用户名: 密码: 验证码:
铝纤维炸药爆炸性能与力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统含铝炸药中的铝通常以粉末形式加入到炸药中,以提高含铝炸药的爆炸威力,但同时也提高了炸药的机械感度,降低了炸药的安全性。铝粉的粒径要求在微米或纳米量级,加工工艺较为复杂,而且粉尘对环境的污染严重,还存在粉尘爆炸的危险,同时铝粉比表面积较大,其活性随着储存时间增加而降低。另外炸药在运输、存储和使用过程中受到各种机械形式作用,炸药在各种机械作用下的力学行为变得日益重要。针对上述问题,将传统含铝炸药(RDX/Al)中的铝粉用铝纤维替代,得到新型铝纤维炸药。与传统含铝炸药相比,铝纤维的加入能改善含铝炸药的成型性,同时增强了含铝炸药的力学性能并提高含铝炸药的安全性。本文通过对铝纤维炸药的研究,有利于加深对含铝炸药爆炸性能认识,具体研究内容如下:
     通过铝纤维炸药与传统含铝炸药的空中爆炸实验,得到压力时程曲线,并对曲线进行小波分析。小波分析表明信号去噪后的信噪比主要与分解的层数有关,而小波基的选择对信噪比影响相对较小。通过对信噪比、均方根误差与去噪效果综合判断,文中最终采用Daubechies小波系中的db4对空中冲击波压力时程曲线信号进行处理。通过小波分析可以获得冲击波信号在各频带的细节信息,d4对应的频带(781kHz~1562kHz)上存在周期性干扰信号,d9与d12对应的频带上明显存在三处突变信号,分别为入射冲击波、二次击波与反射冲击波。空中爆炸的冲击波能量分布主要处于0-8E5Hz频率范围内,该频率范围也为滤波的截断频率提供参考。铝纤维炸药的二次击波超压幅值和到达时间与铝粉炸药相近,而铝纤维炸药的二次击波到达时间早于基体炸药(RDX),说明二次击波的超压幅值与到达时间与炸药类型有关。使用压制铝纤维的铝纤维炸药冲击波冲量与传统含铝炸药相当,其相对于RDX提高了18%。
     将含有不同铝纤维含量的铝纤维炸药与含有不同铝形态的含铝炸药进行水下爆炸实验,得到冲击波压力时程曲线与脉动压力时程曲线,并对这些曲线进行分析计算。使用压制铝纤维的铝纤维炸药(20%)压力峰值、比冲击波能、冲量略低于传统含铝炸药或与传统含铝炸药相当,但铝纤维炸药的爆速与比气泡能略高于传统含铝炸药的爆速。铝纤维炸药(20%)的冲量相对于RDX提高了14%-21%。铝纤维炸药的第一次气泡脉动周期时间略高于传统含铝炸药,但铝纤维炸药的气泡脉动压力峰值与压力冲量都低于传统含铝炸药,其原因需要进一步研究。低含量铝纤维对铝纤维炸药的压力峰值影响较小,高含量铝纤维对铝纤维炸药的压力峰值影响较大。铝纤维炸药的爆速随着铝纤维的含量增加而减小,与铝纤维二次反应放出的能量未能支持爆轰波阵面的传播有关。铝纤维炸药的第一次脉动周期时间与比气泡能随着铝纤维含量的增加而增大,铝纤维炸药的脉动压力峰值与脉动压力冲量随着铝纤维含量的增加而减小。铝纤维炸药的比冲击波能随着铝纤维含量的增加而先增大后减小,即铝纤维含量为20%时,铝纤维炸药比冲击波能最大。
     将含有不同铝纤维含量的铝纤维炸药进行力学实验,通过对实验结果进行分析,结果表明铝纤维炸药的压缩极限应力与残余强度随着铝纤维含量增加而增加。对不同含量的铝纤维炸药弹性模量进行拟合计算,得到铝纤维的增强系数为8.19,说明铝纤维显著增强铝纤维炸药力学性能。SHPB实验采用波形整形技术对入射波进行整形,延长其加载时间,使试样在破坏前达到应力平衡,同时实现常应变率加载,另外可以获得比较光滑的入射波,降低应力波的弥散效应,消除高频振荡,明显改善加载波的质量。SHPB实验表明:铝纤维炸药的压缩极限应力具有应变率效应,随着铝纤维含量增加,铝纤维炸药的压缩极限应力的应变率效应开始减弱。采用正态分布函数对不同含量的铝纤维炸药在准静态下的应力应变曲线进行拟合,拟合效果较好。低于20%含量的铝纤维炸药在SHPB实验后都己粉碎,高于20%含量的铝纤维炸药在SHPB实验后还能保持较好的完整性,说明高含量的铝纤维炸药具有一定的抗过载能力。
     SPH-FEM耦合方法克服了网格畸变问题又能保证计算效率,文中通过MATLAB与LS-DYNA程序生成水下爆炸的SPH-FEM模型并进行模拟计算。在建模过程中,SPH粒子区域最终采用球形,为了保证球体区域上的最外围的一层粒子都严格落在球面上,即在最外层球面上生成的SPH粒子坐标与ANSYS生成的有限元网格坐标能很好地对应上,从而使SPH粒子与有限元网格进行良好接触耦合,SPH粒子将采用新方法生成,并成功解决粒子穿透有限元单元以及接触面部分网格畸变问题。通过对铝纤维炸药水下爆炸过程进行模拟,将模拟计算得到的远场压力时程曲线与实验得到的压力时程曲线进行比较,结果表明数值模拟得到的压力峰值与实验得到相应位置的压力峰值高度一致,说明文中采用SPH-FEM耦合方法对铝纤维炸药水下爆炸模拟具有一定的可靠性、优越性和精确性,从而进一步获取铝纤维炸药近场的冲击波压力时程曲线。另外将离铝纤维炸药不同距离的压力峰值按指数衰减函数进行拟合,其拟合效果良好。
Traditionally, aluminum is incorporated in the composite explosives in the form of powder, which is expected to result in improving the blast performance of composite explosives due to superior heat of formation. However, impact sensitivity is improved owing to aluminum powder becomes hot spots in composite explosives. In addition, aluminum particle size ranges from nanometer to micrometer, which may lead to the problems of environmental pollution, complex production process, and dust explosion during the production process. The activity of aluminum powder decreases with an increase in storage time because the specific surface area of aluminum powder. Explosives is subjected to all kinds of loading under different environment, such as productive process, packing, handing, transportation, launch, and so on. Mechanical properties of explosives become increasingly significant. A new non-ideal composite explosive is proposed by replacing aluminum powder in traditional aluminized explosives with aluminum fiber. The disadvantage of traditional aluminized explosives may be solved by using aluminum fiber in composite explosive and the better mechanical properties may be obtained because aluminum fiber is used in the new composite explosive. It is helpful to understand the detonation mechanism of traditional aluminized explosives by the study of aluminum fiber explosive.
