用户名: 密码: 验证码:
聚合物光子晶体的制备及其光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在信息的传输方面,光子比电子有着更多的优点。它们有更快的传播速度,在携带大容量信息时有更低的损耗。光子晶体具有着像半导体操纵电子一样的操纵光线的能力,也被称作光子禁带材料(PBG)或PhCs,是一种新型的人造物质,能够控制光子行为的人工周期性电介质结构功能材料。光子晶体内部具有周期性结构,其组分介电常数呈周期性变化,具有电磁波禁带,使其能够操控电磁波。禁带内的电磁波只能沿光子晶体缺陷传播,通过缺陷的设计可以人为调控电磁波的传输。光子晶体的结构材料,是在高折射率材料的某些位置周期性的出现低折射率的材料。高低折射率的材料交替排列形成周期性结构就可以产生光子晶体带隙,而周期排列的低折射率位点的之间的距离大小不同,导致了一定距离大小的光子晶体只对一定频率的光波产生能带效应,即只有某种频率的光才会在某种周期距离一定的光子晶体中被完全禁止传播。如果只在一个方向上存在周期性结构,那么光子带隙只能出现在这个方向。如果在三个方向上都存在周期结构,可以出现全方位的光子带隙,特定频率的光进入光子晶体后将在各个方向都禁止传播。
     由于光子晶体不仅能够为光学器件的集成以及小型化提供了前所未有的机遇,而且光子晶体也展现出许多新的物理现象,所以自从被Yablonovitch和John发明以来,光子晶体引起了人们极大的研究热情。由于对于不同波长有着不同介电常数,光子晶体具有特殊的光学特性,能够对光电子器件的小型化提供革命性的解决方案。本论文的研究工作,从理论和实验两方面针对二维光子晶体和三维光子晶体的特点及其特殊的光学特性,特别对聚合物光子晶体及其特有的超棱镜效应和结构进行了深入细致的研究和分析,从理论上证明了这些结构的传输特性;系统地研究了光子晶体的制备方法,并利用软光刻印刷技术、激光全息技术成功制备了二维三角结构聚合物光子晶体和三维面心立方结构聚合物光子晶体,并对获得的光子晶体的光学特性进行了深入研究。主要的研究工作和创新点阐述如下:
     Ⅰ低折射率二维三角晶格聚合物光子晶体超棱镜结构的设计和计算模拟
     我们设计并计算了二维聚合物光子晶体超棱镜结构,它由一系列空气柱在聚合物厚片上按三角形捧列构成,背景聚合物在1550nm波长的折射率为1.475。为使聚合物光子晶体超棱镜的设计最优化,计算并分析了平面波传播的能带结构和色散曲面。(第二章)
     Ⅱ三维面心四方(FCT)木料堆结构光子晶体超棱镜的设计、模拟和论证
     利用与研究二维光子晶体超棱镜相同的方法,我们根据三维光子晶体完全能带结构,针对入射到y-z平面的光波,计算了其色散曲面,并由曲面的梯度得到了光波的传输/透射角度。由于由一种介质入射到另一种介质时k矢量的平行分量守恒,光子晶体中的光波将被限制在y-z平面,这样我们就把三维色散曲面简化为二维色散曲面。
     进一步利用了平面波展开法,使用BANDSOLVE软件包计算了能带结构。计算模拟了聚合物/SiO_2介质中,晶格为FCT结构的木料堆光子能带结构,其中w/d=0.266,h/d=0.305,△n=0.17,由于低折射率,在聚合物木料堆结构中不存在完全禁带。
     进一步由完全光子能带结构,给出了从任一点到布里渊区表面所有点可引起的光子能带结构变化的信息。对于给定的能量或频率,波矢的所有可能位置的数值都可以由此推出,并利用全区域分析得到了三维完全能带结构
     我们设计、计算模拟和论证了低折射率聚合物二维三角晶格结构和三维面心四方(FCT)木料堆结构中强的超棱镜效应,并从理论上进一步证明了这些光子晶体超棱镜结构的传输/透射特性。光子晶体结构中的传输/透射角对入射光波长和入射角非常敏感,所研究的二维和三维光子晶体的制备就是基于这些设计和计算模拟。(第二章)
     Ⅲ软光刻印刷技术制备二维聚合物光子晶体及超棱镜效应的证实
     作为一种制备方法,压印光刻技术有着低消耗、高产量以及高分辨率等优点,做为下一代的光刻技术,在微米和纳米结构方面的诸多应用已得到了证明。压印光刻技术的一个重要应用是软光刻印刷技术,用此技术可以制备能够控制激光光束传播的二维光子晶体。由于聚合物材料的低介电常数,聚合物光子晶体通常不会表现出完全的光子禁带,而某些具有超棱镜结构的光学器件恰恰不需要光子晶体具有禁带。理论计算表明,聚合物光子晶体中的强超棱镜效应是由于各向异性散射面的出现而产生的。利用软光刻印刷技术成功制备了二维聚合物光子晶体超棱镜结构,它提供了一种方便、有效的和低成本的微米、纳米尺寸微结构的制备方法。本文重点介绍了该制备方法的几个关键技术:基底的制作;弹性印模PDMS(Polydimethylsiloxane聚二甲基硅氧烷)模板的形成;图案的转移等,详细阐述了PDMS模板的制备方法和原理,并应用这种PDMS模板,结合传统的光刻印刷技术,在基底上浇铸聚合物获得了微毛细管组成的二维三角晶格聚合物光子晶体。
     制备获得的二维光子晶体精细结构,其空气柱的直径为300nm,通过SEM和AFM图像分析可知,纵横比可达1.25,基底与铸模图案的深度只有3%的差异。同时也制备得到了空气柱直径为450nm,晶格常数为900nm的二维三角结构光子晶体。而且使用软光刻技术成功制备得到的空气柱直径为450nm,晶格常数为900nm二维三角光子晶体结构,通过光学测试,在红外波段证实了二维光子晶体的超棱镜效应,当入射角从15°变为11°时,入射光束的传播/透射角度(折射角)从正变为负,实验测量结果与理论计算模拟基本一致,并进一步从理论上研究和分析了产生这种超棱镜现象的物理机理。使用PDMS模板的软成型及软光刻印刷制备技术是一种操作简单,低成本,可靠的制备光子晶体的方法,通过进一步分析可知,用这种方法制备的精细结构,可以在大面积上获得无缺陷的150nm谱线宽度。(第三章)
