用户名: 密码: 验证码:
菌丝霉素的异源表达、抑菌机理及其构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菌丝霉素(Plectasin)是从腐生子囊菌(the saprophytic ascomycete Pseudoplectania nigrella)中分离得到首例真菌防御素,Plectasin具有有效的抗革兰氏阳性菌且无溶血性等功能,是一种具有治疗潜能的肽抗生素。
     本文重点研究了Plectasin的大肠杆菌高效融合表达、性质功能、二硫键构效关系及其抑菌机理。取得主要结果如下:
     1)通过整合三个影响表达的关键策略:抗菌肽基因的宿主密码子优化、硫氧还蛋白融合表达和柱上切割,成功实现了一个富含二硫键Plectasin基因在大肠杆菌中的高效表达。融合蛋白Trx-Plectasin的表达水平为细胞总蛋白的53.6%,约58.5%的融合蛋白以可溶形式表达。经亲和层析纯化到均一的融合蛋白。采用Xa因子柱上酶切融合蛋白有效获得重组的Plectasin,质谱分析重组Plectasin的分子量与其理论分子量相符。经凝胶过滤层析和反相高效液相色谱有效获得高纯度的plectasin。
     2)从折叠、氧化还原、热处理、离子影响、最小抑菌试验和溶血性试验等方面研究了Plectasin的性质及功能。Plectasin在含有鏊合剂EDTA和甘油的TGE缓冲液中折叠效率远高于在HAc缓冲液中折叠效率,在HAc缓冲液中添加Arg对Plectasin的折叠有一个重要的正效应。氧化还原和热处理结果表明破坏Plectasin二硫键影响其稳定性进而影响其抗菌活性。离子影响实验结果表明一价阳离子对Plectasin的抗菌活性没有影响,二价阳离子能强烈影响Plectasin的抗菌活性,其中钙离子的影响明显比镁离子强;最小抑菌实验结果表明重组的plectasin可以有效抑制革兰氏阳性菌,但对革兰氏阴性菌和丝状真菌基本没有抗菌活性。溶血实验结果表明Plectasin对兔的红细胞无溶血性。
     3)采用丙氨酸突变成对半胱氨酸的方法设计Plectasin二硫键突变体,结合生物信息学工具对其一级和二级结构参数进行预测,同时采用毕赤酵母X-33分泌重组表达Plectasin及其二硫键突变体,研究不同二硫键对Plectasin抗菌活性的影响,结果表明不同二硫键对Plectasin的抗菌活性影响程度不同, C1-C4二硫键对其抗菌活性影响最大,C3-C6二硫键影响次之,C2-C5影响最小。
     4)通过离子影响试验、形态学观察以及凝胶阻滞试验,初步推论Plectasin对金黄色葡萄球菌的抑菌机理为:Plectasin不具有与细胞内物质DNA结合的能力,其与细胞表面的作用方式并非简单的静电相互吸引作用,而主要通过特异性与细胞壁上的二价阳离子结合位点如磷壁酸(TA)和脂磷壁酸发生反应,竞争性取代在细胞壁起桥梁和电荷中和作用的二价阳离子,如Ca2+和Mg2+离子,1)可能导致细胞壁紊乱,增加了细胞壁的渗透性,形成孔洞,内容物渗漏,最后导致整个细胞的裂解死亡;2)也可能是通过取代和激活自溶素,导致溶菌酶的失控降解,使细胞自发裂解死亡。
     总之,本研究成功实现了一个富含二硫键Plectasin基因在大肠杆菌中的高效表达,为生产富含二硫键的防御素提供了一个有效的平台;证实了Plectasin二硫键影响其稳定性进而影响其抗菌活性,且不同二硫键对Plectasin的抗菌活性影响的程度不同;提出了Plectasin特异性结合细胞壁上的二价阳离子结合位点如磷壁酸(TA)和脂磷壁酸的抑菌机理,为阐明Plectasin的作用机制奠定基础。这些结果对于抗革兰氏阳性菌病特别是链球菌病的预防药物新产品的开发提供理论依据,促进Plectasin在防控链球菌病上的应用。
Plectasin with potent activity against Gram-positive bacteria but no hemolytic activity, the first defensin-type antimicrobial peptide isolated from a saprophytic fungus, was an inoffensive antibiotic with therapeutic potential.