     The pressure history curves of aluminum fiber explosive and traditional aluminized explosives are measured by air blast experiments and the curves are analyzed by wavelet analysis. The results show that the decomposition levels have a great effect on the signal to noise ratio after denoising and the wavelet kernel function has less effect on the signal to noise ratio after denoising. Based on the comprehensive judgment of signal to noise ratio, root mean square error and denoising effect, the signals of pressure are processed by db4of Daubechies wavelet series. Details of shock wave signal in each frequency band can be obtained by the wavelet analysis. There are periodic interference signal in d4(781kHz to1562kHz) and three obvious mutation signals, the incident shock wave, secondary shock wave and the reflected shock wave, in d9and dl2. The energy of air blast shock wave is mainly distributed in the0-8e5Hz, which could provide a reference for filter. The amplitude and occurring time of secondary shock wave of aluminum fiber explosive as same as traditional aluminized explosives and the occurring time of secondary shock wave of aluminum fiber explosive is earlier than matrix explosives (RDX), which shows that the amplitude and occurring time of secondary shock wave is associated with the types of explosive. The shockwave impulse of aluminum fiber explosive is close to that of the traditional aluminized explosive. Compare with RDX, the impulse of aluminum fiber explosive increase by18%.
     The pressure-time curves for the shock wave and bubble pulse of aluminum fiber explosives and traditional aluminized explosives are measured by underwater explosion experiments. The peak pressure, impulse, shock wave energy and bubble energy are obtained by analyzing the curves. The peak pressure, impulse and shock wave energy of aluminum fiber explosive are close to that of traditional aluminized explosives. The detonation velocity and bubble energy of aluminum fiber explosive are greater than that of traditional aluminized explosives. Compare with RDX, the shock wave impulse of aluminum fiber explosive increase by14%-21%. The first pulsation period of aluminum fiber explosive is close to that of traditional aluminized explosives, but the peak pressure and impulse of bubble pulse are lower than that of traditional aluminized explosives. The low content aluminum fiber has less effect on the peak pressure of aluminum fiber explosives, but the high content aluminum fiber has a significant effect on the peak pressure. Detonation velocities of aluminum fiber explosives are decreased with an increase of Al fiber contents. It indicates that the potential of secondary reaction of aluminum fiber and detonation products does not support the detonation propagation. The first pulsation period and bubble pulse of aluminum fiber explosive are increased with an increase of Al fiber contents. The peak pressure and impulse of bubble pulse are reduced with an increase of Al fiber contents. The shock wave energy of aluminum fiber explosive increased firstly and then decreased with an increase of Al fiber contents. The specific shock energy of aluminum fiber explosive is maximum when the content of aluminum fiber is20%.