     Ⅳ近红外波段三维聚合物光子晶体激光全息技术制备及其光学特性研究
     通过对多束激光干涉产生的空间干涉光场进行计算模拟,归纳出光束偏振态改变时,激光相干产生光学晶格效果的变化规律,提供了激光全息技术中激光束偏振态的最佳组合,使激光全息技术制备理想的亚微米单晶结构更为方便快捷。进一步利用模拟计算结果,我们成功制备了一种近红外波段的三维聚合物光子晶体,此光子晶体的获得是利用等边棱镜全息制备方法:用He-Cd 325nm的连续激光与负光刻胶SU8相互作用制备了三维面心立方结构聚合物光子晶体,由此介绍了一种能够保持制备的亚微米晶体结构稳定的处理方法。为能够精确模拟三维聚合物光子晶体的聚合过程,我们设计和计算模拟了光刻胶的内部吸收状态,随着尺寸的减小,晶体结构的可靠性受吸收的影响就越大。在考虑吸收和未考虑吸收的情况下,由计算模拟得到了面心立方光子晶体结构。用等边棱镜全息制备法所制备的三维聚合物光子晶体的扫描电子显微镜显微图像证实了实验所得结构的可靠性,进一步通过实验的分析和制备结果的讨论验证了理论模拟的正确性。由傅里叶变换红外光谱仪获得的红外分光透射和反射光谱则进一步表明,所制备的晶体结构与计算模拟结果一致。(第四章)
     Ⅴ纳米压印光刻技术制备聚合物木料堆结构三维光子晶体的初步研究
     研究的三维聚合物光子晶体计划利用逐层堆积法制备,结构包括用一维棒状结构按一定的晶格对称性按层堆积形成一个晶格结构。我们首先设计在硅衬底上用E-Beam定位标记,并根据在上一步获得的定位标记把每一层的图案固定在精确位置,然后用逐层堆积方法,获得木料堆结构,最后制备成低折射率的三维聚合物/SiO_2光子晶体结构,它们在1550nm处有低的损耗和温度稳定性。这样我们可以使用纳米压印光刻技术,利用逐层堆积法制备三维光子晶体。(第五章)
Photons have many advantages over electrons as carriers of information. They are faster and can convey huge amounts of data with low power losses. A new class of materials called photonic crystals has the potential to steer light in the same way as electrons are manipulated in semiconductor. Photonic crystals, also called photonic band-gap (PBG) materials or PhCs , are a new class of artificial optical materials composed of periodic dielectric structures with different permittivity and feature size on the order of optical wavelengths. PhCs have unusual optical properties and promise to provide revolutionary solutions to the miniaturization of photonic devices. Photonic crystals have the property of preventing light from propagating in certain directions with specified energies, creating a photonic band gap which is analogous to the electronic band gap in semiconductors. The photons are either allowed or non-allowed states of the lattice depending on their energy. Applications for PCs fall into two generic categories based on either the reflective or transmissive attributes of a photonic crystal. So,for different applications of photonic crystals, the choice of material composition, lattice periodicity and symmetry as well as the deliberate creation of defect structures embedded in PhCs allows the control over the properties of this novel class of optical materials.