     The Escherichia coli (E. coli) fusion expression, characterization, functions, the disulfide structure-activity relationship and anti-Staphylococcus aureus (S. aureus) mechanism of plectasin were studied in this paper. The main results are as follows:
     1) In this study, we present the high-level expression of Cys-rich plectasin in E. coli by the integration of three key strategies: codon usage bias, fusion partner and on-column cleavage. The expression level of the fusion protein Trx-plectasin accounted for 53.6% of cellular protein, and about 58.5% of the target proteins were in a soluble form. The soluble fusion protein was easily purified to near homogeneity by affinity chromatography using hexahistidine tag. Recombinant plectasin was effectively obtained by on-column cleavage of the fusion protein with factor Xa. The molecular mass of recombinant plectasin determined by MALDI-TOF (matrix assisted laser desorption ionization-time-of-flight) is equal to its theoretical molecular weight. High purity plectasin was achieved by gel filtration chromatography and RP-HPLC.
     2) The characterization and functions of plectasin was studied from folding, oxidation and reduction, heat treatment, ion-effect tests and minimal inhibitory assays and hemolytic assays. Recombinant plectasin with three cysteine bridges can be properly refolded in TGE buffer or in 0.01% acetic acid with 5 M Arg. Oxidation, reduction and heat treatment of plectasin showed that the destruction of the plectasin disulfide bonds affect the stability of its conformation and therefore lost its antimicrobial activity. Antimicrobial activity assays showed that plectasin was active in vitro against Gram-positive bacteria, but showed no or limited activities against Gram-negative bacteria and fungi. The effects of the different valent cations on the anti-S. aureus activity of plectasin were different. Monovalent cation had no effect on the antimicrobial activity of plectasin. However, divalent cations had a stronger negative effect on the antimicrobial activity of plectasin. These results also indicate that the antimicrobial activity of plectasin was more sensitive to calcium ions than magnesium ions. Hemolysis assays demonstrated that plectasin was not hemolytic for rabbit erythrocytes.
     3) For test the role of the disulfide array in the antimicrobial activity of plectasin, we have adopted a site-directed mutagenesis approach to generate seven paired Ala for Cys amino acid substitutions corresponding to plectasin with one, two or three disulfide bridges. With bioinformatics tools, the parameters of the primary and secondary structure of mutations that disrupted disulfide bonds were predicted. Plectasin and its mutations were expressed in Pichia pastoris expression system. Paired Ala for Cys amino acid substitutions in plectasin were tested for effects on antimicrobial activity. The results showed that the disulfide bonds have different effects on antimicrobial activity. The greatest effect on the antimicrobial activity of plectasin was the disulfide bond of C1-C4, the next effect was C3-C6, and the least effect was C2-C5.
     4) Through the ion-effect test, morphology observation, and gel retardation experiments, the anti-S. aureus mechanism of plectasin was preliminaryly inferenced as follows:
     Plectasin can not bond to the plasmid DNA. The mode of action with cell wall is not a simple electrostatic attraction, and mainly through the specificity interaction with the divalent cations binding place in the cell wall of S. aureus, such as teichoic acid (TA) and lipoteichoic acid, competitively replace divalent cations, as Ca2 + and Mg2 +, which plays a bridge and charge neutralization role. 1) The plectasin may disrupt the cell wall and increase the permeability of the cell wall, resulting in pore formation and leakage of contents, and eventually led to the death of a whole cell lysis; 2) The plectasin may also be displace and activate autolysins leading to uncontrolled degradation of the muramidase layer and often spontaneous lysis of the cytoplasmic membrane.
     In short, the successful expression of a disulfide-rich plectasin gene in E. coli in this study would provide an efficient and facile platform for the production or study of disulfide-rich AMPs. This study confirmed that the destruction of the plectasin disulfide bonds affect the stability of its conformation and therefore lost its antimicrobial activity, and the disulfide bonds have different effects on antimicrobial activity. This study also inferenced that the anti-S. aureus mechanism of plectasin was through the specificity interaction with the divalent cations binding place in the cell wall of S. aureus. It help to clarify the antimirobial mechanism of plectasin. These results would provide a theoretical basis for the development of new prevention drug products with anti-Gram-positive bacteria activity, and promote the applications of plectasin on the control of streptococcus disease.
引文
1. Aono S., Li C., Zhang G., Kemppainen R.J., Gard J., Lu W., Hu X., Schwartz D.D., Morrison E.E., Dykstra C., Shi J. Molecular and functional characterization of bovine beta-defensin-1. Vet. Immunol. Immunopathol. 2006, 113:181~190.