     The mechanics experiment of aluminum fiber explosive was carried out by MTS and SHPB. The analysis of experimental results shows that the ultimate stress and residual strength of aluminum fiber explosive are increased with an increase of Al fiber contents. The reinforcement coefficient is8.19, which obtained by fitting experimental data of elastic modulus. The fitting effect on experimental data is satisfactory. The coefficient shows that the enhanced effect of aluminum fiber on RDX is marked. The loading time of SHPB is extended by pulse shaping technique, which ensures the dynamic stress equilibrium in the specimen and to obtain a constant strain rate. The shaping technique could improve the quality of the incident wave and reduce dispersion effects of stress waves. The ultimate stresses of aluminum fiber explosives are related to strain rate by the analysis of experimental results. The relationship of ultimate stresses and strain rate is weakened with an increase of Al fiber contents. The normal distribution function is taken to fit stress strain curves of aluminum fiber explosive in a quasi-static state. The aluminum fiber explosive is destroyed under shock loading when the aluminum fiber contents below20%and the aluminum fiber explosive keep integrity under shock loading when the aluminum fiber contents more than20%. It indicates that aluminum fiber explosive has anti-overload ability.
     SPH-FEM coupled method could overcome the problem of mesh distortion and improve computational efficiency. The model (SPH-FEM) of underwater explosion is established by MATLAB and LS-DYNA. The region of SPH is a sphere. In order to ensure that the coordinates of particles are agreeing with the grid coordinates of the element on the sphere. The particles of SPH are generated by a new method. The method solves the problem of mesh distortion in the zone of cube tip and penetration of SPH particles to FEM element. After underwater explosion of aluminum fiber explosive was simulated by using the SPH-FEM model, the pressure-time curves of numerical simulation and experiment were compared and the result show that the peak pressure of numerical simulation can match with that of experiment. It indicates that the model of the underwater explosion is presented to testify the validity and precision of SPH-FEM coupled method. The pressure-time curves of aluminum fiber explosive in near-field are obtained by numerical simulation. The decaying exponential function is adopted to fit peak pressure of aluminum fiber explosive at different positions and it is excellent in fitting.
引文
[1]BAUDIN G, BERGUES D. A reaction model for aluminized PBX applied to underwater explosion calculations [C].proceedings of the The 10th Symposium on Detonation, Boston, USA,1993
    [2]MAKHOV M, GOGULYA M, DOLGOBORODOV A Y, et al. Acceleration ability and heat of explosive decomposition of aluminized explosives [J]. Combustion, Explosion and Shock Waves, 2004,40(4):458-466.
    [3]FINGER M, HORNIG H, LEE E, et al.:California Univ., Livermore. Lawrence Radiation Lab., 1970.
    [4]GROMOV A A, STROKOVA Y I, TEIPEL U. Stabilization of Metal Nanoparticles-A Chemical Approach [M].2009.
    [5]HOWARD W, FRIED L, SOUERS P. Modeling of non-ideal aluminized explosives[C]. proceedings of the AIP conference proceedings,2000, IOP INSTITUTE OF PHYSICS PUBLISHING LTD.
    [6]MAKHOV M, ARKHIPOV V. Method for estimating the acceleration ability of aluminized high explosives [J]. Russian Journal of Physical Chemistry B, Focus on Physics,2008,2(4):602-608.
    [7]廖学燕,沈兆武,姚保学等.含铝纤维复合炸药的能量输出和力学强度[J].爆炸与冲击,2010,04):424-428.
    [8]GUIRGUIS R, MILLER P. Time-dependent equations of state for aluminized underwater explosives[C]. proceedings of the the Tenth Symposium (International) on Detonation, ONR, Arlington, VA, OCNR,1993
    [9]TAO W, TARVER C, KURY J, et al.:Lawrence Livermore National Lab., CA (United States),1993.
    [10]黄辉,黄勇,李尚斌.含纳米级铝粉的复合炸药研究[J].火炸药学报,2002,(2):1-3.
    [11]GOGULYA M, DOLGOBORODOV A Y, BRAZHNIKOV M, et al. Detonation waves in HMX/A1 mixtures (pressure and temperature measurements) [C].proceedings of the Proc 11th Symposium (Internat) on Detonation,1998
    [12]陈朗,张寿齐,赵玉华.不同铝粉尺寸含铝炸药加速金属能力的研究[J].爆炸与冲击,1999,(3):58-63.
