用户名: 密码: 验证码:
阿片类药物对肺炎链球菌感染模型固有免疫的调节及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量研究表明,阿片类药物滥用通过破坏免疫系统固有免疫和适应性免疫进而引起免疫抑制。然而,阿片类药物滥用增加肺炎链球菌肺部易感性的确切机制目前还不明了。白细胞介素- 23(IL-23)是由激活的巨噬细胞和树突状细胞(DCs)分泌,并诱导记忆性T细胞增殖,是机体响应细菌的挑战时T细胞表达白细胞介素- 17(IL-17)的关键因素。IL-23/IL-17轴在肺炎链球菌肺部感染过程是否有助于调节固有免疫还没有得到明确阐述。阿片类药物吗啡调节肺炎链球菌引起IL- 23产生的细胞和分子机制也有待澄清。
     本研究使用已建立的阿片类药物滥用和肺炎链球菌肺部感染的小鼠模型与细胞感染模型,采用ELISA、Real time PCR、Western blot、流式细胞术、免疫荧光技术、瞬时转染等免疫学与分子生物学技术,在整体、细胞与分子水平研究了阿片类药物吗啡对肺炎链球菌感染模型固有免疫的调节及机制。
     采用阿片类药物滥用和肺炎链球菌肺部感染的鼠体内模型,发现了吗啡能削弱IL-23/IL-17早期产生与中性粒细胞迁移延迟和细菌清除减少有关;给予鼠重组IL-17蛋白明显的改善了宿主肺部的抗菌能力并降低了细菌散播到血液中;使用TCRδ-/-鼠实验显示IL- 17水平降低,机体清除感染的能力下降;肺炎链球菌感染早期,吗啡可抑制抗菌蛋白质S100A9和S100A8/A9的分泌。这些结果表明吗啡能引起产生IL-23的DCs和产生IL-17的γδT淋巴细胞的功能紊乱,并导致S100A9和S100A8/A9分泌减少,中性粒细胞募集受损以致引起更严重感染。
     用肺炎链球菌体外细胞感染模型,我们发现用肺炎链球菌、脂磷壁酸和肺炎链球菌溶血素刺激后的骨髓来源的树突状细胞(BMDCs)和巨噬细胞(BMDMs)IL-23蛋白水平显著增加。在BMDCs,吗啡能显著抑制感染诱导的IL-23启动子活性、mRNA和蛋白质水平;脂磷壁酸和胞壁酰二肽联合诱导产生的IL–23与感染诱导的水平相同;用MyD88和IRAK1/4抑制剂,或TLR2抗体预处理后,感染诱导的IL- 23水平明显减少,并且吗啡的抑制作用消除;吗啡能抑制感染诱导的IRF-3、ATF-2和NF-κBp65的磷酸化。这些结果表明吗啡能够削弱肺炎链球菌诱导DCs产生IL-23,这种削弱是通过MyD88-IRAK1/4依赖性的TLR2和Nod2协同的信号传导通路来实现的。
     本研究为发展治疗、干预和控制药物滥用人群肺炎链球菌感染提供了重要理论基础和新颖的方法依据,具有重要的生物学意义和潜在临床应用价值。此项目的长期目标是深入了解调节肺部天然免疫的确切分子机制,以便发展新的有效的辅助疗法来完善标准的治疗方法,提高阿片类药物滥用者的机体免疫功能和肺部抗感染能力。
Streptococcus pneumoniae is a pathogen that causes serious respiratory disease and meningitis in the immunocompromised drug abuse population. However, the precise mechanisms by which drug abuse compromises the host immune defense to pulmonary S. pneumoniae infection is not fully understood. Interleukin-23 (IL-23) has been recently identified as a cytokine closely related to IL-12. IL-23 is secreted by activated macrophages and dendritic cells (DCs) and induces memory T-cell proliferation and is the critical factor required for T-cell IL-17expression in response to bacterial challenge. IL-23 release leads to the production of IL-17. Furthermore, IL-17 promotes neutrophilic inflammation by upregulating CXC chemokines and hematopoietic growth factors. However, whether the IL-23/IL-17 axis contributes to modulating the innate immunity in response to S. pneumoniae lung infection in opiate abuser has not been addressed. Resident lung phagocytic cells, primarily dendritic cells and alveolar macrophages, are likely the first immune cells exposed to S. pneumoniae upon inhalation of the organism into the lungs. Dendritic cells and alveolar macrophages express Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (Nod) receptors. However, how morphine modulates S. pneumoniae induced IL-23 production through TLRs and Nod receptors dependent signaling pathways remain to be elucidated.
     In this study, we used our laboratory’s well-established murine model of opiate abuse and S. pneumoniae lung infection and in vitro cell S. pneumoniae infection model, we explored the influence of morphine treatment on the interleukin-23 (IL-23)/IL-17 axis in vivo study and how morphine treatment modulates S. pneumoniae infection induced IL-23 production in vitro study.
     Chapter1: Morphine impairs innate immune functions related the IL-23/IL-17 axis following S. pneumoniae lung infection
     (1)IL-23 and IL-17 expression during S. pneumoniae lung infection
     IL-23/ IL-17 protein and mRNA levels following S. pneumoniae infection in the lung tissues, BAL fluids and cells were quantified. IL-23 was rapidly released as early as 2 h following S. pneumoniae infection in both the lung tissues and BAL fluids. In the lung tissues, IL-17 was detected within 2 h after S. pneumonia infection. In the BAL fluids, IL-17 was not detectable during the early stages of infection. Furthermore, mRNA levels of IL-23 and IL-17 in the lung tissues were markedly up-regulated by S. pneumoniae infection as early as 2 h.mRNA levels of IL-23 and IL-17 in the BAL cells are similar with protein levels, separately.
     (2)Morphine treatment disrupts pulmonary IL-23 and IL-17 expression in the early stages of S. pneumoniae lung infection
     Morphine treatment caused a decrease in both IL-23 and IL-17 synthesis during the early stages of infection. This decrease in IL-23 and IL-17 production was associated with delayed and decreased neutrophil recruitment into BAL and lung tissues following S.pneumoniae infection, and an increased bacterial burden within the lungs, and the initiation of systemic disease.
     (3)Effect of rIL-17 on clearance of S. pneumoniae infection .Administration of recombinant murine IL-17 (15ng/mouse) significantly improved lung antibacterial host defense and reduced bacterial dissemination to the blood.
     (4)Morphine treatment impairs AMs and DCs IL-23 production in response to in vitro cell infection
     S.pneumoniae infection stimulated IL-23 production by DCs were markedly higher than that by macrophages. Morphine treatment inhibited this response in BMDC.The morphine action on S. pneumoniae induced IL-23 was abolished by naltrexone.
     (5)Morphine inhibits S. pneumoniae-induced IL-23 production through the MyD88-dependent IRF-3, ATF-2, and NF-κB signaling
     MyD88 inhibitor treatment resulted in decreased IL-23 production in a dose dependent manner in BMDCs.Morphine treatment caused a significant decreased in S. pneumoniae induced IL-23 production in BMDCs when pretreated with MyD88 control peptide. However, no difference in IL-23 production was observed between morphine and vehicle treated BMDCs when pretreated with MyD88 inhibitory peptide .Morphine inhibited S.pneumoniae induced IRF-3, ATF-2 and NF-κBp65 phosphorylation.