     Since it was invented by Yablonovitch and John , photonic crystal has been one of the most active research areas. Photonic crystal not only provides new opportunity for integration and minimization of photonic instruments, but also shows some new physical phenomena. The study of this dissertation is to focus on the properties and these unusual optical characteristics for two-dimensional and three-dimensional photonic crystals, furthermore, to research and analyze the polymer photonic crystals, their superprism effect and structure in depth. We studied the photonic crystals fabricating methods in systematization, using soft lithography and laser holographic lithography, two-dimensional and three-dimensional polymer photonic crystals were fabricated successfully, and their optical properties were investigated. The main research works and innovations were expatiated as followings:
     ⅠDesign and simulation for two-dimensional polymer triangle lattice photonic crystal superprism structures in low refractive index
     Here we design and calculate the polymer photonic crystal superprism structure with a triangle array of air holes on the polymer slab. The refractive index of background polymer is 1.475 at 1550nm. To optimize the design of superprism for polymer photonic crystals, the complete band structure and the dispersion surface were calculated and analyzed by the plane wave expansion. (Chapter 2)
     ⅡSimulating and demonstrating three-dimensional FCT woodpile structure superprism effect
     In following the same method for two-dimensional photonic crystal superprism, we directly compute the dispersion surface based on the full three-dimensional photonic band structure, and then determine the propagation angles from the gradient of this surface. The calculations were performed for light incident to the y-z plane. Due to the conservation of the parallel component of the k vector at the transition from one medium to another, the light inside the photonic crystals will be confined to the y-z plane. Then we can simplify the three-dimensional dispersion surface to two-dimensional-like dispersion surface.
     The band structure is calculated using BANDSOLVE software package which utilizes the plane wave expansion method. The calculation shows the photonic band structure for FCT lattice woodpile with w/d=0.266 and h/d=0.305 in a polymer/SiO_2 medium and with△n=0.17. There is no complete band gap in the polymer woodpile due to low refractive index.
     We demonstrated low refractive index two-dimensional polymer triangle lattice and three-dimensional FCT woodpile structure superprism effect and the propagation property for these structures. The propagation angle is very sensitive to the incident wavelength and incident angle. The following two-dimensional and three-dimensional photonic crystal structures fabrication are based on these design and simulation. (Chapter 2)
     ⅢFabrication of two-dimensional polymer photonic crystals by soft lithography and demonstration for superprism effect
     Imprint lithography as an alternative fabrication technique provides low-cost, high throughput and high resolution advantages over the next generation lithography. Many applications in micro- and nano-structures were demonstrated. An important application for imprint lithography is soft lithography, using this technology, two-dimensional photonic crystals and superprism structures that can manipulate laser beam steering were fabricated successfully. Polymer photonic crystals usually do not exhibit complete photonic band gaps because of low dielectric constants of polymers. However, certain optical devices such as superprism do not require the photonic crystals to have a bandgap. The theoretical calculation shows the strong superprism effects in the polymer photonic crystals due to anisotropic dispersion surface. Soft lithography offers a convenient, effective and low-cost technology for fabricating micro-and nano-structures.
     We introduced some key fabricating technologies. There are three steps in the soft lithography procedure: baseplate fabrication, PDMS template formation, and pattern transfer. The method and principle for fabricating PDMS template were set forth, and used this PDMS template to obtain two-dimensional polymer photonic crystals with micro-capillaries. The two-dimensional triangular photonic crystal superprism structures were fabricated by soft lithography provided not only an aspect ratio of 1.25 with 300nm air holes, but also the depth of the baseplate and that of molded patterns have only 3% difference. Meanwhile we also obtained the photonic crystal structures with 450nm air holes in diameter and 900nm in lattice constant. And we demonstrated the superprism effect in two-dimensional 900nm lattice constant photonic crystal structure at near-infrared wavelength by optical measuration. The beam propagation angle changed from positive to negative when the input incident angle was varied from 15°to 11°, and the experimental results are in good agreement with the simulation.Furthermore the physical mechanism behind the superprism phenomenon and effect was analyzed with the anisotropic dispersion surface .The soft lithography with the baseplate, PDMS templates and molded patterns offers a simple, low cost and dependable technique for fabricating fine feature structure as small as 150nm in line-width without distortions and defects over a large patterned area. (Chapter 3)