    [13]PERELLON J-F. performance of high explosives in underwater applications, part 2:aluminized explosives [J]. Propellants, Explosives, Pyrotechnics,2004
    [14]丁刚毅,徐更光.含铝炸药二维冲击起爆的爆轰数值模拟[J].兵工学报,1994,(4):25-29.
    [15]DEITER J, WILMOT G. Detonation chemistry of underwater explosives[C]. proceedings of the Proceedings Tenth International Detonation Symposium Boston, Massachusetts:Office of Naval Research,1993
    [16]殷海权,潘清,张建亮等铝粉对炸药性能的影响[J].含能材料,2004,05):318-326.
    [17]COLE R H. Underwater explosions [M]. Dover Publications New York,1965.
    [18]CHRISTMANN W, LINGENS P. CONTRIBUTION TO THE STANDARDIZATION OF THE ENERGY MEASUREMENT OF UNDERWATER EXPLOSIVES [J]. PROPELLANTS AND EXPLOSIVES,1980,5(3):59-61.
    [19]BJARHOLT G. Explosive expansion works in underwater detonation[C]. proceedings of the Proceedings of the 6th International Detonation Symposium, San Diego, California, US: Proceedings, Office of Naval Research,1976
    [20]E.STROMSOE, ERIKSEN S. Performance of high explosives in underwater applications. Part 2: Aluminized explosives [J]. Propellants, Explosives, Pyrotechnics,1990,15(2):52-53.
    [21]周霖,徐更光.含铝炸药水中爆炸能量输出结构[J].火炸药学报,2003,(1):30-36.
    [22]SWISDAK JRMM:DTIC Document,1978.
    [23]KEICHER T, HAPP A, KRETSCHMER A, et al. Influence of aluminium/ammonium perchlorate on the performance of underwater explosives [J]. Propellants, Explosives, Pyrotechnics,1999,24(3): 140-143.
    [24]BROUSSEAU P, DORSETT H E, CLIFF M D, et al. Detonation properties of explosives containing nanometric aluminum powder[C]. proceedings of the Proceedings of the 12th International Detonation Symposium,2002
    [25]BAKER E L, BALAS W, STIEL L, et al. Theory and detonation products equations of state for a new generation of combined effects explosives [C]. proceedings of the Insensitive Munitions and Energetic Materials Technology Symposium Miami, USA,2007
    [26]YANG V, SUNDARAM D, PURL P. Multi-scale modeling of nano aluminum particle ignition and combustion[C].proceedings of the Proceedings of,2010
    [27]郭连贵,宋武林,谢长生等.粒径大小对高频感应加热制备纳米铝粉活性影响[J].含能材料,2006,(4):276-279.
    [28]MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives[C]. proceedings of the Materials Research Society Symposium Proceedings, 1996
    [29]GILEV S, ANISICHKIN V. Interaction of aluminum with detonation products [J]. Combustion, Explosion and Shock Waves,2006,42(1):107-115.
    [30]苗勤书,徐更光,王廷增.铝粉粒度和形状对含铝炸药性能的影响[J].火炸药学报,2002,(2):4-8.
    [31]彭金华,陈网桦,苏华等铝粉对含铝炸药水中爆炸能量输出特性的影响研究[J].安全与环境学报,2004,(1):177-179.
    [32]胡栋,孙珠妹.铝粉颗粒度对黑索金含铝炸药粉快速反应影响的微观特性研究[J].爆炸与 冲击,1995,(2):122-127.
    [33]GOGULYA M, MAKHOV M, BRAZHNIKOV M, et al. Explosive characteristics of aluminized HMX-based nanocomposites [J]. Combustion, Explosion, and Shock Waves,2008,44(2):198-212.
    [34]PRAKASH V, PHADKE V, SINHA R, et al. Influence of Aluminium on Performance of HTPB-based Aluminised PBXs [J]. Defence Science Journal,2004,54(4):475-482.
    [35]罗景润.PBX的损伤、断裂及本构关系研究[D];中国工程物理研究院,2001.
    [36]RUMCHIK C, JORDAN J. Effect of aluminum particle size on the high strain rate properties of pressed aluminized explosives[C]. proceedings of the SHOCK COMPRESSION OF CONDENSED MATTER \2007:Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, F,2007. AIP Publishing.
    [37]SIVIOUR C, PROUD W. Damage formation during high strain rate deformation of PBX9501 [J]. Shock compression of condensed matter,2007,799-802.
    [38]陈鹏万,丁雁生,何松伟等.炸药冲击损伤的实验研究[J].含能材料,2003,(1):13-17.
    [39]韩小平,张元冲,李华,沈亚鹏,殷民,张泰华,赵壮华.含能材料在低温条件下冲击压缩力学性能的实验研究[J].爆炸与冲击,1995,(4):343-349.