     (6)γδT cells contribute to IL-17 expression in response to S. pneumoniae lung infection
     S.pneumoniae infection induced IL-23 production in the BAL fluids and lung tissues of both WT and TCRδ-/- mice. Morphine treatment diminished IL-23 production in the early stages of S. pneumoniae infection. However, significant levels of IL-17 production, induced by S. pneumoniae infection, were only detected in the lungs derived from WT mice, but not in the lungs of TCRδ-/- mice. Morphine significantly impaired IL-17 production in S. pneumoniae infected WT mice. The number of live bacteria in the lungs was significantly higher (**p<0.01) in TCRδ-/- mice than in WT mice 24 h postinfection. Morphine treatment in the WT mice resulted in a greater bacterial burden in the BAL and lungs compared to placebo treated WT mice. Interestingly, no difference in bacterial burden was observed between morphine and placebo treatment of TCRδ-/- mice.
     (7) Morphine inhibits the secretion of antimicrobial proteins S100A9 and S100A8/A9
     Morphine treatment markedly decreased S100A9 and S100A8/A9 production in the early stages of S. pneumoniae infection.
     Chapter2: Morphine modulates dendritic cell interleukin 23 production through TR2 and Nod-2 synergistic signaling
     (1)Dendritic cells are main source of IL-23 in response to S. pneumoniae infection
     The levels of IL-23 in the culture supernatants of BMDCs and BMDMs were significantly increased following infection with S. pneumoniae or stimulation with LTA or PLY. CpG or MDP didn’t induce a significant IL-23 production in DCs. The levels of IL-23 were about 6-fold higher in culture supernatants of BMDCs compared to those of BMDMs.
     (2)Morphine modulates the promoter activity, mRNA transcription and protein production of IL-23 induced by S. pneumoniae in DCs through theμ-opioid receptors
     Morphine treatment resulted in an approximately 65 % reduction in IL-23 promoter activity and mRNA levels and more than 50% of IL-23 production when compared with vehicle control in DCs derived from WT mice. Moreover, this morphine effect on IL-23 protein production was completely abolished in DCs derived from MORKO mice.
     (3)Morphine impairs IL-23 production following S. pneumoniae infection through the TLR2 in synergy with Nod2 signaling pathway
     DCs were stimulated with single TLR or Nod2 agonist, or combination of TLRs and Nod2 agonists. The combination of MDP and LTA stimulated a significant IL-23 `production, which was at same level of IL-23 production as S. pneumoniae infection. Morphine treatment significantly inhibited these effects.
     Pretreatment of DCs with anti-TLR2 partially attenuated S. pneumoniae induced IL-23 production. Furthermore, pretreatment of DCs with anti-TLR2 abolished inhibitory effect of morphine on IL-23 production following the infection.
     (4)Effect of S. pneumoniae infection and morphine treatment on the expressions of TLRs
     FACS shows that S. pneumoniae infection induced the TLR2 and 4 expressions in DCs. However, morphine treatment did not significantly alter the expressions of TLRs in DCs.
     (5)Morphine treatment impairs IL-23 production in a MyD88-IRAK1/4 dependent manner
     MyD88 inhibitory peptide significantly inhibited S. pneumoniae induced IL-23 production in a dose dependent manner, Meanwhile MyD88 control peptide did not show a significant effect on IL-23 production. When DCs were pretreated with MyD88 control peptide, morphine treatment resulted in a decrease in S. pneumoniae, LTA and PLY induced IL-23 production. However, when DCs were pretreated with MyD88 inhibitor, no difference in IL-23 production was observed between morphine and vehicle treated DCs following infection with S. pneumoniae or stimulated with LTA or PLY.
     The IRAK1/4 inhibitor caused a clear reduction in IL-23 production following the infection. Pretreatment of DCs with IRAK1/4 inhibitor totally attenuated the inhibitory actions of morphine on IL-23 production following S. pneumoniae
     (6)Morphine treatment modulates the phosphoralytion of ATF-2 and IRF-3 induced by infection with S. pneumoniae or stimulated with TLR2 plus Nod2 ligands
     DCs were infected with S. pneumoniae or stimulated with LTA, MDP or LTA plus MDP for 45 min, then fixed and stained for the subcellular distribution of IRF-3 and ATF-2 using immune-fluorescence staining. We only detected a nuclear translocation of IRF3 and ATF2 in response to infection with S. pneumoniae, and stimulation with LTA plus MDP, or LTA alone. Morphine treatment significantly decreased the phosphorylation of IRF-3 and ATF-2.
     (7)Cyclic AMP is involved in the inhibitory effects of morphine on S. pneumoniae induced IL-23 production
     When compared with non-infected DCs, S. pneumoniae infection didn’t cause an alteration in levels of intracellular cAMP determined by immunoassay. Chronic morphine treatment resulted in a significant increase in intracellular cAMP in DCs. Forskolin treatment significantly inhibited IL-23 production in S. pneumoniae infected DCs, and abolished morphine’s inhibitory effect.
     Conclusion
     Morphine treatment causes a dysfunction in IL-23-producing dendritic cells and macrophages and IL-17-producingγδT lymphocytes in response to S. pneumoniae lung infection. This leads to diminished release of antimicrobial S100A8/A9 proteins, compromised neutrophil recruitment, and more-severe infection. Morphine impairs S. pneumoniae induced IL-23 production through MyD88-IRAK1/4-IRF3 and MyD88-IRAK1/4- ATF2 dependent TLR2 and Nod-2 synergistic signaling in DCs. Morphine-induced increase intracellular cAMP throughμ-opioid receptor may be a potential mechanism by which morphine treatment inhibits S. pneumonia infection induced IL-23 production.
引文
[1] Trine H Mogensen, Randi S Berg, Lars ?stergaard and S?ren R Paludan。Streptococcus pneumoniae stabilizes tumor necrosis factorαmRNA through a pathway dependent on p38 MAPK but independent of Toll-like receptors. [J]. BMC Immunology, 2008, 9:52.
    [2] Tom van der Poll, Steven M Opal.Pathogenesis, treatment, and prevention of pneumococcal pneumonia. [J]. Lancet 2009, 374: 1543–56.
    [3] HirstRA,Kadioglu A,O’Callaghan C,Andrew PW.The role of pneumolysin in pneumococcal pneumonia and meningitis[J].Clin Exp Immunol. ,2004,138:195-201.
    [4] Zhang Q,Bagrade L,BernatonieneJ,et al.Low CD4 T cells immunity to pneumolysin is associated with nasopharyngeal carriage of pneumococci in children[J].J Infect Dis. ,2007,195:1194-202.
    [5] Heumann, D., Barras, C., Severin, A., Glauser, M. P., and Tomasz, A. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes[J].Infect. Immun. ,1994,62:2715–2721.
    [6] Dziarski, R., Jin, Y. P., and Gupta, D. Differential activation of extracellular signal-regulated kinase (ERK) 1, ERK2, p38, and c-Jun NH2-terminal kinase mitogen-activated protein kinases by bacterial peptidoglycan[J].J. Infect. Dis., 1996,174:777–785.
    [7] Gupta, D., Wang, Q., Vinson, C., and Dziarski, R. Bacterial peptidoglycan induces CD14-dependent activation of transcription factors CREB/ATF and AP-1[J].J. Biol. Chem. ,1999, 274:14012–14020.
    [8] Schneider, O., Michel, U., Zysk, G., Dubuis, O., and Nau, R. Clinical outcome in pneumococcal meningitis correlates with CSF lipoteichoic acid concentrations[J]. Neurology.,1999,53:1584–1587.
    [9] Heer, C., Stuertz, K., Reinert, R. R., Mader, M., and Nau, R. Release of teichoic and lipoteichoic acids from 30 different strains of Streptococcus pneumoniae during exposure to ceftriaxone, meropenem, quinupristin/dalfopristin, rifampicin and trovafloxacin[J]. Infection.,2000, 28:13–20.
