用户名: 密码: 验证码:
新型炎症相关基因CNT2b的发现、克隆及功能初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炎症和免疫反应是一种常见的病理过程,大多数的人类疾病均与此有关。除了人们所熟知的感染性疾病外,风湿性关节炎、类风湿疾病、系统性红斑狼疮、肝纤维化、动脉粥样硬化、心肌梗塞、阿尔茨海默病以及恶性肿瘤等多种疾病也与炎症密切相关。炎症免疫因素参与了这些疾病的发生、发展及转归整个过程。巨噬细胞是机体免疫系统的一种重要细胞,不仅具有很强的吞噬功能,而且是主要的抗原提呈细胞,在多种炎症和免疫反应中起关键作用。活化的巨噬细胞可分泌多种生物活性物质,如一氧化氮、白介素-1、肿瘤坏死因子α、活性氧以及前列腺素、白三烯等花生四烯酸代谢产物。诱生型环氧酶(cyclooxygenase,COX)—COX-2可大量表达于巨噬细胞中。种种研究迹象表明,COX-2并非专一性地参加炎症反应,还在保护胃粘膜、维护肾脏功能、学习记忆等方面发挥重要作用,可能还存在其它亚型。众多的炎症因子在炎症反应的不同时期组成复杂的网络,相互作用,共同调控炎症反应的的进程和预后。巨噬细胞在炎症免疫反应中所起的重要作用,且其在诱导状态下能大量表达COXs,因此我们拟针对COX的保守序列设计简并引物,选择急性炎症诱导下的巨噬细胞cDNA作为模板克隆新型COX亚型或炎症相关性基因,并对其表达特征和功能进行初步研究。
     方法
     1.分析不同物种、不同亚型的COX的保守序列,设计简并引物。
     2.采用腹腔注射酵母多糖A的方法建立SD大鼠急性腹膜炎模型,采集腹腔巨噬细胞,提取总RNA,进行RT-PCR,扩增产物纯化后连接T载体,转化DH5α细菌,抽提质粒,测序。
     3.选取新型序列,进行3’,5’快速末端反应,获取全长基因序列。
     4.采用Realtime RT-PCR法分别检测新基因CNT2 mRNA、CNT2b mRNA在大鼠不同脏器组织中的表达情况,以及在酵母多糖诱导的急性腹膜炎大鼠腹腔巨噬细胞中表达的时相特征。
     5.应用Realtime RT-PCR法观察抗炎药物阿司匹林(12mg/kg)、塞来昔布(0.13mg/kg)和泼尼松(0.4mg/kg)对大鼠腹腔巨噬细胞中CNT2b mRNA和CNT2 mRNA表达的影响。
     6.针对CNT2b序列设计siRNA干扰序列,采用脂质体转染体外培养NR8383大鼠巨噬细胞;Realtime RT-PCR法检测干扰后细胞中炎症相关因子IL-1α、IL-1β、IL-6、TNF-α、COX-2、IL-10以及CNT2、CNT2b等分子的mRNA表达情况。
     结果
     1.不同物种的COX-1、COX-2和COX-3序列中存在两段氨基酸保守序列。
     2.从大鼠腹腔巨噬细胞中发现并克隆了一个新基因,全长13330nt,为一mRNA序列,对应DNA位于大鼠第三号染色体3q35区。经BLAST分析与序列比对,该基因与Na+依赖性核苷转运载体(Na+/nucleoside cotransporter, CNT)2有较高同源性,保留了CNT2的第1、7~14、16、17内含子;并且,在CNT2的最后一个(第18个)外显子后,又附加了一段3169nt长的序列。由于该基因和CNT2均包含加尾信号和polyA尾巴,均为完整的转录产物,故确定为CNT2的剪接异构体,已提交Genbank数据库并获得登录号:EU032627.2,重新命名为CNT2b。
     3. CNT2 mRNA在全身各器官均有表达,其中在心脏、肝脏、平滑肌、脾脏表达较高;CNT2b mRNA在正常器官中表达量远远少于CNT2 mRNA,其中心脏、平滑肌、肝脏表达稍高。
     4. CNT2b mRNA在腹膜炎大鼠腹腔巨噬细胞中的表达具有显著时相特征。注射酵母多糖后,其表达显著升高,至2h时达到最高点;随后,表达量逐渐降低,至24h时基本恢复至0.5h时的水平;致炎后36h,表达量再次明显升高,至第48h时又降至36h时的47.52%。CNT2 mRNA在腹膜炎大鼠腹腔巨噬细胞中的表达也具有类似特征,其时相变化幅度远少于CNT2b mRNA。
     5.三种抗炎药物阿司匹林、泼尼松、塞来昔布均能明显降低CNT2b mRNA表达量。在临床使用剂量下,泼尼松作用最强,阿司匹林次之,塞来昔布最弱。
     6.抑制CNT2b基因表达后NR8383细胞中IL-1βmRNA,IL-6 mRNA,TNF-αmRNA,COX-2 mRNA的表达均显著升高,IL-10 mRNA的表达明显降低。
     结论
     1.在大鼠腹腔巨噬细胞中发现并克隆了一个新基因CNT2b。
     2. CNT2b属于炎症诱导性高表达基因,在正常组织中很少表达,而在急性炎症刺激的巨噬细胞中表达显著增加。在大鼠急性腹膜炎过程中,腹腔巨噬细胞CNT2b mRNA的表达具有明显时相性,呈双峰特征。抗炎药物能明显抑制CNT2b mRNA的表达。
     3.抑制CNT2b的表达能促进多种促炎因子的表达,降低抗炎因子IL-10的表达。
     4. CNT2b参与了炎症反应的调控过程,其功能与抑制炎症反应有关。
Inflammation and immune response is one of the most common pathological processes, and various human diseases are related to it. In addition to well-known infectious diseases, rheumatoid arthritis, rheumatoid disease, systemic lupus erythematosus, liver fibrosis, atherosclerosis, myocardial infarction, Alzheimer's disease, as well as a variety of malignant diseases are closely related to inflammation, which involved in the occurrence, development and prognosis in the whole disease process. Macrophage is an important kind of cell in immune system, which not only has a strong phagocytic function, but also be main antigen-presenting cell, and play a key role in a variety of inflammatory and immune responses. Activated