    [40]GRANTHAM S, SIVIOUR C, PROUD W, et al. Speckle measurements of sample deformation in the split Hopkinsons pressure bar[C]. proceedings of the Journal de Physique IV (Proceedings), 2003. EDP sciences.
    [41]陈鹏万,丁雁生.含能材料的细观损伤[J].火炸药学报,2001,(2):58-61.
    [42]PALMER S, FIELD J, HUNTLEY J. Deformation, strengths and strains to failure of polymer bonded explosives [J]. Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences,1993,440(1909):399-419.
    [43]LANZEROTTIY, PINTO J, WOLFE A, et al. Fracture surface topography of TNT, Composition B and Octol[C]. proceedings of the Proc Tenth International Detonation Symposium,(Office of Naval Research),1993.
    [44]WILLEY T M, LAUDERBACH L, GAGLIARDIF, et al. Comprehensive Characterization of Voids and Microstructure in TATB-based Explosives from 10 nm to 1 cm:Effects of Temperature Cycling and Compressive Creep[C]. proceedings of the 14th In-ternational Detonation Symposium Coeurd Alele:Office of Naval Research,2010
    [45]田勇,刘石,张伟斌等.TNT炸药熔铸结晶成型过程μCT实验研究[J].含能材料,2009,(2):173-177.
    [46]戴斌,张伟斌,田勇等.含能材料损伤裂纹的工业CT图像分析[J].CT理论与应用研究,2009,(4):68-74.
    [47]韩小平,张元冲,沈亚鹏,赵壮华,张泰华Comp. B复合炸药动态压缩力学性能和本构关 系的研究[J].实验力学,1996,(3):303-310.
    [48]BROWNING R V, GURTIN M E, WILLIAMS W O. A one-dimensional viscoplastic constitutive theory for filled polymers [J]. International journal of solids and structures,1984,20(11):921-934.
    [49]丁雁生,潘颖,蔡瑞娇等.PBX材料的蠕变损伤本构关系[J].含能材料,2000,(2):86-90.
    [50]罗景润,李大红,张寿齐等.简单拉伸下PBX的损伤测量及损伤演化[C].2000
    [51]李英雷,李大红,胡时胜等TATB钝感炸药本构关系的实验研究[J].爆炸与冲击,1999,(4):353-359.
    [52]陈荣,卢芳云,林玉亮等.一种含铝炸药压缩力学性能和本构关系研究[J].含能材料,2007,(5):460-465.
    [53]李俊玲,卢芳云,傅华等.某PBX炸药的动态力学性能研究[J].高压物理学报,2011,(2):159-164.
    [54]SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture [J]. Journal of Applied Physics,2008,47(11):481-486.
    [55]曹雷.含能材料损伤本构模型的数值模拟研究[D];国防科学技术大学,2010.
    [56]BENNETT J G, HABERMAN K S, JOHNSON J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives [J]. Journal of the Mechanics and Physics of Solids,1998,46(12):2303-2322.
    [57]CLANCY S, JOHNSON J, BURKETT M:Los Alamos National Lab. NM (United States),1998.
    [58]周栋,黄风雷,姚惠生.PBX炸药细观损伤的实验研究[J].火炸药学报,2007,(3):16-18.
    [59]谢惠民,史航,陈鹏万等.PBX材料蠕变性能的云纹干涉法实验研究[J].实验力学,2005,(3):375-380.
    [60]RAE P J, GOLDREIN H T, PALMER S J, et al. Moire interferometry studies of PBX 9501; proceedings of the AIP CONFERENCE PROCEEDINGS, F,2002 [C]. IOP INSTITUTE OF PHYSICS PUBLISHING LTD.
    [61]薛再清,徐更光,王廷增等.用KHT状态方程计算炸药爆轰参数[J].爆炸与冲击,1998,(2):77-81.
    [62]HOLT J F. Numerical solution of nonlinear two-point boundary problems by finite difference methods [J]. Communications of the ACM,1964,7(6):366-373.
    [63]WILKERSON S A:DTIC Document,1993.
    [64]LE M HAUT B, WANG S. BIEM FORMULATION OF EXPLOSION BUBBLE DYNAMICS [J].
    [65]HEATON K:DTIC Document,1986.
    [66]TEMKIN S. Gasdynamic agglomeration of aerosols. I. Acoustic waves [J]. Physics of Fluids (1994-present),1994,6(7):2294-2303.
    [67]WILKERSON S:DTIC Document,1992.
    [68]REHAK M L, DIMAGGIO F L, SANDLERI S. Interactive approximations for a cavitating fluid around a floating structure [J]. Computers & structures,1985,21(6):1159-1175.
    [69]FOX P, KWON Y W, SHIN Y:Monterey, California:Naval Postgraduate School.1992.