    2. Arakawa T., Timasheff S.N. Stabilization of protein structure by sugars. Biochemistry. 1982, 21:6536~6544.
    3. Arakawa T., Tsumoto K. The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem. Biophys. Res. Commun. 2003, 304:148~152.
    4. Bals R., Goldman M.J., Wilson J.M. Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun. 1998, 66:1225~1232.
    5. Bals R., Wang X., Wu Z., Freeman T., Bafna V., Zasloff M., Wilson J.M. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Invest. 1998, 102:874~880.
    6. Bateman A., MacLeod R.J., Lembessis P., Hu J., Esch F., Solomon S. The isolation and characterization of a novel corticostatin/defensin-like peptide from the kidney. J. Biol. Chem. 1996, 271:10654~10659.
    7. Befus A.D., Mowat C., Gilchrist M., Hu J., Solomon S., Bateman A. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J. Immunol. 1999,163:947~953.
    8. Bensch K.W., Raida M., M?gert H.J., Schulz-Knappe P., Forssmann W.G. hBD-1: a novel beta-defensin from human plasma. FEBS Lett. 1995, 368:331~335.
    9. Bierbaum G, Sahl HG. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol. 1987 Dec;169(12):5452~8
    10. Bierbaum G, Sahl HG. Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch Microbiol. 1985 Apr;141(3):249~54
    11. Bloch C Jr, Richardson M. A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins. FEBS Lett. 1991 Feb 11;279(1):101~4.
    12. Broekaert W.F., Terras F.R., Cammue B.P., Osborn R.W. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 1995,108:1353-1358.
    13. Brogden K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3:238~250.
    14. Bulet P, St?cklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004 Apr;198:169~84.
    15. Burrowes O.J., Diamond G., Lee T.C. Recombinant Expression of Pleurocidin cDNA Using the Pichia pastoris Expression System. J. Biomed. Biotechnol. 2005, 2005:374~384.
    16. Campopiano D.J., Clarke D.J., Polfer N.C., Barran P.E., Langley R.J., Govan J.R., Maxwell A., Dorin J.R. Structure-activity relationships in defensin dimers: a novel link between beta-defensin tertiary structure and antimicrobial activity. J. Biol. Chem. 2004, 279:48671~48679.
    17. Cao W., Zhou Y., Ma Y., Luo Q., Wei D. Expression and purification of antimicrobial peptide adenoregulin with C-amidated terminus in Escherichia coli. Protein Expr. Purif. 2005, 40:404~410.
    18. Chertov O., Michiel D.F., Xu L., Wang J.M., Tani K., Murphy W.J., Longo D.L., Taub D.D., Oppenheim J.J. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem. 1996, 271:2935~2940.
    19. Cociancich S., Ghazi A., Hetru C., Hoffmann J.A., Letellier L. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 1993, 268:19239~19245.
    20. Colilla F.J., Rocher A., Mendez E. gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett. 1990, 270:191~194.
    21. Couto M.A., Liu L., Lehrer R.I., Ganz T. Inhibition of intracellular Histoplasma capsulatum replication by murine macrophages that produce human defensin. Infect Immun. 1994, 62:2375~2378.
    22. Daher K.A., Selsted M.E., Lehrer R.I. Direct inactivation of viruses by human granulocyte defensins. J. Virol. 1986, 60:1068~1074.
    23. Diamond G., Zasloff M., Eck H., Brasseur M., Maloy W.L., Bevins C.L. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc. Natl. Acad. Sci. U S A. 1991, 88:3952~3956.
    24. Dian C., Eshaghi S., Urbig T., McSweeney S., Heijbel A., Salbert G., Birse D. Strategies for the purification and on-column cleavage of glutathione-S-transferase fusion target proteins. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 769:133~144.
    25. Diao H., Guo C., Lin D., Zhang Y. Intein-mediated expression is an effective approach in the study of beta-defensins. Biochem. Biophys. Res. Commun. 2007, 357:840~846.
    26. Dorschner R.A., Lopez-Garcia B., Peschel A., Kraus D., Morikawa K., Nizet V., Gallo R.L. The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. FASEB J. 2006, 20:35~42.
    27. Einhauer A., Jungbauer A.. The FLAG peptide, a versatile fusion tag for the purification ofrecombinant proteins. J. Biochem. Biophys. Methods. 2001, 49:455~465.