macrophage can secrete a variety of bioactive substances, such as nitric oxide, interleukine-1, tumor necrosis factor-α, reactive oxygen species. Inducible cyclooxygenase (COX), COX-2 can be highly expressed in macrophage. Many studies have suggested that COX-2 is not specific to participate in inflammatory response, but play an important role in protection of gastric mucosa, maintenance of renal function, learning and memory, so other subtypes of COX might exist. A large number of inflammatory factors form the complex inflammation-immune network, which interact, co-regulate and control the process of inflammatory response and prognosis at different stages. To search specific factors for the regulation of inflammatory response will be far-reaching significance to a deep understanding of the pathophysiological mechanisms of inflammation, as well as the treatment of inflammatory diseases.
     Methods
     1. To design the degenerate primers base on the consensus sequence of different cyclooxytenases isoforms from various species.
     2. Acute peritonitis model was established in rats using intraperitoneal injection of zymosan A. Total RNA was extracted from peritoneal macrophages, and then purified PCR products were ligated into T vector and sequenced with automated technology.
     3. Full-length sequence of the novel gene was obtained by 3’and 5’rapid amplification of cDNA ends technique.
     4. The mRNA expression level of CNT2 and the novel gene CNT2b in different tissues in rats and temporal expression pattern in macrophages from the zymosan A-induced acute peritonitis of rat were detected by Realtime RT-PCR technique.
     5. The effects of anti-inflammatory drug aspirin (12mg/kg), celecoxib (0.13mg/kg) and prednisone (0.4mg/kg) on CNT2b mRNA and CNT2 mRNA expression in rat peritoneal macrophages were measured by Realtime RT-PCR.
     6. siRNA interference sequence was designed according to CNT2b sequence and transfected into NR8383 rat macrophages using liposomes in vitro.
     7. After siRNA interference, mRNA expression of inflammation related factors in NR8383 rat macrophages, such as IL-1α, IL-1β, IL-6, TNF-α, CNT2, CNT2b, COX-2, IL-10 were measured by Realtime RT-PCR.
     Results
     1. Two conservative amino acid sequences were observed in different species of COX-1, COX-2 and COX-3 sequences.
     2. A novel mRNA sequence, 13330nt long, was found and cloned from rat peritoneal macrophages, which corresponding DNA is located at rat chromosome 3q35. BLAST analysis and sequence alignment indicated that the novel gene had high homology with Na+-dependent nucleoside transporters (Na+/nucleoside cotransporter, CNT) 2, which retained the intron 1,7-14,16,17 and a 3197nt sequences was appendixed to the last exon of CNT2. Since the novel gene and CNT2 were both complete transcriptions, which contained tailing signal and poly A tail, it was identified as the splicing isomers of CNT2 and named as CNT2b.