    [10] van Langevelde, P., van Dissel, J. T., Ravensbergen, E., Appelmelk, B. J.,Schrijver, I. A., and Groeneveld, P. H. Antibiotic-induced release of lipoteichoic acid and peptidoglycan from Staphylococcus aureus: quantitative measurements and biological reactivities[J]. Antimicrob. Agents Chemother.,1998,42:3073–3078.
    [11] G Mancuso, F Tomasello, I Ofek, and G Teti.Anti-lipoteichoic acid antibodies enhance release of cytokines by monocytes sensitized with lipoteichoic acid[J]. Infection and Immunity.,1994, 62(4):1470-1473.
    [12] De Kimpe, S. J., Kengatharan, M., Thiemermann, C., and Vane, J. R. The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure[J].Proc. Natl. Acad. Sci. U. S. A.,1995, 92: 10359–10363.
    [13] Yang, S., Tamai, R., Akashi, S., Takeuchi, O., Akira, S., Sugawara, S., andTakada, H. Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture[J]. Infect. Immun.,2001, 69:2045–2053.
    [14] Scott JM.The White Poppy.A History of Opium[M]. 1st ed. London:Cox and Wyman Ltd, 1969.
    [15] Caiaffa WT, Vlahov D, Graham NM, Astemborski J, Solomon L, Nelson KE, Munoz A. Drug smoking, Pneumocystis carinii pneumonia, and immunosuppression increase risk of bacterial pneumonia in human immunodeficiency virus-seropositive injection drug users[J]. Am J Respir Crit Care Med., 1994,150(6 Pt 1):1493-8.
    [16] Feldman C. Pneumonia associated with HIV infection[J]. Curr Opin Infect Dis.,2005,18(2):165-70.
    [17] Gordon SB, Janoff EN, Sloper D, Zhang Q, Read RC, Zijlstra EE, Finn A, Molyneux ME . HIV-1 infection is associated with altered innate pulmonary immunity[J]. J Infect Dis.,2005,192(8):1412-6.
    [18] Schmeck B, Huber S, Moog K, Zahlten J, Hocke AC, Opitz B, Hammerschmidt S, Mitchell TJ, Kracht M, Rosseau S, Suttorp N, Hippenstiel. S. Pneumococci induced TLR- and Rac1-dependent NF-kappaB-recruitment to the IL-8 promoter in lung epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol.,2006, 290 (4):L730-L737.
    [19] Opitz B, Puschel A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S, Schumann RR, Suttorp N, Hippenstiel S. Nucleotide-binding oligomerizationdomain proteins are innate immune receptors for internalized Streptococcus pneumoniae[J]. J Biol Chem., 2004, 279(35):36426-32.
    [20] Han SH, Kim JH, Martin M, Michalek SM, Nahm MH.Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2[J]. Infect Immun., 2003,71(10):5541-8.
    [21] Schr?der NW, Morath S, Alexander C, Hamann L, Hartung T, Z?hringer U, G?bel UB, Weber JR, Schumann RR. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved[J]. J Biol Chem.,2003, 278(18):15587-94.
    [22] Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2[J]. J Immunol. ,1999,163(1):1-5.
    [23] Khan AQ, Chen Q, Wu ZQ, Paton JC, Snapper CM.Both innate immunity and type 1 humoral immunity to Streptococcus pneumoniae are mediated by MyD88 but differ in their relative levels of dependence on toll-like receptor 2[J]. Infect Immun. ,2005,73(1):298-307.
    [24] van Rossum AM, Lysenko ES, Weiser JN.Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model[J]. Infect Immun. ,2005,73(11):7718-26.
    [25] Srivastava A, Henneke P, Visintin A, Morse SC, Martin V, Watkins C, Paton JC, Wessels MR, Golenbock DT, Malley R.The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease[J]. Infect Immun.,2005,73(10):6479-87.
    [26] Albiger B, Dahlberg S, Sandgren A, Wartha F, Beiter K, Katsuragi H, Akira S, Normark S, Henriques-Normark B.Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection[J]. Cell Microbiol.,2007, 9(3):633-44.
    [27] Kerr AR, Paterson GK, Riboldi-Tunnicliffe A, Mitchell TJ. Innate immune defense against pneumococcal pneumonia requires pulmonary complement component C3[J]. Infect Immun. ,2005,73(7):4245-52.
    [28] Brown JS, Hussell T, Gilliland SM, Holden DW, Paton JC, Ehrenstein MR, Walport MJ, Botto M. The classical pathway is the dominant complement pathwayrequired for innate immunity to Streptococcus pneumoniae infection in mice[J]. Proc Natl Acad Sci U S A., 2002,99(26):16969-74.
    [29] Jounblat R, Clark H, Eggleton P, Hawgood S, Andrew PW, Kadioglu A. The role of surfactant protein D in the colonisation of the respiratory tract and onset of bacteraemia during pneumococcal pneumonia[J]. Respir Res., 2005,6:126.
    [30] Wang E, Simard M, Ouellet N, Bergeron Y, Beauchamp D, Bergeron MG. Pathogenesis of pneumococcal pneumonia in cyclophosphamide-induced leucopenia in mice[J]. Infect Immun. ,2002,70(8):4226-38.
    [31] Fernandez-Serrano S, Dorca J, Coromines M, Carratala J, Gudiol F, Manresa F.Molecular inflammatory responses measured in blood of patients with severe community-acquired pneumonia[J]. Clin Diagn Lab Immunol., 2003,10(5):813-20.
    [32] Rijneveld AW, Lauw FN, Schultz MJ, Florquin S, Te Velde AA, Speelman P, Van Deventer SJ, Van Der Poll T. The role of interferon-gamma in murine pneumococcal pneumonia[J]. J Infect Dis.,2002, 185(1):91-7.
    [33] Khan AQ, Shen Y, Wu ZQ, Wynn TA, Snapper CM.Endogenous pro- and anti-inflammatory cytokines differentially regulate an in vivo humoral response to Streptococcus pneumoniae[J]. Infect Immun., 2002,70(2):749-61.
    [34] van der Sluijs KF, van Elden LJ, Nijhuis M, Schuurman R, Pater JM, Florquin S, Goldman M, Jansen HM, Lutter R, van der Poll T. IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection[J]. J Immunol. ,2004,172(12):7603-9.
    [35] Madsen M, Lebenthal Y, Cheng Q, Smith BL, Hostetter MK.A pneumococcal protein that elicits interleukin-8 from pulmonary epithelial cells[J]. J Infect Dis., 2000,181(4):1330-6.
    [36] Jones MR, Simms BT, Lupa MM, Kogan MS, Mizgerd JP. Lung NF-kappaB activation and neutrophil recruitment require IL-1 and TNF receptor signaling during pneumococcal pneumonia[J]. J Immunol.,2005, 175(11):7530-5.
    [37] Klein M, Paul R, Angele B, Popp B, Pfister HW, Koedel U. Protein expression pattern in experimental pneumococcal meningitis[J]. Microbes Infect.,2006, 8(4):974-83.
    [38] Tsuchiya K, Toyama K, Tsuprun V, Hamajima Y, Kim Y, Ondrey FG, Lin J. Pneumococcal peptidoglycan-polysaccharides induce the expression of interleukin-8 in airway epithelial cells by way of nuclear factor-kappaB, nuclear factorinterleukin-6, or activation protein-1 dependent mechanisms[J]. Laryngoscope., 2007,117(1):86-91.
    [39] Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia[J]. J Immunol., 2002,168(4):1813-22.
    [40] Echchannaoui H, Frei K, Letiembre M, Strieter RM, Adachi Y, Landmann R. CD14 deficiency leads to increased MIP-2 production, CXCR2 expression, neutrophil transmigration, and early death in pneumococcal infection[J]. J Leukoc Biol., 2005,78(3):705-15.
