的有效成分[J].药学实践杂志,2011,29(5):339-349.
    38.赵小娟,党高潮,杨广德,等.淫羊藿根与叶活性成分的分析和比较[J].分析化学,2002,30(2):195-197.
    39.董自波,朱荃.红细胞固相色谱技术的建立及其在当归效应成分分离中的应用[C].江苏省药理学会代表会议暨学术交流会议大会论文汇编,南京2002:12-13.
    40. Zeng CM, Zhang Y, Lu L, et al. Immobilization of human red cells in gel particles for chromatographic activity studies of the glucose transporter Glut1[J].Biochim Biophys Acta,1997,1325(1):91-98.
    41.Hara A, Iizuka N, Hamamoto Y, et al. Molecular dissection of a medicinal herb with anti-tumor activity by oligonucleotidemicroarray[J]. Life Sci,2005,77 (9) 991-1002.
    42.Iizuka N, Oka M, Yamamoto K, et al. Identification of common or distinct genes related to antitumor activities of a medicinal herb and its major component by oligonucleotide microarray[J]. Int J Cancer,2003,107(4):666-672.
    43.托娅,苏秀兰,路桂荣,等.基因芯片在抗肿瘤血管生成中草药相关基因筛选中的应用[J].第二军医大学学报,2002,23(3):273-275.
    44.肖震宇,何少忠,彭卫卫.中药靶向治疗肿瘤的基础与临床研究进展[J].中国药房,2011,22(23):2204-2206.
    45. Huang, X.; Kong, L.; Li, X.; et al. Strategy for analysis and screening of bioactive compounds in traditional Chinese medicines[J]. J Chromatogr., B 2004,812,71-84
    46.陈晓萌,陈畅,李德凤,等.中药有效成分辨识的研究进展[J].中国实验方剂学杂志,2011,17(12):249-252.
    47. Su, X.; Hu, L.; Kong, L.; et al. Affinity chromatography with immobilized DNA stationary phase for biological fingerprinting analysis of traditional Chinese medicines[J]. J. Chromatogr., A 2007,1154,132-137
    48. Noctor, TAG; Wainer, IW; Hage, DS. Allosteric and competitive displacement of drugs from human serum albumin by octanoic acid, as revealed by high-performance liquid affinity chromatography, on a human serum albumin-based stationary phase. [J]. J. Chromatogr., B 1992,577,305-315
    49. Zhang, C.; Li, J.; Xu, L.; et al. Fast immobilized liposome chromatography based on penetrable silica microspheres for screening and analysis of permeable compounds[J]. J Chromatogr., A 2012,1233,78-84
    50. Beigi, F.; Lundahl, P. Immobilized biomembrane chromatography of highly lipophilic drugs[J]. J. Chromatogr., A 1999,852,313-317
    51. Zhou L, Wang Y, Zhang YT, et al. Proteomics-based analysis of a pair of glioma cell lines with different tumor forming characteristics [J]. Neurosci Lett,2006,401 (1):59-64.
    52. Quaranta V, Giannelli G. Cancer invasion:watch your neighbour hood [J] Tumori,2003,89 (4):343-348.
    53. Mantovani A, Marchesi F, Porta C, et al. Inflammation and cancer:breast cancer as a prototype [J]. Breast,2007,16 (2):S27-33.
    54. Fata J E, Werb Z, Bissell MJ. Regulation of mamma rygland branching morphogenesis by the extracellular matrix and its remodeling enzymes [J]. Breast Cancer Res,2004,6 (1):1-11
    55. Trog D, Yeghiazaryan K, Fountoulakis M, et al. Proinvasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells [J]. Eur J Pharmacol,2006,542 (1-3):8-15.
    56.贺浪冲,耿信笃.细胞膜受体色谱法——研究药物与受体作用的新方法[J].生物医药色谱新进展,1996,3:8-9.
    57.贺浪冲,杨广德,耿信笃.固定在硅胶表面细胞膜的酶活性及其色谱特性[J].科学通报,1999,44(6):632-636.
    58. He LC, Wang SC, Geng XD. Coating and fusing cell membraneonto a silica surface and their chromatographic characteristics [J]. Chromatographia,2001,54: 71-76.
    59. Schreiber SL. Target-oriented and diversity-oriented organic synthesis in drug discovery[J]. Science.2000,287:1964-1969.
    60.李欣,高金恒,陈国良.蛋白酪氨酸激酶抑制剂的研究进展[J].沈阳药科大学学报.2011,28(12):1005-1012.