     3. CNT2 mRNA was expressed in different tissues and the level was higher in heart, liver, skeletal muscle and spleen; CNT2b mRNA expression level in normal organs was far less than that of CNT2, and the level was slightly higher in heart, skeletal muscle and liver.
     4. The significant phase characteristics of CNT2b mRNA expression was observed in peritoneal macrophages from peritonitis rat. After zymosan injection, CNT2b mRNA expression level was significantly increased and reached the peak point at 2h; subsequently, the expression level was gradually decreased, and returned to their levels at 0.5h until 24h. At 36th hour after inflammatory stimulation, CNT2b mRNA expression level was significantly increased again. The expression level of CNT2b mRNA was decreased by about 53% at 48th hour after inflammatory stimulation by comparison of that at 36th hour.
     5. After treated with aspirin, prednisone and celecoxib, respectively, CNT2b mRNA expression decreased significantly, in which the effect of prednisone was strongest and celecoxib weakest.
     6. Suppression of CNT2b expression resulted in significant increase of mRNA expression of IL-1β, IL-6, TNF-αand COX-2, as well as obvious reduction of IL-10 in NR8383 cells.
     Conclusion
     1. A novel gene CNT2b was found and cloned in rat peritoneal macrophages.
     2. CNT2b was high-expression gene induced by inflammation, which not significant increase in normal tissues but in macrophages stimulated with inflammation. During the course of acute peritonitis, CNT2b mRNA expression in peritoneal macrophages showed obvious temporal and bimodal characteristics. Anti-inflammatory drugs could decrease the expression level of CNT2b mRNA.
     3. Suppression of CNT2b expression resulted in significant increase of pro-inflammatory factor expression and reduction of IL-10 expression.
     4. CNT2b involved in regulation process of inflammatory response, and its function was related to suppressing inflammation response.
引文
[1] Gotsman I, Stabholz A, Planer D, et al. Serum cytokine tumor necrosis factor-alpha and interleukin-6 associated with the severity of coronary artery disease: indicators of an active inflammatory burden?[J]. Isr Med Assoc J. 2008, 10(7): 494-498.
    [2] Vegeto E, Benedusi V, Maggi A, et al. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases[J]. 2008, 29(4): 507-519.
    [3] Rainsford KD. The ever emerging anti-inflammatories. Have there been any real advances?[J]. J Physiol Paris, 2001, 95 (1-6):11-19.
    [4] Wang G, Petzke MM, Iyer R, et al. Pattern of proinflammatory cytokine induction in RAW264.7 mouse macrophages is identical for virulent and attenuated Borrelia burgdorferi[J]. 2008, 180(12): 8306-8315.
    [5] Cooper AA, Gitler AD, Cashikar A , et al. Alpha Synuclein blocks ER-Golgi traffic and Rabl 1 resues neuron loss in Parkinson models[J]. Science, 2006, 313(5785): 324-328.
    [6] Neumann M, Smpathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Science, 2006, 314(5796): 130-133.
    [7] Chandrasekharan NV, Dai H, Roos KL P et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression[J]. Proc Natl Acad Sci USA, 2002, 99 (21):13926-13931.
    [8] Willoughby DA, Moore AR, Colville-Nash PP. COX-1, COX-2 and COX-3 and the future treatment of chromic inflammatory disease[J]. Lancet, 2000: 355 (9204): 646-648.
    [9] Modrek B, Lee CA. genomic view of alternative splicing. Nat Genet. 2002, 30(1): 13-19.
    [10]张德礼.电子克隆新基因[J] .中国高校科技与产业化, 2002, 9(1): 40-42.
    [11]张德礼,李衍达,季梁.用电子克隆新基因C17orf32和ZNF362对NCBI人类基因数据库模式参考序列5种错误类型的分析与纠正[J].遗传学报, 2004, 31(4): 325-334.
    [12]张进,卢柏松. RACE-cDNA末端快速扩增[A].黄留玉. PCR最新技术原理、方法及应用[M].北京:化学工业出版社, 2005: 50-57.