    [41] Wang J, Barke RA, Charboneau R, Schwendener R, Roy S.Morphine induces defects in early response of alveolar macrophages to Streptococcus pneumoniae by modulating TLR9-NF-kappaB signaling[J]. J Immunol.,2008, 180(5):3594-600.
    [42] Kirby AC, Newton DJ, Carding SR, Kaye PM.Evidence for the involvement of lung-specific gammadelta T cell subsets in local responses to Streptococcus pneumoniae infection[J]. Eur J Immunol. ,2007,37(12):3404-13.
    [43] Kerr AR, Kirkham LA, Kadioglu A, Andrew PW, Garside P, Thompson H, Mitchell TJ.Identification of a detrimental role for NK cells in pneumococcal pneumonia and sepsis in immunocompromised hosts[J]. Microbes Infect., 2005, 7(5-6):845-52.
    [44] Kirby AC, Newton DJ, Carding SR, Kaye PM.Pulmonary dendritic cells and alveolar macrophages are regulated by gammadelta T cells during the resolution of S. pneumoniae-induced inflammation[J]. J Pathol.,2007, 212(1):29-37
    [45] Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization[J]. Proc Natl Acad Sci U S A.,2005, 102(13):4848-53.
    [46] Yamamoto M, Takeda K, Akira S.TIR domain-containing adaptors define the specificity of TLR signaling[J]. Mol Immunol., 2004,40(12):861-8.
    [47] Albiger B, Sandgren A, Katsuragi H, Meyer-Hoffert U, Beiter K, Wartha F, Hornef M, Normark S, Normark BH. Myeloid differentiation factor 88-dependent signalling controls bacterial growth during colonization and systemic pneumococcal disease in mice[J]. Cell Microbiol.,2005, 7(11):1603-15.
    [48] Koedel U, Rupprecht T, Angele B, Heesemann J, Wagner H, Pfister HW, Kirschning CJ.MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS[J]. Brain., 2004,127(Pt 6):1437-45.
    [49] Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaB signaling[J]. Immunol Rev. ,2006,210:171-86.
    [50] Wang XW, Tan NS, Ho B, Ding JL.Evidence for the ancient origin of the NF-kappaB/IkappaB cascade: its archaic role in pathogen infection and immunity[J]. Proc Natl Acad Sci U S A. ,2006,103(11):4204-9.
    [51] Grilli M, Chiu JJS, Lenardo MJ. NF-kappaB and Rel: Participants in a multiform transcriptional regulatory system[J]. Int Rev Cytol.,1993, 143: 1–62.
    [52] Godambe SA, Chaplin DD, Takova T, et al. An NF-IL6 sequence near the transcription initiation site is necessary for the lipopolysaccharide induction of murine interleukin-1beta[J]. DNA Cell Biol.,1994, 13: 561–569.
    [53] Hsu W, Kerppola TK, Chien PL, et al. Fos and Jun repress transcription activation by NF-IL6 through association at the basic zipper region[J]. Mol Cell Biol., 1994,14: 268–276.
    [54] Pahl HL, Baeuerle PA. Oxygen and the control of gene expression[J]. Bioessays., 1994, 16: 497–502.
    [55] N'guessan PD, Hippenstiel S, Etouem MO, Zahlten J, Beermann W, Lindner D, Opitz B, Witzenrath M, Rosseau S, Suttorp N, Schmeck B. Streptococcus pneumoniae-induced p38 MAPK- and NF-{kappa}B-dependent COX-2 expression in human lung epithelium[J]. Am J Physiol Lung Cell Mol Physiol., 2006, 290(6):L1131-1138.
    [56] Quinton LJ, Jones MR, Simms BT, Kogan MS, Robson BE, Skerrett SJ, Mizgerd JP. Functions and regulation of NF-kappaB RelA during pneumococcal pneumonia[J].J Immunol., 2007, 178(3):1896-903.
    [57] Kirby AC, Raynes JG, Kaye PM.The role played by tumor necrosis factor during localized and systemic infection with Streptococcus pneumoniae[J]. J Infect Dis. ,2005 ,191(9):1538-47.
    [58] McCool TL, Weiser JN. Limited role of antibody in clearance of Streptococcus pneumoniae in a murine model of colonization[J]. Infect Immun., 2004,72(10): 5807-13.
    [59] AlonsoDeVelasco E, Verheul AF, Verhoef J, Snippe H. Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines[J]. Microbiol Rev., 1995,59(4):591-603.
    [60] Poolman JT.Pneumococcal vaccine development[J]. Expert Rev Vaccines.,2004, 3(5):597-604.
    [61] Jeurissen A, Wuyts G, Kasran A, Ramdien-Murli S, Blanckaert N, Boon L, Ceuppens JL, Bossuyt X. The human antibody response to pneumococcal capsular polysaccharides is dependent on the CD40-CD40 ligand interaction[J]. Eur J Immunol.,2004, 34(3):850-8.
    [62] Jeurissen A, Billiau AD, Moens L, Shengqiao L, Landuyt W, Wuyts G, Boon L, Waer M, Ceuppens JL, Bossuyt X. CD4+ T lymphocytes expressing CD40 ligand help the IgM antibody response to soluble pneumococcal polysaccharides via an intermediate cell type[J]. J Immunol.,2006, 176(1):529-36.
    [63] Khan AQ, Shen Y, Wu ZQ, et al.Endogenous pro- and anti-inflammatory cytokines differentially regulate an in vivo humoral response to Streptococcus pneumoniae[J]. Infect Immun.,2002, 70:749-761.
    [64] Sen G, Khan AQ, Chen Q, Snapper CM.In vivo humoral immune responses to isolated pneumococcal polysaccharides are dependent on the presence of associated TLR ligands[J]. J Immunol.,2005, 175(5):3084-91.
    [65] Wang J, Barke RA, Ma J, Charboneau R, Roy S. Opiate abuse, innate immunity and bacterial infectious diseases[J].Arch Immunol Ther Exp. ,2008,56:1-11.
    [66] Chen SY, Huo QL, Huang JB, Chen ZL, Shi XH, Liao XL.Morphine inhibited respiratory burst of neutrophils and scavenged oxygen free radicals[J]. Zhongguo Yao Li Xue Bao.,1995, 16(5):445-8.
    [67] Liu Y, Blackbourn DJ, Chuang LF, Killam KF Jr, Chuang RY. Effects of in vivo and in vitro administration of morphine sulfate upon rhesus macaque polymorphonuclear cell phagocytosis and chemotaxis[J]. J Pharmacol Exp Ther., 1992, 263(2):533-9.
    [68] Luza J.The effect of morphine on lymphocyte viability in vitro[J]. Acta Univ Palacki Olomuc Fac Med.,1992,134:43-5.
    [69] Miyagi T, Chuang LF, Lam KM, Kung H, Wang JM, Osburn BI, Chuang RY. Opioids suppress chemokine-mediated migration of monkey neutrophils and monocytes - an instant response[J]. Immunopharmacology,2000,47(1):53-62.
    [70] Welters ID, Menzebach A, Goumon Y, Cadet P, Menges T, Hughes TK, Hempelmann G, Stefano GB. Morphine inhibits NF-kappaB nuclear binding in human neutrophils and monocytes by a nitric oxide-dependent mechanism[J]. Anesthesiolog, 2000, 92(6):1677-84.
    [71] Grimm MC, Ben-Baruch A, Taub DD, Howard OM, Wang JM, Oppenheim JJ. Opiate inhibition of chemokine-induced chemotaxis[J]. Ann N Y Acad Sci.,1998 840:9-20.