    28. Epand R.M., Vogel H.J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1999, 1462:11~28.
    29. Evans E.W., Harmon B.G. A review of antimicrobial peptides: defensins and related cationic peptides. Vet. Clin. Pathol. 1995, 24:109~116.
    30. Feng XJ, Wang JH, Shan AS, Teng D, Yang YL, Yao Y, Yang GP, Shao YC, Liu S, Zhang F. Fusion expression of bovine lactoferricin in Escherichia coli. Protein Expr Purif. 2006 May;47(1):110~7. Epub 2005 Sep 20.
    31. Feng Z., Jiang B., Chandra J., Ghannoum M., Nelson S., Weinberg A. Human beta-defensins: differential activity against candidal species and regulation by Candida albicans. J. Dent. Res. 2005, 84:445~450.
    32. Ganz T. Defensins and other antimicrobial peptides: a historical perspective and an update. Comb. Chem. High Throughput. Screen. 2005, 8:209~217.
    33. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 2003, 3:710~720
    34. Ganz T., Lehrer R.I. Antimicrobial peptides of vertebrates. Curr. Opin. Immunol. 1998, 10:41~44.
    35. Ganz T., Lehrer R..I. Defensins. Curr. Opin. Immunol. 1994, 6:584~589.
    36. Ganz T., Oren A., Lehrer R.I. Defensins: microbicidal and cytotoxic peptides of mammalian host defense cells. Med. Microbiol. Immunol. 1992, 181:99~105.
    37. Ganz T., Selsted M.E., Szklarek D., Harwig S.S., Daher K., Bainton D.F., Lehrer R.I. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 1985, 76:1427~1435
    38. García J.R., Jaumann F., Schulz S., Krause A., Rodríguez-Jiménez J., Forssmann U., Adermann K., Klüver E., Vogelmeier C., Becker D., Hedrich R., Forssmann W.G., Bals R. Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res. 2001a, 306:257~264.
    39. García J.R., Krause A., Schulz S., Rodríguez-Jiménez F.J., Klüver E., Adermann K., Forssmann U., Frimpong-Boateng A., Bals R., Forssmann W.G. Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 2001b, 15:1819~1821.
    40. Ginsburg I. Role of lipoteichoic acid in infection and inflammation. Lancet. Infect. Dis. 2002, 2:171~179.
    41. Goldman M.J., Anderson G.M., Stolzenberg E.D., Kari U.P., Zasloff M., Wilson J.M. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell. 1997, 88:553~560.
    42. Gottlieb C.T., Thomsen L.E., Ingmer H., Mygind P.H., Kristensen H.H., Gram L.Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression. BMC Microbiol. 2008, 8:205
    43. Gueguen Y., Herpin A., Aumelas A., Garnier J., Fievet J., Escoubas J.M., Bulet P., Gonzalez M., Lelong C., Favrel P., Bachère E. Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression. J. Biol. Chem. 2006, 281:313~323.
    44. Hancock R.E. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet. Infect Dis. 2001, 1:156~164.
    45. Hancock R.E., Sahl H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24:1551~1557.
    46. Hancock R.E., Chapple D.S. Peptide antibiotics. Antimicrob. Agents Chemother. 1999, 43:1317~1323.
    47. Hancock R.E., Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000, 8:402~410.
    48. Hancock R.E. Peptide antibiotics. Lancet. 1997, 349:418~422.
    49. Hara S., Mukae H., Sakamoto N., Ishimoto H., Amenomori M., Fujita H., Ishimatsu Y., Yanagihara K., Kohno S. Plectasin has antibacterial activity and no affect on cell viability or IL-8 production. Biochem. Biophys. Res. Commun. 2008, 374:709~713.
    50. Harder J., Bartels J., Christophers E., Schr?der J.M. A peptide antibiotic from human skin. Nature. 1997, 387:861.
    51. Harder J., Bartels J., Christophers E., Schroder J.M. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 2001, 276:5707~5713.
    52. Higazi A.A., Ganz T., Kariko K., Cines D.B. Defensin modulates tissue-type plasminogen activator and plasminogen binding to fibrin and endothelial cells. J Biol Chem. 1996, 271:17650~17655.
    53. H?ltje J.V. From growth to autolysis: the murein hydrolases in Escherichia coli. Arch. Microbiol. 1995,164:243~254.
    54. Hsu C.H., Chen C., Jou M.L., Lee A.Y., Lin Y.C., Yu Y.P., Huang W.T., Wu S.H. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 2005, 33:4053-4064.