    [13] Fu GK, Wang JT, Yang J, et al. Circular rapid amplification of cDNA ends for high-throughput extension cloning of partial genes[J]. Genomics, 2004, 84(1): 205- 210.
    [14] Zikherman J, Weiss A. Alternative splicing of CD45: the tip of the iceberg [J]. Immunity, 2008, 29(6): 839-41.
    [15] Tiago DM, Laize V, Cancela ML. Alternatively spliced transcripts of Sparus aurata insulin-like growth factor 1 are differentially expressed in adult tissues and during early development[J]. Gen Comp Endocrinol. 2008, 57(2): 107-115.
    [16] Baus D, Heermeier K, De-Hoop M, et al. Identification of a novel AS160 splice variant that regulates GLUT4 translocation and glucose-uptake in rat muscle cells[J]. Cell-Signal. 2008, 20(12): 2237-2246.
    [17] Graveley BR. Alternative splicing: increasing diversity in the proteomic world [J]. Trends Genet, 2001,17(2):100-107.
    [18] Galante PA, Sakabe NJ, Kirschbaum-Slager N, et al. Detection and evaluation of intron retention events in the human transcriptome[J]. RNA, 2004, 10(5): 757-765.
    [19] Nissim-Rafinia M, Kerem B. The splicing machinery is a genetic modifier of disease severity[J]. Trends Genet, 2005, 21(9): 480-483.
    [20] Shulewitz M, Soloviev I, Wu T, et al. Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer[J]. Oncogene, 2006, 25(31): 4361-4369.
    [21] Heller S, Scheibenpflug L, Westermark B, et al. PDGF B mRNA variants in human tumors with similarity to the v-sis oncogene: expression of cellular PDGF B protein is associated with exon 1 divergence, but not with a 3'UTR splice variant[J]. Int J Cancer, 2000, 85(2): 211-222.
    [22] Mercatante DR, Bortner CD, Cidlowski JA, et al. Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. analysis of apoptosis and cell death[J]. J Biol Chem, 2001, 276(19): 16411-7.
    [23] Loewen SK, Ng AM, Yao SY, Cass CE, Baldwin SA, Young JD. Identification of amino acid residues responsible for the pyrimidine and purine nucleoside specificities of human concentrative Na+ nucleoside cotransporters hCNT1 and hCNT2[J]. J BiolChem, 1999, 274(35): 24475-24484.
    [24] Cass CE, Young JD, Baldwin SA. Recent advances in the molecular biology of nucleoside transporters of mammalian cells[J]. Biochem Cell Biol, 1998, 76(5): 761-770.
    [25] Ritzel MW, Yao SY, Ng AM, et al. Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+-nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine[J]. Mol Membr Biol, 1998, 15: 203-211.
    [26] Schaner ME, Wang J, Zhang L, et al. Functional characterization of a human purine-selective, Na+-dependent nucleoside transporter (hSPNT1) in a mammalian expression system[J]. J Pharmacol Exp Ther, 1999, 289(3): 1487-1491.
    [27] Patel DH, Crawford CR, Naeve CW, et al. Cloning, genomic organization and chromosomal localization of the gene encoding the murine sodium-dependent, purine-selective, concentrative nucleoside transporter (CNT2)[J]. Gene, 2000, 242(1-2): 51-58.
    [28] Li JY, Boado RJ, Pardridge WM. Differential kinetics of transport of 2', 3'-dideoxyinosine and adenosine via concentrative Na nucleoside transporter CNT2 cloned from rat blood-brain barrier[J]. J Pharmacol Exp Ther, 2001, 299(2): 735-740.
    [29] Pajor AM, Wright EM. Cloning and functional expression of a mammalian Na+/nucleoside cotransporter a member of the SGLT family[J]. J Biol Chem 1992, 267(6): 3557-3560.
    [30] Ritzel MW, Ng AM, Yao SY, et al. Recent molecular advances in studies of the concentrative Na+-dependent nucleoside transporter (CNT) family: identification and characterization of novel human and mouse proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib)[J]. Mol Membr Biol, 2001, 18(1): 65-72.
    [31] Ritzel MW, Ng AM, Yao SY et al. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides[J]. J Biol Chem, 2001, 276(4): 2914-2927.
    [32] ZB Yuan, HG Zhang, Y Jia, et al. Temporal expression of cyclooxygenase-2 inperitoneal macrophages of rats and effects of panax notoginseng saponins[J]. Inflammation research, 2009, (2): 74-80.