    [70]HAXTON R, EL-DEEB K, ROYLES R, et al. Further assessment of numerical procedures for the study of fluid-structure interaction [J]. Strain,1995,31(3):107-112.
    [71]李澎,徐更光.水下爆炸冲击波传播的近似计算[J].火炸药学报,2006,(4):21-24.
    [1]亨利奇.爆炸动力学及应用[M].北京:科学出版社,1987.
    [2]W.E.贝克.空中爆炸[M].北京:原子能出版社,1982.
    [3]BRODE H L. Blast wave from a spherical charge [J]. Physics of Fluids (1958-1988),2004, 2(2):217-29.
    [4]HENRYCH J, MAJOR R. The dynamics of explosion and its use [M]. Elsevier Amsterdam, 1979.
    [5]於津,彭金华,张陶等.基于MATLAB的FAE战斗部超压计算的公式拟合[J].弹箭与制导学报,2004,(4):306-308.
    [6]陆明.炸药的分子与配方设计[M].北京:兵器工业出版社,2004.
    [7]孙业斌,惠君明,曹欣茂.军用混合炸药[M].北京:兵器工业出版社,1995.
    [8]史秀志,薛剑光,陈寿如.爆破振动信号双线性变换的二次型时频分析[J].振动与冲击,2008,(12):131-134.
    [9]张德丰MATLAB小波分析[M].北京;机械工业出版社.2010.
    [10]刘希灵,李夕兵,洪亮等.基于离散小波变换的岩石SHPB测试信号去噪[J].爆炸与冲击,2009,(1):67-72.
    [11]严鹏,卢文波,李洪涛等.地应力对爆破过程中围岩振动能量分布的影响[J].爆炸与冲击,2009,(2):182-188.
    [12]晏俊伟,龙源,方向等.基于小波变换的爆破振动信号能量分布特征分析[J].爆炸与冲击,2007,(5):405-410.
    [13]中国生,徐国元,熊正明.基于小波变换的爆破地震信号能量分析法的应用研究[J].爆炸与冲击,2006,(3):222-227.
    [14]钱颖.基于小波阀值的信号去噪[J].中国科技信息,2009,(12):178-184.
    [15]段永刚,马立元,李永军等.基于小波分析的改进软阈值去噪算法[J].科学技术与工程,2010,23:575-578.
    [16]DONOHO D L. De-noising by soft-thresholding [J]. Information Theory, IEEE Transactions on,1995,41(3):613-27.
    [17]MANGANIELLO L, VEGA C, RiOS A, et al. Use of wavelet transform to enhance piezoelectric signals for analytical purposes [J]. Analytica Chimica Acta,2002,456(1):93-103.
    [18]凌同华.爆破震动效应及其灾害的主动控制[D];中南大学,2004.
    [19]温华兵,尹群,张健.水下爆炸压力时频分布的小波包分析[J].江苏科技大学学报(自然科学版),2008,(5):48-52.
    [20]FLYNN P. Elastic response of simple structures to pulse loading [J]. Ballistics Research Laboratory, Aberdeen Proving Ground, Maryland, USA, BRL Memo Report,1950,525:
    [21]ETHRIDGE N. A Procedure for Reading and Smoothing Pressure-Time Data from HE and Nuclear Explosions [M]. Army. Ballistic Research Laboratories,1965.
    [22]BRODE H L. Numerical solutions of spherical blast waves [J]. Journal of Applied physics, 2004,26(6):766-75.
    [23]BRODE H L. The Blast Wave in Air Resulting From a High Temperature, High Pressure Sphere of Air (U) [J].1956,
    [24]奥尔连科.爆炸物理学[M].北京:科学出版社,2011.
    [25]ETHRIDGE N, KEEFER J, BRYANT E. MEASUREMENTS OF AIR-BLAST PHENOMENA WITH SELF-RECORDING GAGES [M]. BALLISTIC RESEARCH LABS ABERDEEN PROVING GROUND MD.1959.
    [26]BAUM F, STANYUKOVICH K, SHEKHTER B I:DTIC Document,1959.
    [27]POKROVSKII G, FEDOROV I. Effect of shock and explosion on deformable media [J]. Gos Izd,1957,
    [28]NAUMYENKO I, PETROVSKY I. The shock wave of a nuclear explosion [J]. BOEH, CCCP, 1956,
    [29]YAKOVLEV Y S. Explosion hydrodynamics [J]. Sudpromgiz, Leningrad,1961,
    [1]张立.爆破器材性能与爆炸效应测试[M].中国科学技术出版社,2006.
    [2]池家春,马冰TNT/RDX (40/60)炸药球水中爆炸波研究[J].高压物理学报,1999,13(3):199-204.