    55. Huang G.T., Zhang H.B., Kim D., Liu L., Ganz T. A model for antimicrobial gene therapy: demonstration of human beta-defensin 2 antimicrobial activities in vivo. Hum. Gene Ther. 2002, 13:2017~2025.
    56. Huang L., Ching C.B., Jiang R., Leong S.S. Production of bioactive human beta-defensin 5 and 6 in Escherichia coli by soluble fusion expression. Protein Expr Purif. 2008, 61:168~174.
    57. Jenssen H., Hamill P., Hancock R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19:491~511.
    58. Joly S., Maze C., McCray PB Jr., Guthmiller J.M. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J. Clin. Microbiol. 2004, 42:1024~1029.
    59. Kane J.F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 1995, 6:494~500.
    60. Kern R., Malki A., Holmgren A., Richarme G. Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem J. 2003, 371:965~972.
    61. Kheyar A., Martin S., St-Laurent G., Timoney P.J., McCollum W.H., Archambault D. Expression cloning and humoral immune response to the nucleocapsid and membrane proteins of equine arteritis virus. Clin. Diagn. Lab. Immunol. 1997, 4:648~652.
    62. Klüver E., Schulz-Maronde S., Scheid S., Meyer B., Forssmann W.G., Adermann K. Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry. 2005, 44:9804~9816.
    63. Koch A.L. Autolysis control hypotheses for tolerance to wall antibiotics. Antimicrob. Agents Chemother. 2001, 45:2671~2675
    64. Lai Y.P., Peng Y.F., Zuo Y., Li J., Huang J., Wang L.F., Wu Z.R. Functional and structural characterization of recombinant dermcidin-1L, a human antimicrobial peptide. Biochem. Biophys. Res. Commun. 2005, 328:243~250.
    65. Landon C., Thouzeau C., LabbéH., Bulet P., Vovelle F. Solution structure of spheniscin, a beta-defensin from the penguin stomach. J. Biol. Chem. 2004, 279:30433-30439.
    66. LaVallie E.R., DiBlasio E.A., Kovacic S., Grant K.L., Schendel P.F., McCoy J.M. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y). 1993, 11:187~193.
    67. Lee K.H., Hong S.Y., Oh J.E. Synthesis and structure-function study about tenecin 1, an antibacterial protein from larvae of Tenebrio molitor. FEBS Lett. 1998, 439:41~45.
    68. Lehrer R.I. Primate defensins. Nat. Rev. Microbiol. 2004, 2:727~738.
    69. Lehrer R.I., Barton A., Daher K.A., Harwig S.S., Ganz T., Selsted M.E. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 1989, 84:553~561.
    70. Lehrer R.I., Ganz T. Defensins of vertebrate animals. Curr. Opin. Immunol. 2002, 14:96~102.
    71. Lehrer R.I., Ganz T., Szklarek D., Selsted M.E. Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J. Clin. Invest. 1988, 81:1829~1835.
    72. Lehrer R.I., Lichtenstein A.K., Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 1993, 11:105~128.
    73. Li D.H., Jian G.L., Zhang Y.T., Ai T.M. Bacterial expression of a Trichosanthes kirilowii defensin (TDEF1) and its antifungal activity on Fusarium oxysporum. Appl. Microbiol.Biotechnol. 2007, 74:146~151.
    74. Liew O.W., Ching Chong J.P., Yandle T.G., Brennan S.O. Preparation of recombinant thioredoxin fused N-terminal proCNP: Analysis of enterokinase cleavage products reveals new enterokinase cleavage sites. Protein Expr. Purif. 2005, 41:332~340.
    75. Lv J., Yin L., Liu T., Wang Y. Synthesis of pseudopeptides based L-tryptophan as a potential antimicrobial agent. Bioorg. Med. Chem. Lett. 2007, 17:1601~1607.
    76. Maemoto A., Qu X., Rosengren K.J., Tanabe H., Henschen-Edman A., Craik D.J., Ouellette A.J. Functional analysis of the alpha-defensin disulfide array in mouse cryptdin-4. J. Biol. Chem. 2004, 279:44188~44196.
    77. Mandal M., Nagaraj R. Antibacterial activities and conformations of synthetic alpha-defensin HNP-1 and analogs with one, two and three disulfide bridges. J. Pept. Res. 2002, 59:95-104.
    78. Mendez E., Moreno A., Colilla F., Pelaez F., Limas G.G., Mendez R., Soriano F., Salinas M., de Haro C. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur. J. Biochem. 1990, 194:533~539.