    [33] Para M, Terencio MC, Ferrandiz ML, et al. Involvement of secretory phospholipase A2 activity in the zymosan rat air pouch model of inflammation [J]. Br J Pharmacol, 1996, 117(8): 1773-1779.
    [34] Kang SY, Yoon SY, Roh DH, et al. The anti-arthritic effect of ursolic acid on zymosan-induced acute inflammation and adjuvant-induced chronic arthritis models[J]. J Pharm Pharmacol. 2008 60(10): 1347-1354.
    [35] Frank, DN. XplorSeq: a software environment for integrated management and phylogenetic analysis of metagenomic sequence data[J]. BMC Bioinformatics, 2008, 9: 420.
    [36] Mulder N, Apweiler R. InterPro and InterProScan: tools for protein sequence classification and comparison[J]. Methods Mol Biol, 2007, 396: 59-70.
    [37] Nasser MW, Datta J, Nuovo G, c Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1[J]. J Biol Chem, 2008, 283(48): 33394-405.
    [38] Hebert CG, Valdes JJ, Bentley WE. Beyond silencing--engineering applications of RNA interference and antisense technology for altering cellular phenotype[J]. 2008, 19(5): 500-505.
    [39] Hansen GM, Markesich DC, Burnett MB. gene trapping in C57BL/6N mouse embryonic stem cells[J]. Genome Res, 2008,18(10): 1670-1679.
    [40] Shang XJ, Ge JP, Huang WD, et al. Development of a novel protein carrier inducing immune response and binding DNA in gene therapy[J]. Zhong hua Nan Ke Xue, 2008, 14(10): 888-892.
    [41] Massey JM, Amps J, Viapiano MS, et al. Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3[J]. Exp Neurol, 2008, 209(2): 426-445.
    [42] Lagha M, Kormish JD, Rocancourt D, et al. Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program[J]. 2008,22(13): 1828-1837.
    [43] Ito M, Ito R, Yoshihara D, et al. Immortalized hepatocytes using human artificial chromosome[J]. Cell Transplant, 2008, 17(1-2): 165-171.
    [44] Shitara S, Kakeda M, Nagata K, et al. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome(HAC) vector. Biophys Res Commun, 2008, 369 (3): 807-811.
    [45] Sun Y, Liu M, Yang B, et al. Role of siRNA silencing of MMP-2 gene on invasion and growth of laryngeal squamous cell carcinoma[J]. Eur Arch Otorhinolaryngol, 2008, 265(11): 1385-1391.
    [46] Alcazar RM, Lin R, Fire AZ, et al. Transmission dynamics of heritable silencing induced by double-stranded RNA in Caenorhabditis elegans[J]. Genetics, 2008, 180(3): 1275-1288.
    [47] Fu Q, Wu C, Shen Y, et al. Effect of LIMK2 RNAi on reorganization of the actin cytoskeleton in osteoblasts induced by fluid shear stress[J]. J Biomech, 2008, 41(15): 3225-3228.
    [48] So MK, Gowrishankar G, Hasegawa S, et al. Imaging target mRNA and siRNA-mediated gene silencing in vivo with ribozyme-based reporters[J]. Chembiochem, 2008, 9(16): 2682-2691.
    [49] Torelli AT, Spitale RC, Krucinska J, et al. Shared traits on the reaction coordinates of ribonuclease and an RNA enzyme[J]. Biochem Biophys Res Commun, 2008, 371(1): 154-158.
    [50] Xu Q, Jia RB. bFGF siRNA expression plasmid inhibits growth of human LEC-B3 cells[J]. Zhonghua Yan Ke Za Zhi, 2008, 44(12): 1078-1082.
    [51] Chen H, Li X, Cui B, et al. Construction of eukaryotic express vector of duck interleukin 18 gene and identification of bioactivity of its expressed protein[J]. Sheng Wu Gong Cheng Xue Bao, 2008, 24(9): 1568-1572.
    [52] Zhang QF, Huang Q, Liu N, et al. Effects of heparanase inhibition by RNA interference on proliferation, invasiveness and apoptosis of lung cancer cells[J]. Zhong hua Bing Li Xue Za Zhi. 2008, 37(12): 826-830.
    [53] Omasa T, Tanaka R, Doi T, et al. Decrease in antithrombin III fucosylation by expressing GDP-fucose transporter siRNA in Chinese hamster ovary cells[J]. J BiosciBioeng, 2008, 106(2): 168-173.