    [72] Singhal PC, Bhaskaran M, Patel J, Patel K, Kasinath BS, Duraisamy S, Franki N, Reddy K, Kapasi AA.Role of p38 mitogen-activated protein kinase phosphorylation and Fas-Fas ligand interaction in morphine-induced macrophage apoptosis[J]. J Immunol., 2002, 168:4025-4033.
    [73] Singhal PC, Kapasi AA, Franki N, Reddy K. Morphine-induced macrophage apoptosis: the role of transforming growth factor-beta[J]. Immunology, 2000, 100:57-62.
    [74] Martucci C, Franchi S, Lattuada D, Panerai AE, Sacerdote P. Differential involvement of RelB in morphine-induced modulation of chemotaxis, NO, and cytokine production in murine macrophages and lymphocytes[J]. J Leukoc Biol.,2007, 81:344-354.
    [75] Fecho K, Lysle DT.Phenotypic analysis of splenocyte subsets following acute morphine treatment in the rat[J]. Cell Immunol.,1999,195:137-146.
    [76] Carr DJ, France CP. Immune alterations in morphine-treated rhesus monkeys[J]. J Pharmacol Exp Ther.,1993,267:9-15.
    [77] Messmer D, Hatsukari I, Hitosugi N, Schmidt-Wolf IG, Singhal PC.Morphine reciprocally regulates IL-10 and IL-12 production by monocyte-derived human dendritic cells and enhances T cell activation[J]. Mol Med.,2006,12:284-290.
    [78] Olin MR, Choi K, Lee J, Peterson PK, Molitor TW.Morphine modulates gammadelta lymphocytes cytolytic activity following BCG vaccination[J]. Brain Behav Immun. ,2007,21:195-201.
    [79] Wang J, Charboneau R, Balasubramanian S, Barke RA, Loh HH, Roy S. The immunosuppressive effects of chronic morphine treatment are partially dependent on corticosterone and mediated by the mu-opioid receptor[J]. J Leukoc Biol. ,2002, 71(5):782-90.
    [80] Roy S, Balasubramanian S, Sumandeep S, Charboneau R, Wang J, Melnyk D, Beilman GJ, Vatassery R, Barke RA. Morphine directs T cells toward T(H2) differentiation[J]. Surgery,2001, 130(2):304-9.
    [81] Wang J, Charboneau R, Balasubramanian S, Barke RA, Loh HH, Roy S. Morphine modulates lymph node-derived T lymphocyte function: role of caspase-3, -8, and nitric oxide[J]. J Leukoc Biol.,2001, 70(4):527-36.
    [82] Wang J, Barke RA, Charboneau R, Loh HH, Roy S. Morphine negatively regulates interferon-gamma promoter activity in activated murine T cells through two distinct cyclic AMP-dependent pathways[J]. J Biol Chem.,2003, 278(39):37622-31.
    [83] Wang J, Barke RA, Roy S.Transcriptional and epigenetic regulation of interleukin-2 gene in activated T cells by morphine[J]. J Biol Chem.,2007, 282(10):7164-71.
    [84] Vassou D, Bakogeorgou E, Kampa M, Dimitriou H, Hatzoglou A, Castanas E. Opioids modulate constitutive B-lymphocyte secretion[J]. Int Immunopharmacol., 2008, 8(5):634-44.
    [85] Beagles K, Wellstein A, Bayer B.Systemic morphine administration suppresses genes involved in antigen presentation[J]. Mol Pharmacol.,2004, 65(2):437-42.
    [86] Surratt CK, Adams WR. G protein-coupled receptor structural motifs: relevance to the opioid receptors[J]. Curr Top Med Chem. ,2005,5(3):315-24.
    [87] Sedqi, M., Roy, S., Ramakrishnan, S., Elde, R., Loh, H. H.Complementary DNA cloning of a mu-opioid receptor from rat peritoneal macrophages Biochem[J]. Biophys. Res. Commun.,1995, 209:563-574.
    [88] Madden, J. J., Ketelsen, D., Whaley, W. L. Morphine binding sites on human T lymphocytes[J]. Adv. Exp. Med.,1993, 335:61-66.
    [89] Chuang, T. K., Killam, K. F., Jr, Chuang, L. F., Kung, H. F., Sheng, W. S., Chao, C. C., Yu, L., Chuang, R. Y. Mu opioid receptor gene expression in immune cells[J]. Biochem Biophys. Res. Commun. ,1995, 216:922-930.
    [90] Makman, M. H., Bilfinger, T. V., Stefano, G. B. Human granulocytes contain an opiate alkaloid-selective receptor mediating inhibition of cytokine-induced activation and chemotaxis[J]. J. Immunol. ,1995,154:1323-1330.
    [91] Li H, Liu H, Wang Z, Liu X, Guo L, Huang L, Gao L, McNutt MA, Li G. The role of transcription factors Sp1 and YY1 in proximal promoter region in initiation of transcription of the mu opioid receptor gene in human lymphocytes[J]. J Cell Biochem. ,2008,104(1):237-50.
    [92] Roy S, Wang J, Balasubramanian S, Sumandeep, Charboneau R, Barke R, Loh HH. Role of hypothalamic-pituitary axis in morphine-induced alteration in thymic cell distribution using mu-opioid receptor knockout mice[J]. J Neuroimmunol.,2001, 116(2):147-55.
    [93] Hall DM, Suo JL, Weber RJ. Opioid mediated effects on the immune system: sympathetic nervous system involvement[J]. J Neuroimmunol.,1998, 83(1-2):29-35.
    [94] Wang J, Charboneau R, Barke RA, Loh HH, Roy S. Mu-opioid receptor mediates chronic restraint stress-induced lymphocyte apoptosis[J]. J Immunol.,2002, 169(7):3630-6.
    [95] El-Sharif A, Ashour HM.Community-acquired Methicillin-resistant S. aureus (CA-MRSA) colonization and infection in intravenous and inhalational opiate drug abusers[J].Exp Biol Med (Maywood).,2008, 233(7):874-80.
    [96] Boschini, A., C. Smacchia, M. Di Fine, A. Schiesari, P. Ballarini, M. Arlotti, C. Gabrielli, G. Castellani, M. Genova, P. Pantani.Community-acquired pneumonia in a cohort of former injection drug users with and without human immunodeficiency virus infection: incidence, etiologies, and clinical aspects[J]. Clin. Infect. Dis.,1996, 23:107-113.
    [97] Perlman DC, Salomon N, Perkins MP, Yancovitz S, Paone D, Des Jarlais DC. Tuberculosis in drug users[J]. Clin Infect Dis.,1995, 21:1253-1264.
    [98] Hind CR.Pulmonary complications of intravenous drug misuse. 2. Infective and HIV related complications[J].Thorax.,1990, 45:957-961.
    [99] McIlroy MA, Reddy D, Markowitz N, Saravolatz LD. Infected false aneurysms of the femoral artery in intravenous drug addicts[J]. Rev Infect Dis.,1989, 11:578-585.
    [100] Ting AC, Cheng SW.Femoral pseudoaneurysms in drug addicts[J].World J Surg.,1997, 21:783-786.
    [101] Belzunegui J, Rodríguez-Arrondo F, González C, Queiro R, Martínez de Bujo M, Intxausti JJ, De Dios JR, Figueroa M.Musculoskeletal infections in intravenous drug addicts: report of 34 cases with analysis of microbiological aspects and pathogenic mechanisms[J]. Clin Exp Rheumatol.,2000,18:383-386.
    [102] Guarner J, Bartlett J, Reagan S, Fischer M, Finn S, O'Briain DS, Black M, Hood J, Zaki SR.Immunohistochemical evidence of Clostridium sp, Staphylococcusaureus, and group A Streptococcus in severe soft tissue infections related to injection drug use[J]. Hum Pathol., 2006,37:1482-1488.