    61. Mendelsohn J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy[J]. Clin Cancer Res.1997,3(12):2703-2707
    62.王勇,龙亚秋.蛋白酪氨酸激酶小分子抑制剂的研究新进展[J].有机化学,2011,31(10):1595-1606.
    63. Hanzal-Bayer MF, Hancock JF. Lipid rafts and membrane traffic[J]. FEBS Lett. 2007; 581:2098-2104
    64. Brown D A, Rose J K. Sorting of GPI2anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface[J]. Cell,1992,68 (3):533-544
    65.王凯,黄静,李亚丽,等.用鞘磷脂作为标志分子鉴定脂筏[J].中国生物化学与分子生物学报,2006,22(5):431-434.
    66. Hanzal-Bayer MF, Hancock JF. Lipid rafts and membrane traffic. FEBS Lett. 2007,581:2098-2104.
    67.吴瑛,刘云鹏.脂筏在肿瘤发生发展中的作用及其作为药物靶点的研究[J].癌症进展杂志,2007,5(6):572-575.
    68. Benedek K. Thermodynamics of a-lactalbumin in hydrophobic-interaction chromatography and stationary phase comparison [J]. J. Chromatogr.,1988,458: 93-104
    69. Guillaume Y C, Nicod L, Truong-Thanh T, et al. Analytical technologies in the biomedical and life sciences [J]. J. Chromatogr. B,2002,768:129-135
    70.李蓉,陈国亮,赵文明.蛋白质在固定Zn2+金属螯合亲和色谱中的变性热力学[J].分析化学,2006,34(1):57-61.
    71. Ross PD, Subramanian S. Thermodynamies of protein assoeiation reactions: forees contributing to stability[J]. Bioehemistry,1981,20(11):3096-3102.
    72. Ross P.D, Subramanian.S. Thermodynamies of maero molecular as soeiations: analysisofforces tributing to stabilization[J]. BioPhys.J.,1980,32(1):79-81
    73.周劲光.五倍子的药理作用与临床应用进展[J].海峡药学,2010,22(4):30-32
    74.李秀萍,李春远,渠桂荣,等.五倍子研究概况[J].中医药学报,2002,30(3):72-74.
    75. Chen JC, Ho TY, Chang YS,et al. Anti-diarrheal effect of Galla chinensis on the E. coli heat-labile enterotoxin and ganglioside interaction[J]. J Ethnopharm,2006,103: 385-391
    76.陈晓光,李燕,韩锐.五倍子有效成分9201的癌化学预防作用及其机理的研究[J].医学研究通讯,2000,29(3):15-16
    77.成喜雨,崔馨,刘春朝等.中草药抗氧化活性研究进展[J].天然产物研究与开发,2006,18(3):514-518.
    78. Cheung LM, Cheung P C K, Vincent E C. Antioxidant Activity and Total Phenolics of Edible Mushroom Extracts [J]. Food Chem.2003,81:249-255.
    79.赵骏,王强.荷叶抗氧化活性部位的研究[J].中药材,2006,29(8):827-829.
    80.周欣,范国荣,吴玉田.短瓣金莲花总黄酮及指标性成分的体外抗氧化活性研究[J].中药材,2007,30(8):1000-1002.
    81. Goncalves C, Dinis T, Batista MT. Antioxidant properties of proanthocyanidins of Uncaria tomentosa bark decoction:a mechanism for anti-inflammatory activity[J]. Phytochemistry,2005,66(1):89-98.
    82. Bandopadhyay M. Components of silybum marianum[J]. Indian J Chem.1992, 10(2):808.
    83. Hale Z. Toklu, Tugba Tunali Akbay, Ayliz Velioglu-Ogunc, et al. Silymarin, the antioxidant component of silybum marianum, prevents sepsis-induced acute lung and brain injury [J]. J Surg Res,2008,145(2):214-22.
    84. Senthil Subramaniam, Katherine Vaughn, Danielle Julie Carrier, et al. Pretreatment of milk thistle seed to increase the silymarin yield:An alternative to petroleum ether defatting[J]. Bioresour Technol,2008,99(7):2501-6.
    85. Shibano Makio, Lin An-Shen, Itokawa Hideji, et al. Separation and characterization of active flavonolignans of silybum marianum by liquid chromatography connected with hybrid ion-trap and time-of-flight mass spectrometry (LC-MS/IT-TOF) [J]. J. Nat. Prod.2007,70:1424.
    86. James IL, Mahesh N, Jeffrey S. Barrett Analysis and comparison of active constituents in commercial standardized silymarin extracts by liquid chromatography-electrospray ionization mass spectrometry [J]. J Chromatogr B.2007, 845:95
    87. Kvasnicka F, Biba B, Voldrich M,et al. Analysis of the active components of silymarin[J]. J Chromatogr A,2003,990(1-2):239-45.