    [54] Zhang XG, Qi QP, Ma J, et al. Overexpression, purification of recombinant HIV-1 gp41 protein and detection of HIV antibody in urine. Zhong hua Shi Yan He Lin Chuang Bing Du- Xue Za Zhi, 2008, 22(4): 308-310.
    [55] Skendros P, Sarantopoulos A, Tselios K, et al. Chronic Brucellosis Patients Retain Low Frequency of CD4+ T-Lymphocytes Expressing CD25 and CD28 after Escherichia coli LPS Stimulation of PHA-Cultured PBMCs[J]. Clin Dev Immunol. 2008, 2008: 327346.
    [56]王竹,孙万森,王娟,等.祛风通络方抑制NF-κB活化对脂多糖诱导的体外培养大鼠肾小球系膜细胞TGF-β1mRNA和IL-6mRNA表达的影响[J].南方医科大学学报, 2008, 28(10): 1825-1830.
    [57]盛富强,程龙献,王玮,等.辛伐他汀对脂多糖诱导人THP-1单核细胞MCP-1表达的影响[J].医学临床研究, 2008, 25(9): 1560-1562.
    [58] Fabian RH, Perez-Polo JR, Kent TA. Electrochemical monitoring of superoxide anion production and cerebral blood flow: effect of interleukin-1βpretreatment in a model of focal ischemia and reperfusion[J]. J Neur osci Res, 2000, 60 (6): 795-803.
    [59] Jander S, SchroeterM, Stoll G. Role of NMDA receptor signaling in the regulation of inflammatory gene expression after focal brain ischemia[J]. J Neur oimmunol, 2000, 109 (2): 181-187.
    [60] van Exel E, Gussekloo J, de Craen AJ, et al . Inflammation and stroke: the Leiden 85-Plus Study[J] . Stroke, 2002, 33(4 ): 1135-1138.
    [61] Malefyt RW, Abrams J, Bennet B, et al. Interleukin-10 inhibits cytokine synthesis by human monocytes[J]. J Exp Med. 1991, 174: 1209-1220.
    [62] Atreya R, Neurath MF. Involvement of IL-6 in the Pathogenesis of Inflammatory Bowel Disease and Colon Cancer.Clin Rev Allergy Immunol, 2005, 28(3):187.
    [63] Atreya R, Mudter J, Finotto S, et al. Blockade of interleukin 6 transsignaling suppresses T-cell resistance against apoptosis in chronic in testinal inflammation: evidence in crohn disease and experimental colitis in vivo[J]. Nat Med, 2000, 6(5): 583.
    [64] Kumar A, Takada Y, Aggar wal BB, et al. Nuclear factor kappa B: its role in health and disease[J]. J Mol Med, 2004, 82 (7): 434-448.
    [65] Bazan NG, Flower RJ. Medicine: Lipid signals in pain control[J]. Nature, 2002,420 (6912): 135,137-138.
    [66] Chen C, Magee JG, Bazan NG. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity[J]. J Neurophysiol, 2002, 87(6): 2851-2857.
    [67] Lim H, Paria BC, Das SK, et al. Multiple female reproductive failures in cyclooxygenase-2 deficient mice[J]. Cell, 1997, 91 (2): 197-208
    [68] Wallace JL. Dist ribution and expression of cyclooxygenase (COX) isoenzymes, their physiological roles, and the categorization of non-steroidal anti-inflammatory drugs (NSAIDs)[J]. Am J Med, 1999, 107 (6 suppl 1): 11-16.
    [69] Khan KN, Paulson SK, Verburg KM, et al. Pharmacology of cyclooxygenase-2 inhibition in the kidney[J]. Kidney Int, 2002, 61(4):1210-1219.
    [70] Brater DC. Effects of nonsteroidal anti-inflammatory drugs on renal function: Focus on cyclooxygenase-2 selective inhibition[J]. Am J Med , 1999, 107 (6A): 65S-71S.
    [1] Modrek B, Lee C. A genomic view of alternative splicing[J]. Nat Genet, 2002, 30: 13-19.
    [2]延锦春,陈誉华,宋今丹,等. mRNA前体选择性剪接的研究进展[J].生命科学, 2002, 14(3): 150-152,185.