    79. Meng F., Park Y., Zhou H. Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase. Int. J. Biochem. Cell Biol. 2001, 33:701~709.
    80. Miura-Ohnuma J., Nonaka T., Katoh S., Murata K., Kita A., Miki K., Katoh E. Improved expression, purification and crystallization of a putative N-acetyl-gamma-glutamyl-phosphate reductase from rice (Oryza sativa). Acta. Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2005, 61(Pt 12):1058~1061.
    81. Moon J.Y., Henzler-Wildman K.A., Ramamoorthy A. Expression and purification of a recombinant LL-37 from Escherichia coli. Biochim. Biophys. Acta. 2006, 1758:1351~1358.
    82. Müller F.M., Lyman C.A., Walsh T.J. Antimicrobial peptides as potential new antifungals. Mycoses. 1999, 42 Suppl 2:77~82.
    83. Murphy C.J., Foster B.A., Mannis M.J., Selsted M.E., Reid T.W. Defensins are mitogenic for epithelial cells and fibroblasts. J. Cell Physiol. 1993, 155:408~413.
    84. Mygind P.H., Fischer R.L., Schnorr K.M., Hansen M.T., S?nksen C.P., Ludvigsen S., Raventós D., Buskov S., Christensen B., De Maria L., Taboureau O., Yaver D., Elvig-J?rgensen S.G., S?rensen M.V., Christensen B.E., Kjaerulff S., Frimodt-Moller N., Lehrer R.I., Zasloff M., Kristensen H.H. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature. 2005, 437:975~980.
    85. Nomura K., Ferrat G., Nakajima T., Darbon H., Iwashita T., Corzo G. Induction of morphological changes in model lipid membranes and the mechanism of membrane disruption by a large scorpion-derived pore-forming peptide. Biophys. J. 2005, 89:4067~4080.
    86. Olli S., Kirti P.B. Cloning, characterization and antifungal activity of defensin Tfgd1 from Trigonella foenum-graecum L. J. Biochem. Mol. Biol. 2006, 39:278~283.
    87. Oren Z., Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides.Biopolymers. 1998, 47:451~463.
    88. Osborn R.W., De Samblanx G.W., Thevissen K., Goderis I., Torrekens S., Van Leuven F., Attenborough S., Rees S.B., Broekaert W.F. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett. 1995, 368:257~262.
    89. Ostergaard C., Sandvang D., Frimodt-M?ller N., Kristensen H.H. High cerebrospinal fluid (CSF) penetration and potent bactericidal activity in CSF of NZ2114, a novel plectasin variant, during experimental pneumococcal meningitis. Antimicrob. Agents Chemother. 2009, 53:1581~1585.
    90. Patterson-Delafield J., Martinez R.J., Lehrer R.I. Microbicidal cationic proteins in rabbit alveolar macrophages: a potential host defense mechanism. Infect Immun. 1980, 30:180~192.
    91. Patterson-Delafield J., Szklarek D., Martinez R.J., Leher R.I. Microbicidal cationic proteins of rabbit alveolar macrophages: amino acid composition and functional attributes. Infect Immun.1981, 31: 723~731.
    92. Pazgier M., Hoover D.M., Yang D., Lu W., Lubkowski J. Human beta-defensins. Cell Mol. Life Sci. 2006, 63:1294~1313
    93. Porter E.M., van Dam E., Valore E.V., Ganz T. Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect Immun. 1997, 65:2396~2401.
    94. Rao X., Hu J., Li S., Jin X., Zhang C., Cong Y., Hu X., Tan Y., Huang J., Chen Z., Zhu J., Hu F. Design and expression of peptide antibiotic hPAB-beta as tandem multimers in Escherichia coli. Peptides. 2005, 26:721~729.
    95. Rozema D., Gellman S.H. Artificial chaperone-assisted refolding of denatured-reduced lysozyme: modulation of the competition between renaturation and aggregation. Biochemistry. 1996, 35:15760~15771.
    96. Salzman N.H., Ghosh D., Huttner K.M., Paterson Y., Bevins C.L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature. 2003, 422:522~526.
    97. Samuel D., Kumar T.K., Ganesh G., Jayaraman G., Yang P.W., Chang M.M., Trivedi V.D., Wang S.L., Hwang K.C., Chang D.K., Yu C. Proline inhibits aggregation during protein refolding. Protein Sci. 2000, 9:344~352.