    [3]BARNES R, HETHERINGTON J, SMITH P. The design and instrumentation of a simple system for demonstrating underwater explosive effects [J]. Propellants, Explosives, Pyrotechnics,1988,13(1):13-6.
    [4]亨利奇.爆炸动力学及应用[M].北京:科学出版社,1987.
    [5]奥尔连科.爆炸物理学[M].北京:科学出版社,2011.
    [6]COLE R H. Underwater explosions [M]. Dover Publications New York,1965.
    [7]BJARNHOLT G. Suggestions on standards for measurement and data evaluation in the underwater explosion test [J]. Propellants, Explosives, Pyrotechnics,1980,5(2):67-74.
    [8]孙业斌,惠君明.军用混合炸药[M].北京:兵器工业出版社,1995.
    [9]刘建湖.舰船非接触水下爆炸动力学的理论与应用[D].无锡:中国船舶科学研究中心,2002
    [10]BAUDIN G, BERGUES D. A reaction model for aluminized PBX applied to underwater explosion calculations [C].proceedings of the The 10th Symposium on Detonation, Boston, USA,1993
    [11]殷海权,潘清,张建亮等铝粉对炸药性能的影响[J].含能材料,2004,05):318-326.
    [1]郑保辉,王平胜,观罗等.短切纤维对RDX/TNT熔铸炸药的力学改性[J].含能材料,2013,(6):786-790.
    [2]郑保辉,罗观,舒远杰等.熔铸炸药研究现状与发展趋势[J].化工进展,2013,(6):134-136.
    [3]郭虎,罗景润,谢朝阳.PBX细观损伤特征及表征方法研究综述[J].四川兵工学报,2012,(1):125-129.
    [4]林聪妹,刘世俊,张娟等.粘结剂增强对TATB基PBX力学性能的影响[J].广州化工,2012,(14):77-79.
    [5]刘艳秋,马忠亮,萧忠良,张续柱.碳纤维对无壳弹药柱力学性能影响的研究[J].火炸药学报,1999,(3):30-32.
    [6]罗景润.PBX的损伤、断裂及本构关系研究[D];中国工程物理研究院,2001.
    [7]顾震隆.短纤维复合材料力学[M1.国防工业出版社,1987.
    [8]王启智,吴礼舟.用平台巴西圆盘试样确定脆性岩石的弹性模量、拉伸强度和断裂韧度——第二部分:试验结果[J].岩石力学与工程学报,2004,(2):199-204.
    [9]李俊玲,卢芳云,傅华等.某PBX炸药的动态力学性能研究[J].高压物理学报,2011,(2):159-164.
    [10]冯明德,彭艳菊,刘永强等SHPB实验技术研究[J].地球物理学进展,2006,(1):273-278.
    [11]卢芳云,W.CHEN, D.J.FREW.软材料的SHPB实验设计[J].爆炸与冲击,2002,(1):15-19.
    [12]卢玉斌,武海军,李庆明等.脆性材料SHPB实验中脉冲整形技术实现近似恒应变率加载功能的进一步研究[J].爆炸与冲击,2013,(1):47-53.
    [13]邓志方,黄西成,谢若泽SHPB实验入射波形分析[C].中国计算力学大会暨第八届南方计算力学学术会议(CCCM2010,SCCM8),中国四川绵阳,2010
    [14]丰平,张庆明,陈利等SHPB测试中斜坡加载对应力均匀性和恒应变率的影响分析[J].北京理工大学学报,2010,(5):513-516.
    [15]宋博,宋力,胡时胜.SHPB实验数据处理的解耦方法[J].爆炸与冲击,1998,(2):72-76.
    [16]戴福隆,沈观林,谢惠民.实验力学[M].北京:清华大学出版社,2010.
    [17]王礼立.应力波基础[M].北京:国防工业出版社,2010.
    [18]宋力,胡时胜.SHPB数据处理中的二波法与三波法[J].爆炸与冲击,2005,(4):368-373.
    [19]唐志平,王礼立SHPB实验的电脑化数据处理系统[J].爆炸与冲击,1986,(4):320-327.
    [20]MOHR D, GARY G, LUNDBERG B. Evaluation of stress-strain curve estimates in dynamic experiments [J]. International Journal of Impact Engineering,2010,37(2):161-169.
    [21]尚兵,胡时胜,姜锡权.金属材料SHPB实验数据处理的三波校核法[J].爆炸与冲击, 2010,(4):429-432.
    [22]刘剑飞,王正道,胡时胜.低阻抗多孔介质材料的SHPB实验技术[J].实验力学,1998,(2):87-92.
    [23]邓强.波形整形器在火工品高过载实验中的应用[D];南京理工大学,2005.