    [103] Wang J, Barke RA, Charboneau R, Roy S.Morphine impairs host innate immune response and increases susceptibility to Streptococcus pneumoniae lung infection[J]. J Immunol., 2005, 174(1):426-34.
    [104] Tubaro E, Borelli G, Croce C, Cavallo G, Santiangeli C. Effect of morphine on resistance to infection[J]. J Infect Dis.,1983,148:656–666.
    [105] Chao CC, Sharp BM, Pomeroy C, Filice GA, Peterson PK.Lethality of morphine in mice infected with Toxoplasma gondii[J]. J Pharmacol Exp Ther.,1990, 252:605-609.
    [106] Feng P, Rahim RT, Cowan A, Liu-Chen LY, Peng X, Gaughan J, Meissler JJ Jr, Adler MW, Eisenstein TK.Effects of mu, kappa or delta opioids administered by pellet or pump on oral Salmonella infection and gastrointestinal transit[J].Eur J Pharmacol.,2006, 534:250-257.
    [107] Szabo I, Rojavin M, Bussiere JL, Eisenstein TK, Adler MW, Rogers TJ. Suppression of peritoneal macrophage phagocytosis of Candida albicans by opioids[J]. J Pharmacol Exp Ther.,1993, 267:703-706.
    [108] Lee HC, Lee NY, Chang CM, Chou CY, Wu YH, Wang LR, Ko NY, Liu CC, Ko WC.Outbreak of Acinetobacter baumannii bacteremia related to contaminated morphine used for patient-controlled analgesia[J].Infect Control Hosp Epidemiol., 2007, 28:1213-1217.
    [109] Asakura H, Kawamoto K, Igimi S, Yamamoto S, Makino S.Enhancement of mice susceptibility to infection with Listeria monocytogenes by the treatment of morphine[J].Microbiol Immunol.,2006, 50:543-547.
    [110] Risdahl JM, Peterson PK, Chao CC, Pijoan C, Molitor TW.Effects of morphine dependence on the pathogenesis of swine herpesvirus infection[J]. J Infect Dis.,1993, 167(6):1281-7.
    [111] Weeks BS, Alston NI, Cadet P, Zhu W, Rialas C, Stefano GB.Morphine reduces herpes simplex virus-1 pathogenesis in the murine flank[J]. Int J Mol Med.,2001, 8(3):303-307.
    [112] Backmund M, Meyer K, Schuetz C, Reimer J.Factors associated with exposure to hepatitis B virus in injection drug users[J]. Drug Alcohol Depend,2006, 84(2): 154-159.
    [113] Wang CQ, Li Y, Douglas SD, Wang X, Metzger DS, Zhang T, Ho WZ. Morphine withdrawal enhances hepatitis C virus replicon expression[J]. Am J Pathol.,2005, 167(5):1333-40.
    [114] Starec M, Sinet M, Kodym P, Rosina J, Fiserova A, Desforges B, Rouveix B. The effect of drugs on the mortality of mice inoculated with Friend leukaemia virus or toxoplasma gondii[J]. Physiol Res.,1997, 46(2):107-11.
    [115] Veyries ML, Sinet M, Desforges B, Rouveix B.Effects of morphine on the pathogenesis of murine Friend retrovirus infection[J]. J Pharmacol Exp Ther.,1995, 272(2):498-504.
    [116] Durante AJ, Selwyn PA, O'Connor PG.Risk factors for and knowledge of Mycobacterium tuberculosis infection among drug users in substance abuse treatment[J]. Addiction,1998, 93:1393-1401.
    [117] Peterson PK, Gekker G, Hu S, Sheng WS, Molitor TW, Chao CC. Morphine stimulates phagocytosis of Mycobacterium tuberculosis by human microglial cells: involvement of a G protein-coupled opiate receptor[J].Adv Neuroimmunol., 1995, 5:299-309.
    [118] Singh RP, Jhamb SS, Singh PP.Effects of morphine during Mycobacterium tuberculosis H37Rv infection in mice[J]. Life Sci.,2008, 82:308-314.
    [119] Oppmann B, Lesley R, Blom B, Timans JC, Xu YM, Hunte B,Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T,Liu MR, Gorman D, Wagner J, Zurawski S, Liu YJ, Abrams JS, Moore KW, Rennick D, de W-M Rene, Hannum C, Bazan JF, and Kastelein R A.Novel p19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as Well as Distinct from IL-12[J]. Immunity, 2000,13: 715–725.
    [120] Aggarwal S, Ghilardi N, Xie MH, de Sauvage F J, and Gurney AL.Interleukin-23 Promotes a Distinct CD4 T Cell Activation State Characterized by the Production of Interleukin-17[J]. The Journal of Biological Chemistry, 2003, 278(3):1910-1914.
    [121] Happel K I, Zheng M, Young E, Quinton LJ, Lockhart E ,Alistair J R, Judd ES, Jill RS, Gregory JB, Steve N, and Jay KK. Cutting Edge: Roles of Toll-Like Receptor 4 and IL-23 in IL-17 Expression in Response to Klebsiella pneumoniae Infection[J].J. Immunol., 2003,170:4432-4436.
    [113] Wang CQ, Li Y, Douglas SD, Wang X, Metzger DS, Zhang T, Ho WZ. Morphine withdrawal enhances hepatitis C virus replicon expression[J]. Am J Pathol.,2005, 167(5):1333-40.
    [114] Starec M, Sinet M, Kodym P, Rosina J, Fiserova A, Desforges B, Rouveix B. The effect of drugs on the mortality of mice inoculated with Friend leukaemia virus or toxoplasma gondii[J]. Physiol Res.,1997, 46(2):107-11.
    [115] Veyries ML, Sinet M, Desforges B, Rouveix B.Effects of morphine on the pathogenesis of murine Friend retrovirus infection[J]. J Pharmacol Exp Ther.,1995, 272(2):498-504.
    [116] Durante AJ, Selwyn PA, O'Connor PG.Risk factors for and knowledge of Mycobacterium tuberculosis infection among drug users in substance abuse treatment[J]. Addiction,1998, 93:1393-1401.
    [117] Peterson PK, Gekker G, Hu S, Sheng WS, Molitor TW, Chao CC. Morphine stimulates phagocytosis of Mycobacterium tuberculosis by human microglial cells: involvement of a G protein-coupled opiate receptor[J].Adv Neuroimmunol., 1995, 5:299-309.
    [118] Singh RP, Jhamb SS, Singh PP.Effects of morphine during Mycobacterium tuberculosis H37Rv infection in mice[J]. Life Sci.,2008, 82:308-314.
    [119] Oppmann B, Lesley R, Blom B, Timans JC, Xu YM, Hunte B,Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T,Liu MR, Gorman D, Wagner J, Zurawski S, Liu YJ, Abrams JS, Moore KW, Rennick D, de W-M Rene, Hannum C, Bazan JF, and Kastelein R A.Novel p19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as Well as Distinct from IL-12[J]. Immunity, 2000,13: 715–725.
    [120] Aggarwal S, Ghilardi N, Xie MH, de Sauvage F J, and Gurney AL.Interleukin-23 Promotes a Distinct CD4 T Cell Activation State Characterized by the Production of Interleukin-17[J]. The Journal of Biological Chemistry, 2003, 278(3):1910-1914.
    [121] Happel K I, Zheng M, Young E, Quinton LJ, Lockhart E ,Alistair J R, Judd ES, Jill RS, Gregory JB, Steve N, and Jay KK. Cutting Edge: Roles of Toll-Like Receptor 4 and IL-23 in IL-17 Expression in Response to Klebsiella pneumoniae Infection[J].J. Immunol., 2003,170:4432-4436.