    98. Sang Y., Ortega M.T., Blecha F., Prakash O., Melgarejo T. Molecular cloning and characterization of three beta-defensins from canine testes. Infect Immun. 2005, 73:2611~2620.
    99. Schibli D.J., Hunter H.N., Aseyev V., Starner T.D., Wiencek J.M., McCray P.B. Jr., Tack B.F., Vogel H.J. The solution structures of the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J. Biol. Chem. 2002, 277:8279~8289.
    100. Schneider J.J., Unholzer A., Schaller M., Sch?fer-Korting M., Korting H.C. Human defensins.J. Mol. Med. 2005, 83:587~595.
    101. Schr?der J.M., Harder J. Human beta-defensin-2. Int. J. Biochem. Cell Biol. 1999, 31:645-651.
    102. Schulz A., Klüver E., Schulz-Maronde S., Adermann K. Engineering disulfide bonds of the novel human beta-defensins hBD-27 and hBD-28: differences in disulfide formation and biological activity among human beta-defensins. Biopolymers. 2005, 80:34~49
    103. Selsted M.E, Harwig S.S., Ganz T., Schilling J.W., Lehrer R.I. Primary structures of three human neutrophil defensins. J. Clin. Invest. 1985, 76:1436~1439.
    104. Selsted M.E., Tang Y.Q., Morris W.L., McGuire P.A., Novotny M.J., Smith W., Henschen A.H., Cullor J.S. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem. 1993, 268:6641~6648.
    105. Selsted M.E., Ouellette A.J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 2005, 6:551~557.
    106. Shade R.E., Schroeder H.E., Pueyo J.J., Table L.M., Murdock L.L., Higgins T.J.V., Chrispeels M.J. Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to burchid beetles. Biotechnology. 1994, 12:793~796.
    107. Singh P.K., Jia H.P., Wiles K., Hesselberth J., Liu L., Conway B.A., Greenberg E.P., Valore E.V., Welsh M.J., Ganz T., Tack B.F., McCray P.B. Jr. Production of beta-defensins by human airway epithelia. Proc. Natl. Acad. Sci. U S A. 1998, 95:14961~14966
    108. Singh S.M., Panda A.K. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng. 2005, 99:303~310.
    109. S?rensen H.P., Mortensen K.K. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 2005, 115:113~128.
    110. Srinivasulu B., Syvitski R., Seo J.K., Mattatall N.R., Knickle L.C., Douglas S.E. Expression, purification and structural characterization of recombinant hepcidin, an antimicrobial peptide identified in Japanese flounder, Paralichthys olivaceus. Protein Expr. Purif. 2008, 61:36~44.
    111. Steinstraesser L., Tippler B., Mertens J., Lamme E., Homann H.H., Lehnhardt M., Wildner O., Steinau H.U., Uberla K. Inhibition of early steps in the lentiviral replication cycle by cathelicidin host defense peptides. Retrovirology. 2005, 2:2.
    112. Str?m M.B., Haug B.E., Rekdal O., Skar M.L., Stensen W., Svendsen J.S. Important structural features of 15-residue lactoferricin derivatives and methods for improvement of antimicrobial activity. Biochem. Cell Biol. 2002, 80:65~74.
    113. Tam J.P., Wu C.R., Liu W., Zhang J.W. Disulfide bond formation in peptides by dimethyl sulfoxide. Scope and applications. J. Am. Chem. Soc., 1991, 113:6657~6662.
    114. Tanabe H., Ayabe T., Maemoto A., Ishikawa C., Inaba Y., Sato R., Moriichi K., Okamoto K., Watari J., Kono T., Ashida T., Kohgo Y. Denatured human alpha-defensin attenuates the bactericidal activity and the stability against enzymatic digestion. Biochem. Biophys. Res. Commun. 2007, 358:349~355.
    115. Tang Y.Q., Yuan J., Osapay G., Osapay K., Tran D., Miller C.J., Ouellette A.J., Selsted M.E. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science. 1999, 286:498-502.
    116. Tenno T., Goda N., Tateishi Y., Tochio H., Mishima M., Hayashi H., Shirakawa M., Hiroaki H. High-throughput construction method for expression vector of peptides for NMR study suited for isotopic labeling. Protein Eng. Des. Sel. 2004, 17:305~314.
    117. Terras F.R., Schoofs H.M., De Bolle M.F., Van Leuven F., Rees S.B., Vanderleyden J., Cammue B.P., Broekaert W.F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem. 1992, 267:15301~15309.