    [3] Baus D, Heermeier K, De-Hoop M, et al. Identification of a novel AS160 splice variant that regulates GLUT4 translocation and glucose-uptake in rat muscle cells[J]. Cell-Signal. 2008, 20(12): 2237-2246.
    [4] Modrek B,Lee CA. genomic view of alternative splicing[J]. Nat Genet, 2002 30(1): 13-19.
    [5] Modrek B, Lee C. A genomic view of alternative splicing[J]. Nat Genet, 2002, 30(1): 13-19.
    [6] Galante PA, Sakabe NJ, Kirschbaum-Slager N, et al. Detection and evaluation of intron retention events in the human transcriptome[J]. RNA, 2004, 10(5): 757-765.
    [7] Graveley BR. Alternative splicing : increasing diversity in the proteomic world[J]. Trends Genet, 2001, 17(2): 100-107.
    [8] Mayer K, Hieronymus T, Castrop J, et al. Ectopic activation of lymphoid high mobility group-box transcription factor TCF-1 and over expression in colorectal cancer cells[J]. Int J Cancer, 1997, 72(4): 625-630.
    [9] Shiina H, Igawa M, Breault J, et al. The human T2 cell factor- 4 gene splicing isoforms, Wnt signal pathway, and apoptosis in renal cell carcinoma[J]. Clin Cancer Res, 2003, 9 (6): 2121-2132.
    [10] Howng S L, Huang F H, Hwang S L, et al. Differential expression and splicing isoform analysis of human Tcf-4 transcription factor in brain tumors[J]. Int J Oncol, 2004, 25 (6): 1685-1692.
    [11] Ruckert S, Hiendlmeyer E, Brueckl W M, et al. T2 cell factor-4 frameshift mutations occur frequently in human micr osatellite instability high colorectal carcinomas but do not contribute to carcino-genesis[J]. Cancer Res, 2002, 62 (11): 3009-3013.
    [12] Saeki H, Tanaka S, Tokunaga E, et al. Genetic alterations in the human Tcf-4 gene in Japanese patients with sporadic gastrointestinal cancers with microsatelliteinstability[J]. Oncology, 2001, 61(2): 156-161.
    [13] Jiang Y, Zhou X D, Liu Y K, et al. Association of hTCF-4 gene expression and mutation with clinicopathological characteristics of hepatocellular carcinoma[J]. World J Gastroenterol, 2002, 8(5): 804-807.
    [14] Barker N, Huls G, Korinek V, et al. Restricted high level expression of TCF-4 protein in intestinal and mammary gland epithelium[J]. Am J Pathol, 1999, 154 (1): 29-35.
    [15] Yamada K, Miura Y, Scheidl T, et al. Assignment of the human ATBF1 transcription factor gene to chromosome 16q22.1-q22.3[J]. Genomic, 1995, 29(2): 552-553.
    [16] Sun X, Frierson H F, Chen C, et al. Frequent somatic mutation of the transcription factor ATBF1 in human prostate cancer [J]. Nat Genet, 2005, 37 (4): 407-412.
    [17] Ninomiya T , Mihara K, Fushimi K, et al. Regulation of theα2 fetoprotein gene by the isoforms of ATBF1 transcription factor in human hepatoma [J]. Hepatology, 2002, 35 (1) : 82-87.
    [18] Kaspar P, DvorákováM, KrálováJ, et al. Myb interacting protein, ATBF1, represses transcriptional activity of Myb oncoprotein[J]. J Biol Chem, 1999, 274(20): 14422-14428.
    [19] Sigalas I, Calvert AH, Anderson JJ, et al. Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences : transforming ability and frequent detection in human cancer. Nat Med, 1996, 2: 912-917. and frequent detection in human cancer[J]. Nat Med, 1996, 2(8): 912-917.
    [20] Lukas J, Gao DQ, Keshmeshian M, et al. Alternative and aberrant messenger RNA splicing of the mdm2 oncogene in invasive breast cancer[J]. Cancer Res, 2001, 61(7): 3212-3219.
    [21] Fridman JS, Hernando E, Hemann MT, et al. Tumor promotion by Mdm2 splice variants unable to bind p53[J]. Cancer Res, 2003, 63(18): 5703-5706.
    [22] Gebhardt F, Zanker KS, Brandt B, et al. Differential expression of alternatively spliced cerbB22 mRNA in primary tumors, lymph node metastases, and bone marrow micrometastases from breast cancer patients[J]. Biochem Biophys Res Commun, 1998, 247(2): 319-323.