    [131] Chung DR, Kasper DL, Panzo RJ, Chitnis T, Grusby MJ, Sayegh MH, Tzianabos AO.CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism[J]. J Immunol. ,2003,170(4):1958-63.
    [132] Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y.Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production[J]. J Immunol.,2007, 178(7):4466-72.
    [133] Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, Locksley RM, Haynes L, Randall TD, Cooper AM.L-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge[J]. Nat Immunol.,2007, 8(4):369-77.
    [134] Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, Chu HW.IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection[J]. Microbes Infect.,2007, 9(1):78-86.
    [135] Orgun NN, Mathis MA, Wilson CB, Way SS.Deviation from a strong Th1-dominated to a modest Th17-dominated CD4 T cell response in the absence of IL-12p40 and type I IFNs sustains protective CD8 T cells[J]. J Immunol.,2008, 80(6):4109-15.
    [136] Carmody, R. J., Q. Ruan, H. C. Liou, and Y. H. Chen. 2007. Essential roles of c-Rel in TLR-induced IL-23 p19 gene expression in dendritic cells[J]. J. Immunol. 178: 186–191.
    [137] Mise-Omata, S., E. Kuroda, J. Niikura, U. Yamashita, Y. Obata, and T. S. Doi. A proximal kappaB site in the IL-23 p19 promoter is responsible for RelA- and c-Rel-dependent transcription[J]. J. Immunol.2007, 179: 6596–6603.
    [138] Fahd Al-Salleeh and Thomas M. Petro.Promoter Analysis Reveals Critical Roles for SMAD-3 and ATF-2 in Expression of IL-23 p19 in Macrophages[J].The Journal of Immunology, 2008, 181: 4523–4533.
    [139] Hiscott J. Triggering the innate antiviral response through IRF-3 activation[J].J Biol Chem, 2007, 282(21): 15325-15329.
    [140] Vila-Corcoles A, Ochoa-Gondar O, Rodriguez-Blanco T, Raga-Luria X, Gomez-Bertomeu F; EPIVAC Study Group. Epidemiology of community-acquiredpneumonia in older adults: a population-based study[J]. Respir Med.,2009, 103:309-316.
    [141] Roy S, Wang J, Kelschenbach J, Koodie L, Martin J.Modulation of immune function by morphine: implications for susceptibility to infection[J]. J Neuroimmune Pharmacol. ,2006,1:77-89.
    [142] Wang J, Barke RA, Charboneau R, Schwendener R, Roy S.Morphine induces defects in early response of alveolar macrophages to Streptococcus pneumoniae by modulating TLR9-NF-kappa B signaling[J]. J Immunol.,2008, 180:3594-3600.
    [143] Wang J, Barke RA, Charboneau R, Roy S.Morphine impairs host innate immune response and increases susceptibility to Streptococcus pneumoniae lung infection[J]. J Immunol.,2005, 174:426-434.
    [144] Beadling C, Slifka MK.Regulation of innate and adaptive immune responses by the related cytokines IL-12, IL-23, and IL-27[J]. Arch Immunol Ther Exp (Warsz).,2006,54:15-24.
    [145] Lemos HP, Grespan R, Vieira SM, Cunha TM, Verri WA Jr, Fernandes KS, Souto FO,McInnes IB, Ferreira SH, Liew FY, Cunha FQ.Prostaglandin mediates IL-23/IL-17-induced neutrophil migration in inflammation by inhibiting IL-12 and IFNgamma production[J]. Proc Natl Acad Sci U S A.,2009, 106:5954-5959.
    [146] Aujla SJ, Dubin PJ, Kolls JK.Th17 cells 1 and mucosal host defense[J]. Semin Immunol.,2007, 19:377-382.
    [147] Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ, Odden AR, Shellito JE, Bagby GJ, Nelson S, Kolls JK.Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae[J]. J Exp Med.,2005, 202:761-769.
    [148] Happel KI, Zheng M, Young E, Quinton LJ, Lockhart E, Ramsay AJ, Shellito JE, Schurr JR, Bagby GJ, Nelson S, Kolls JK.Cutting edge: roles of Toll like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection[J]. J Immunol., 2003, 170:4432-4436.
    [149] Dubin PJ, Kolls JK. IL-23 mediates inflammatory responses to mucoid pseudomonas aeruginosa lung infection in mice[J]. Am J Physiol Lung Cell Mol Physiol. ,2007,292:L519-528.
    [150] Yu JJ, Ruddy MJ, Conti HR, Boonanantanasarn K, Gaffen SL. The interleukin-17 receptor plays a gender-dependent role in host protection against Porphyromonas gingivalis-induced periodontal bone loss[J]. Infect Immun. ,2008,76:4206-4213.
    [151] Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT.Transforming growth factor beta induces development of the T(H)17 lineage[J]. Nature,2006,441:231-234.
    [152] Chung DR, Kasper DL, Panzo RJ, Chitnis T, Grusby MJ, Sayegh MH,Tzianabos AO.CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism[J]. J Immunol., 2003, 170:1958-1963.
    [153] Shibata K, Yamada H, Hara H, Kishihara K , Yoshikai Y.Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production[J]. J Immunol.,2007, 178:4466-4472.
    [154] Dong C.IL-23/IL-17 biology and therapeutic considerations[J]. J Immunotoxicol., 2008,5:43-46.
    [155] Zhang Z, Clarke TB, Weiser JN.Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice[J]. J Clin Invest.,2009, 119:1899-1909.
    [156] Lu YJ, Gross J, Bogaert D, Finn A, Bagrade L, Zhang Q, Kolls JK, Srivastava A, Lundgren A, Forte S, Thompson CM, Harney KF, Anderson PW. Lipsitch M, Malley R. Interleukin-17A mediates acquired immunity to pneumococcal colonization[J]. PLoS Pathog., 2008, 4(9):e1000159.
    [157] Dighe SV, Madia PA, Sirohi S, Yoburn BC.Continuous morphine produces more tolerance than intermittent or acute treatment[J]. Pharmacol Biochem Behav., 2009,92:537-542.
    [158] Chen TC, Cheng YY, Sun WZ, Shyu BC.Differential regulation of morphine antinociceptive effects by endogenous enkephalinergic system in the forebrain of mice[J]. Mol Pain.,2008, 4:41-59.
    [159] Osikowicz M, Mika J, Makuch W, Przewlocka B.Glutamate receptor ligands attenuate allodynia and hyperalgesia and potentiate morphine effects in a mouse model of neuropathic pain[J]. Pain,2008,139:117-126.
    [160] Rook EJ, van Ree JM, van den Brink W, Hillebrand MJ, Huitema AD, Hendriks VM, Beijnen JH.Pharmacokinetics and pharmacodynamics of high doses of pharmaceutically prepared heroin, by intravenous or by inhalation route in opioid dependent patients[J]. Basic Clin Pharmacol Toxicol.,2006,98:86-96.
    [161] Tiseo PJ, Thaler HT, Lapin J, Inturrisi CE, Portenoy RK, Foley KM.Morphine-6-glucuronide concentrations and opioid-related side effects: a survey in cancer patients[J]. Pain,1995,61:47-54.
    [162] Lutz MB, Kukutsch N, Ogilvie AL, R?ssner S, Koch F, Romani N, Schuler G.An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow[J]. J Immunol Methods.,1999, 223:77-92.
    [163] Loiarro M, C Sette, G Gallo, A Ciacci, N Fantò, D Mastroianni, P Carminati, and V Ruggiero.Peptide-mediated interference of tir domain dimerization in myd88 inhibits IL-1-dependent activation of NF-κB[J]. J Biol Chem.,2005, 16:15809-15814.