    [24]CHEN W W, SONG B. Split Hopkinson (Kolsky) bar:design, testing and applications [M]. Springer,2010.
    [25]胡时胜,王道荣,刘剑飞.混凝土材料动态力学性能的实验研究[J].工程力学,2001,(5):115-118.
    [26]GRAY III G, IDAR D, BLUMENTHAL W, et al.:Los Alamos National Lab., NM (United States),1998.
    [27]周风华,陈亮.SHPB实验中粘弹性试样内部应力波的传播[J].固体力学学报,2010,(2):149-156.
    [28]陈刚,陶俊林,陈忠富等.SHPB的径向惯性效应修正[J].西南科技大学学报,2008,(2):15-18.
    [29]王艳华,张景林.火工装药过载加速度试验方法研讨[J].机械管理开发,2010,(2):47-48.
    [30]张学舜,王娜,沈瑞琪.自由式霍普金森杆测量火工品过载加速度的数值模拟[J].爆破器材,2004,(1):39-42.
    [31]吴艳霞,沈瑞琪,叶迎华等.高加速度过载对硼系延期药延期性能的影响[J].火工品,2005,(3):14-17.
    [1]赵继波,谭多望,张远平等PVDF计在水中爆炸近场压力测试中的应用[J].火炸药学报,2009,(3):1-4.
    [2]李利莎,谢清粮,郑全平等.基于Lagrange、ALE和SPH算法的接触爆炸模拟计算[J].爆破,2011,(1):18-22.
    [3]张波,于明.用一种改进的Euler方法模拟凝聚炸药的爆轰[J].含能材料,2006,(3):195-199.
    [4]GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics-theory and application to non-spherical stars [J]. Monthly notices of the royal astronomical society,1977,181,375-389.
    [5]LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The astronomical journal,1977,82,1013-1024.
    [6]LIU M, LIU G, ZONG Z, et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology [J]. Computers & Fluids,2003,32(3):305-22.
    [7]LIU M, LIU G, LAM K, et al. Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations [J]. Shock Waves,2003,12(6):509-20.
    [8]SWEGLE J, ATTAWAY S. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations [J]. Computational Mechanics,1995,17(3):151-168.
    [9]张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,(4):2-14.
    [10]JOHNSON G R, STRYK R A, BEISSEL S R. SPH for high velocity impact computations [J]. Computer methods in applied mechanics and engineering,1996,139(1):347-73.
    [11]LIU G, LIUM光滑粒子流体动力学——一种无网格粒子法[M].长沙:湖南大学出版社.2005.
    [12]徐金中,汤文辉.高速碰撞SPH方法模拟中的初始光滑长度和粒子间距[J].计算物理,2009,(4):548-552.
    [13]CHEN J, BERAUN J, JIH C. An improvement for tensile instability in smoothed particle hydrodynamics [J]. Computational Mechanics,1999,23(4):279-287.
    [14]李裕春,时党勇,赵远ANSYS 11.0/LS-DYNA基础理论与工程实践[M].中国水利水电出版社,2008.
    [15]ZHANG A M, YANG W-S, HUANG C, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination [J]. Computers & Fluids,2013, 169-178.
    [16]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].清华大 学出版社,2005.
    [17]杨文山,孟晓宇,王祖华.SPH方法模拟水下爆炸研究进展[J].舰船科学技术,2012,(12):3-6.
    [18]PETSCHEK A G, LIBERSKY L. Cylindrical smoothed particle hydrodynamics [J]. Journal of Computational Physics,1993,109(1):76-83.
    [19]OMANG M, B RVE S, TRULSEN J. SPH in spherical and cylindrical coordinates [J]. Journal of Computational Physics,2006,213(1):391-412.
    [20]BROOKSHAW L. Smooth particle hydrodynamics in cylindrical coordinates [J]. ANZIAM Journal,2003,44,114-139.
    [21]章冠人,陈大年.凝聚炸药起爆动力学[M].北京;国防工业出版社.1991.
    [22]肖定军,郭学彬,蒲传金.单孔护壁爆破数值模拟[J].化工矿物与加工,2008,(7):22-24.
    [23]HALLQUIST J O. LS-DYNA keyword user's manual [J]. Livermore Software Technology Corporation,2007,
    [24]陈朗,龙新平,冯长根.含铝炸药爆轰[M].国防工业出版社,2004.
    [25]宋浦,杨凯,梁安定等.国内外TNT炸药的JWL状态方程及其能量释放差异分析[J].火炸药学报,2013,36(2):42-5.
    [26]CHISUM J E, SHIN Y S. Explosion gas bubbles near simple boundaries [J]. Shock and Vibration,1997,4(1):11-25.
    [27]亨利奇.爆炸动力学及应用[M].北京:科学出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700