    [23] Takino T, Nakada M, Miyamori H, et al. CrkⅠadaptor protein modulates cell migration and invasion in glioblastoma[J]. Cancer Res, 2003, 63(9): 2325-2337.
    [24] Heller S, Scheibenpflug L, Westermark B, et al. PDGF B mRNA variants in human tumors with similarity to the vsis oncogene: expression of cellular PDGF B protein is associated with exon 1 divergence, but not with a 3’UTR splice variant[J]. Int J Cancer, 2000, 85(2): 211-222.
    [25] Mazoyer S, Puget N, Perrin-Vidoz L, et al. A BRCA1 nonsense mutation causes exon skipping[J]. Am J Hum Genet, 1998, 62(3): 713-715.
    [26] Narla G, Difeo A, Reeves HL, et al. A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk[J]. Cancer Res, 2005, 65(4): 1213-1222.
    [27] Tzao C, Tsai HY, Chen JT, et al. 5’CpG island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non small cell lung cancer[J]. Eur J Cancer, 2004, 40(14): 2175-2183.
    [28] Lee JH, Seo YW, Park SR, et al. Expression of a splice variant of KAI1, a tumor metastasis suppressor gene, influences tumor invasion and progression[J]. Cancer Res, 2003, 63(21): 7247-7255.
    [29] Xin Y, Grace A, Gallagher MM, et al. CD44v6 in gastric carcinoma: a marker of tumor progression[J]. Appl Immunohistochem Mol Morphol, 2001, 9(2): 138-142.
    [30] Wang L, Duke L, Zhang PS, et al. Alternative splicing disrupts a nuclear localization signal in spleen tyrosine kinase that is required for invasion suppression in breast cancer[J]. Cancer Res, 2003, 63(15): 4724-4730.
    [31] Borsi L, Carnemolla B, Nicolo G, et al. Expression of different tenascin isoforms in normal, hyperplastic and neoplastic human breast tissues[J]. Int J Cancer, 1992(5), 52: 688-692.
    [32] Tanaka S, Sugimachi K, Saeki H, et al. A novel variant of WISP1 lacking a von Wille brand type C module over expressed in scirrhous gastric carcinoma[J]. Oncogene, 2001, 20(39): 5525-5532.
    [33] Kwok JB, Loy CT, Hamilton G, et al. Glycogen synthase kinase-3beta and tau genes interact in Alzheimer's disease[J]. Ann Neurol, 2008, 64(4): 446-454.
    [34] Lambourne SL, Humby T, Isles AR, et al. Impairments in impulse control in mice transgenic for the human FTDP-17 tauV337M mutation are exacerbated by age[J]. Hum Mol Genet, 2007, 16(14): 1708-1719.
    [35] Song J, Goetz BD, Kirvell SL, et al. Selective myelin defects in the anterior medullary velum of the taiep mutant rat[J]. Glia, 2001, 33(1): 1-11.
    [36] Xiao Z S, Simpson L G, Quarles L D. IRES2 dependent translational control of Cbfa1 /Runx2 expression [J]. J Cell B iochem, 2003, 88 (3): 493-505.
    [37] Xiao ZS, Hinson TK, Quarles LD. Cbfa1 isoform over xpression up regulates osteocalcin gene expression in non-osteoblastic and preosteoblastic cells[J]. J Cell Biochem, 1999, 74 (4): 596-605.
    [38] Xiao Z S, Hjel meland A B, Quarles L D. Selective deficiency of the“bone-related”Runx22Ⅱunexpectedly preserves osteoblast mediated skelet ogenesis[J]. J Biol Chem, 2004, 279 (19): 20307-20339.
    [39] Xiao Z, Awad H A, Liu S, et al. Selective Runx22Ⅱdeficiency leads to low turn over osteopenia in adultmice[J]. Dev Biol, 2005, 283 (2): 345-356.
    [40] Zwahlen D, Tschan MP, Grob TJ, et al. Differential expression of p73 splice variants and protein in benign and malignant ovarian tumours[J]. Int J Cancer, 2000, 88(1): 66-70.
    [41] Yu YT, Steitz JA. Site-specific crosslinking of mammalian U11 and u6atac to the 5' splice site of an AT-AC intron[J]. Proc Natl Acad Sci USA, 1997, 94(12): 6030-6035.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700