    [164] Iwamura T, Yoneyama M, Yamaguchi K, Suhara W, Mori W, Shiota K, Okabe Y, Namiki H, Fujita T. Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways[J].Genes Cells,2001,6:375-388.
    [165] Paterson GK, Mitchell TJ.Innate immunity and the pneumococcus[J]. Microbiology, 2006,152(Pt 2):285-293.
    [166] Roark CL, Simonian PL, Fontenot AP, Born WK, O'Brien RL. gammadelta T cells: an important source of IL-17[J]. Curr Opin Immunol.,2008, 20:353-57.
    [167] Braun RK, Ferrick C, Neubauer P, Sjoding M, Sterner-Kock A, Kock M, Putney L, Ferrick DA, Hyde DM, Love RB.IL-17 producing gammadelta T cells are required for a controlled inflammatory response after bleomycin-induced lung injury[J]. Inflammation, 2008, 31:167-179.
    [168] Albiger B, Sandgren A, Katsuragi H, Meyer-Hoffert U, Beiter K, Wartha F,Hornef M, Normark S, Normark BH.Myeloid differentiation factor 88-dependent signalling controls bacterial growth during colonization and systemic pneumococcal disease in mice[J]. Cell Microbiol.,2005, 7:1603-1615.
    [169] Carmody RJ, Ruan Q, Liou HC, Chen YH.Essential roles of c-Rel in TLR induced IL-23 p19 gene expression in dendritic cells[J]. J Immunol.,2007, 178:186-91.
    [170] Aras Kadioglu, Jeffrey N. Weiser, James C. Paton and Peter W. Andrew.The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease[J]. Nature Reviews Microbiology,2008, 6:288-301.
    [171] MA Valdivia-Arenas, A Amer, LN Henning, MD Wewers, and LS Schlesinger. Lung infections and innate host defense[J]. Drug Discov Today Dis Mech., 2007, 4(2): 73–81.
    [172] Richard Malley,Philipp Henneke, Sarah C. Morse,Michael J. Cieslewicz,Marc Lipsitch,Claudette M. Thompson, Evelyn Kurt-Jones, James C. Paton,Michael R. Wessels,and Douglas T. Golenbock.Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal Infection [J]..Proc Natl Acad Sci U S A., 2003, 100(4): 1966–1971.
    [173] Schr?der NW, Morath S, Alexander C, Hamann L, Hartung T, Z?hringer U, G?bel UB, Weber JR, Schumann RR.Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved[J]. J Biol Chem.,2003, 278(18):15587-94.
    [174] Gavin K. Paterson and Tim J. Mitchell.Innate immunity and the pneumococcus [J]. Microbiology, 2006, 152:285–293.
    [175] Barbara Albiger, Sofia Dahlberg, Andreas Sandgren, Florian Wartha, Katharina Beiter, Hiroaki Katsuragi, Shizuo Akira,Staffan Normark and Birgitta Henriques-Normark.Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection[J].Cellular Microbiology,2007,9(3): 633–644.
    [176] Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nu?ez G, Inohara N. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid [J]. Nat Immunol., 2003 ,4(7):702-7.
    [177] Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nu?ez G.Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease [J]. J Biol Chem. , 2003, 278(8):5509-12.
    [178] Bastian Opitz, Anja Püschel, Bernd Schmeck, Andreas C. Hocke, Simone Rosseau, Sven Hammerschmidt, Ralf R. Schumann, Norbert Suttorpand Stefan Hippenstiel. Nucleotide-binding Oligomerization Domain Proteins Are Innate Immune Receptors for Internalized Streptococcus pneumoniae[J]. The Journal of Biological Chemistry, 2004, 279 (35):36426–36432.
    [179] Roy, S., Barke, R. A., and Loh, H. H.MU-opioid receptor-knockout mice: role of m-opioid receptor in morphine mediated immune functions[J]. Molecular Brain Research, 1998, 61:190–194.
    [180] Xia Zhang, Ricardo Goncalves, and David M. Mosser.The Isolation and Characterization of Murine Macrophages[J].Curr Protoc Immunol., 2008,CHAPTER: Unit–14.1.
    [181] Braun, J.S., Novak, R., Gao, G., Murray, P.J., and Shenep, J.L. Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages[J]. Infect. Immun.1999, 67:3750–3756.
    [182] Ruaidhr?′J. Carmody, Qingguo Ruan,Hsiou-Chi Liou, and Youhai H. Chen。Essential Roles of c-Rel in TLR-Induced IL-23 p19 Gene Expression in Dendritic Cells[J].The Journal of Immunology, 2007, 178: 186–191.
    [183] Knapp, S., C. W. Wieland, C. van't Veer, O. Takeuchi, S. Akira, S. Florquin, T. van der Poll.Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense[J]. J. Immunol., 2004, 172: 3132-3138.
    [184] Branger, J., S. Knapp, S. Weijer, J. C. Leemans, J. M. Pater, P. Speelman, S. Florquin, T. van der Poll.Role of Toll-like receptor 4 in Gram-positive and Gram-negative pneumonia in mice[J]. Infect. Immun.,2004, 72: 788-794.
    [185] Albiger, B., S. Dahlberg, A. Sandgren, F. Wartha, K. Beiter, H. Katsuragi, S. Akira, S. Normark, B. Henriques-Normark.Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection[J]. Cell Microbiol.,2007,9: 633-644.
    [186] Dessing, M. C., S. Florquin, J. C. Paton, T. van der Poll.Toll-like receptor 2 contributes to antibacterial defence against pneumolysin-deficient pneumococci [J]. Cell Microbiol., 2008, 10: 237-246.
    [187] Moreira LO, El Kasmi KC, Smith AM, Finkelstein D, Fillon S, Kim YG, Nú?ez G,Tuomanen E, Murray PJ. The TLR2-MyD88-NOD2-RIPK2 signalling axis regulates a balanced pro-inflammatory and IL-10-mediated anti-inflammatory cytokine response to Gram-positive cell walls [J]. Cell Microbiol., 2008,10:2067-77.
    [188] Vu Thuy Khanh Le, Mirko Trilling, Albert Zimmermann and Hartmut Hengel Mouse cytomegalovirus inhibits beta interferon (IFN-β) gene expression andcontrols activation pathways of the IFN-βenhanceosome [J].Journal of General Virology , 2008, 89:1131–1141.
    [189] Thornik Reimer, Matthias Schweizer, and Thomas W. Jungi.Type I IFN Induction in Response to Listeria monocytogenes in Human Macrophages: Evidence for a Differential Activation of IFN Regulatory Factor 3 (IRF3) [J]. The Journal of Immunology, 2007, 179: 1166–1177.
    [190] Jinghua Wang, Roderick A. Barke, Richard Charboneau, Horace H. Loh, and Sabita Roy.Morphine Negatively Regulates Interferon-γPromoter Activity in Activated Murine T Cells through Two Distinct Cyclic AMP-dependent Pathways[J]. The Journal of biological Chemistry, 2003, 278(39): 37622–37631.
    [191] Masahiro Yamamoto, Kiyoshi Takeda,Shizuo Akira.TIR domain-containing adaptors define the specificity of TLR signaling[J]. Molecular Immunology .2004, 40:861–868.
    [192] Katherine S. Lee, Charles A. Scanga, Eric M. Bachelder, Quanyi Chen, and Clifford M.Snapper.TLR2 synergizes with both TLR4 and TLR9 for induction of the MyD88-dependent splenic cytokine and chemokine response to Streptococcus pneumoniae[J]. Cell Immunol. 2007, 245(2): 103–110.
    [193] Picard C, von Bernuth H, Ku CL, Yang K, Puel A, Casanova JL.Inherited human IRAK-4 deficiency: an update[J].Immunol Res. 2007;38(1-3):347-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700