    118. Terras F.R., Torrekens S., Van Leuven F., Osborn R.W., Vanderleyden J., Cammue B.P., Broekaert W.F. A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett. 1993, 316:233~240.
    119. Territo M.C., Ganz T., Selsted M.E., Lehrer R. Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Invest. 1989, 84:2017~2020.
    120. Torres A.M., Kuchel P.W. The beta-defensin-fold family of polypeptides. Toxicon. 2004, 44:581~588.
    121. Trabi M., Craik D.J. Circular proteins--no end in sight. Trends Biochem. Sci. 2002, 27:132~138.
    122. Tsumoto K, Ejima D, Kumagai I, Arakawa T. Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif. 2003 Mar;28(1):1~8.
    123. Vaara M. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 1992, 56:395~411.
    124. van Dijk A., Veldhuizen E.J., Kalkhove S.I., Tjeerdsma-van Bokhoven J.L., Romijn R.A., Haagsman H.P. The beta-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob. Agents Chemother. 2007, 51:912-922.
    125. Vila-PerellóM., Sánchez-Vallet A., García-Olmedo F., Molina A., Andreu D. Structural dissection of a highly knotted peptide reveals minimal motif with antimicrobial activity. J. Biol. Chem. 2005, 280:1661~1668.
    126. Wang W., Cole A.M., Hong T., Waring A.J., Lehrer R.I. Retrocyclin, an antiretroviral theta-defensin, is a lectin. J. Immunol. 2003, 170:4708~4716.
    127. Wu Z., Hoover D.M., Yang D., Boulègue C., Santamaria F., Oppenheim J.J., Lubkowski J., Lu W. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc. Natl. Acad. Sci. U S A. 2003, 100:8880~8885.
    128. Xu Z., Zhong Z., Huang L., Peng L., Wang F., Cen P. High-level production of bioactive human beta-defensin-4 in Escherichia coli by soluble fusion expression. Appl Microbiol Biotechnol. 2006, 72(3):471~479.
    129. Yang D., Chertov O., Oppenheim J.J. The role of mammalian antimicrobial peptides andproteins in awakening of innate host defenses and adaptive immunity. Cell Mol. Life Sci. 2001, 58:978~989.
    130. Yang D., Oppenheim J. J. Multiple functions of antimicrobial peptides in host immunity. In Devine D.A., Hancock R.E.W. (eds) Mammalian host defense peptides. Cambridge University Press, Cambridge. 2004:39~68.
    131. Yang D., Chen Q., Chertov O., Oppenheim J.J. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J. Leukoc. Biol. 2000, 68:9~14
    132. Yang D., Chertov O., Bykovskaia S.N., Chen Q., Buffo M.J., Shogan J., Anderson M., Schr?der J.M., Wang J.M., Howard O.M., Oppenheim J.J. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999, 286:525~528.
    133. Yang Y.L., Tian Z.G., Teng D., Zhang J., Wang J.R., Wang J.H. High-level production of a candidacidal peptide lactoferrampin in Escherichia coli by fusion expression. J. Biotechnol. 2009, 139:326~331.
    134. Zasloff M. Antimicrobial peptides in health and disease. N. Engl. J. Med. 2002, 347:1199~1200.
    135. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002, 415:389~395.
    136. Zhang L., Benz R., Hancock R.E. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Biochemistry. 1999, 38:8102~8111.
    137. Zheng W., Yang F., Wu F., Lu C., Hua Z. Purification of cadmium ion binding metallothionein-3 by proteinase digestion on affinity chromatographic column. Se Pu. 2006, 24:279~283. (in Chinese)
    138. Zhou Q.F., Luo X.G., Ye L., Xi T. High-level production of a novel antimicrobial peptide perinerin in Escherichia coli by fusion expression. Curr. Microbiol. 2007, 54:366~370.
    139. Zhu Q.Z., Singh A.V., Bateman A., Esch F., Solomon S. The corticostatic (anti-ACTH) and cytotoxic activity of peptides isolated from fetal, adult and tumor-bearing lung. J. Steroid. Biochem. 1987, 27:1017~1022.
    140. Zhu S. Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol. Immunol. 2008, 45(3): 828~838.
    141. Zucht H.D., Grabowsky J., Schrader M., Liepke C., Jürgens M., Schulz-Knappe P., Forssmann W.G. Human beta-defensin-1: A urinary peptide present in variant molecular forms and its putative functional implication. Eur. J. Med. Res. 1998, 3:315~323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700