    88. Huber A, Thongphasuk P, Erben G, et al.Significantly greater antioxidant anticancer activities of 2,3-dehydrosilybin than silybin[J].Biochimica et Biophysica Acta,2008,1780:837-847.
    89.王沛,孙铁民.从水飞蓟宾快速合成2,3-脱氢水飞蓟宾[J].中草药,2003,34(8):691.
    90. Tsunematsu T, Ikegawa S, Nomoto K. Studies on constituents of silybum marianum (L) Gaertn. I. New flavonolignans named 2,3-dehydrosilymarin and 2, 3-dehydrosilychristin[J]. J Pharm Soc Japan,1975,95(8):1017-1021.
    91. Higuchi T, Connors KA. Phase solubility techniques [J]. Adv Anal Chem Instrum 1965,4:117-212.
    92. Koleva II, Niederlander HAG, van Beek TA, et al. An on-line HPLC method for detection of radical scavenging compounds in complex mixtures[J]. Anal Chem,2000, 72:2323-2328.
    93. Bandoniene D, Murkovic M. On-line HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from apples (Malus domestica L) [J]. J Agric Food Chem,2002,50:2482-2487.
    94.柳爱莲,刘绣华.天然产物抗DPPH自由基活性研究[J].周口师范学院学报,2007,24(5):80-82.
    95.刘晓丽.余甘子多酚的分离、鉴定与生理活性研究[D].华南理工大学博士学位论文,2007:35.
    96.师梅梅,杨建雄.龙血竭胶囊的体外抗氧化研究[J].中成药,2007,29(11):1591-1594.
    97. Halloiwell B, Gutteridge JMC. Free radical in biology and medicine[M]. London: Oxford Clarendon Press,1989.
    98. Dun PD, Yen GC. Antioxidant activities of three herbal water extracts [J]. Food Chem,1997,60:639-645.
    99. Cheung LM, Cheung P C K, Ooi V E C. Antioxidant Activity and Total Phenolics of Edible Mushroom Extracts [J]. Food Chemistry,2003,81(2):249-255.
    100. Goncalves C, Dinis T, Batista MT. Antioxidant properties of proanthocyanidins of Uncaria tomentosa bark decoction:a mechanism for anti-inflammatory activity[J]. Phytochemistry,2005,66(1):89-98.
    101. Leng Peschlow E. Alcohol-related liver diseases use of legalon for therapy[J]. Pharmedicum,1994,2(1):22-27.
    102.董英,张艳芳,孙艳辉.水飞蓟粗多糖脱蛋白方法的比较[J].食品科学,2007,28(12):82-84.
    103. Wu J H, Huang C-Y, Tung Y T, et al. Online RP-HPLC-DPPH Screening Method for Detection of Radical-Scavenging Phytochemicals from Flowers of Acacia confusa [J]. J. Agric Food Chem,2008,56(2):328-329.
    104. Tung YT, Wu JH, Hsieh CY, et al. Free radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves detected by an on-line screening method[J]. Food Chem,2009,115:1019-1024.
    105. Bandoniene D. Detection and activity evaluation of radical scavenging compounds by using DPPH free radical and on-line HPLC-DPPH methods[J]. Eur Food Res Technol,2002; 214:143-147
    106.成喜雨,崔馨,刘春朝,等.中草药抗氧化活性研究进展[J].天然产物研究与开发,2006,18(3):514-518.
    107.郑晶泉.抗氧化剂抗氧化实验研究进展[J].国外医学-卫生学分册,2000,27(1):37-40.
    108. Silva DH, Pereira FC, Zanoni MV, et al. Lipophyllic antioxidants from Iryanthera juruensis fruits [J]. Phytochemistry,2001,57 (3):437-442.
    109.胡宗福,于文利,赵亚平.绿原酸清除活性氧和抗脂质过氧化的研究[J].食 品科学,2006,27(2):128-130.
    110.郝武常,徐长根,杨海燕,等.RP-HPLC测定护肝片中绿原酸的含量[J].中成药,2004,26(7):附10.
    111.徐建国,田呈瑞,胡青平,等.绵茵陈中绿原酸的提取工艺研究[J].食品科学,2007,23(9):162.
    112. Cheung LM, Cheung PCK, Vincent EC. Antioxidant activity and total phenolics of edible mushroom extracts[J]. Food Chem,2003,81:249-255.
    113.谷丽华,吴弢,张紫佳,等.应用薄层色谱-生物自显影技术评价乌药等三种中药的抗氧化活性[J].药学学报,2006,41(10):956-962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700