     ⅣFabrication of holographic three-dimensional polymer photonic crystals in near-infrared band and study for the optical property
     The self-designed computer simulation of the multi-laser-beam interference is introduced to the study of the relationship between the polarization of light and the clarity of the interference pattern, which provides the optimal solution of the polarization on holographic lithography technology and improves the fabrication of sub-micrometer periodic structure much more efficiently. A three equilateral sidewalls prism holographic fabrication has been proved for three-dimensionalfcc(face-centered-cubic)-type polymer photonic crystal using negative photoresist. Special fabricating treatment has been introduced to make sure the stability of the fabricated area nanostructures. The SEM results testified the good dependability of the fabricated structures. The experimental results are consistent with the results of computer simulation. Based on the method of a prism interference, a submicron three-dimensional fcc-type polymer photonic crystal was fabricated by applying He-Cd 325nm continuous laser interaction with negative photoresist SU8. The structure was also simulated using computer simulation. By analysis of SEM images and FTIR transmission and reflection spectra, the fabricated photonic crystal structures are in good agreement with the simulation results. In order to simulate precisely the three-dimensional polymer photonic crystal holographic lithography process, the adsorption inside the photoresist needs to be taken into consideration. As the size gets smaller, the effect of adsorption on crystal dependability gets bigger. We also obtained the simulating results of a fcc-type photonic crystal with adsorption and without adsorption. (Chapter 4)
     ⅤPrimary study for fabricating three-dimensional polymer woodpile photonic crystals by nano-imprint
     The woodpile photonic crystal is one of the most popular three-dimensional lattices and the polymer photonic crystals need to be fabricated using layer-by-layer stacking method. The structure consists of layers one-dimensional rods, stacking according to certain crystal symmetry to form a lattice structure. We first write the alignment marks on the silicon substrate by E-beam. And each layer patterns is written at a correct position referencing to the alignment marks fabricated in the first step. Then using layer-by-layer stacking method, by repeating the process ,we can obtain the woodpile structure and finally fabricate three-dimensional low refractive index polymer/SiO_2 photonic crystal that has low loss at 1550nm wavelength and thermal stability. (Chapter 5)
引文
[1]E.Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics”,Phys.Rev.Lett.,58(20):2059-2062(1987)
    [2]S.John,“Strong localization of photons in certain disordered dielectric superlattices”,Phys.Rev.Lett.,58(23):2486-2489(1987)
    [3]K.M.Ho,C.T.Chan,and C.M.Soukoulis,“Existence of a photonic gap in periodic dielectric structures”,Phys.Rev.Lett.,65,3152(1990)
    [4]E.Yablonovitch,T.J.Gmitter,and K.M.Lung,“Photonic band structure:The face-centered-cubic case employing nonspherical atoms”,Phys.Rev.Lett.,67,2295(1991)
    [5]C.T.Chan,K.M.Ho and C.M.Soukoulis,“Photonic band gaps in experimentally realizable periodic dielectric structures”,Europhys.Lett.,16,563(1991)
    [6]温熙森等,“光子/声子晶体理论与技术”,北京:科学出版社,2006
    [7]Joannopoulos J D,Meade R,Winn J N.,“Photonic Crystals:Molding the Flow of Light”,NJ:Princeton University Press,1995
    [8]Kosaka H,Kawashima T,Tomita A.et al.,“Superprism phenomena in photonic crystals”,Phys.Rev.B,58,R10096-R10099(1998)
    [9]Imhof A,Vos W L,Sprik R.et al.,“Large Dispersive Effects near the Band Edges of Photonic Crystals]”,Phys Rev Lett.,83(15):2942-2945(1999)
    [10]Y.Xia and G.M.Whitesides,“Soft lithography”,28,153(1998)
    [11]S.Y.Chou,P.R.Krauss,and P.J.Renstrom,“Nanoimprint lithography”,J.Vac.Sci.Technol.B,14(6),4129(1996)
    [12]JIANG Wei and CHEN R T,“Theory of light refraction at the surface of a photonic crystal”,Phys Rev B,71(15):1-12(2005)
    [13]JIANG Yong-qiang,JIANG Wei,GU Lan-lan et al.,“80-micron interaction length silicon photonic crystal waveguide modulator”,Appl Phys Lett.,87,221105-221107(2005)
    [14] S. Noda, T. Baba, "Roadmap on photonic crystals" , Springer (2003)
    [15] J.D. Joannopoulos, R.D. Meade, J.N. Winn, "Photonic Crystals", Princeton University Press, (1995)
    [16] S. G. Johnson, J. D. Joannopoulos, "Photonic crystals: road from theory to practice", Kluwer Academic Publishers, (2002)
    [17] S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, "Highly dispersive photonic band-gap prism", Opt. Lett., 21, 1771 (1996.
    [18] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals: toward microscale lightwave circuits", IEEE J. Lightwave Tech., 17(11), 2032 (1999)
    [19] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, " Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering" , Appl. Phys. Lett., 74, 1370 (1999)
    [20] L. Wu, M. Mazilu, T. Karle and T. F. Krauss, "Superprism phenomena in planar photonic crystal", IEEE. J. Quantum. Elecron., 38, 915 (2002)
    [21] A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. Fedeli, "Experimental evidence for superprism phenomena in SOI photonic crystals", Optics Express, 12(23), 5690 (2004)
    [22] J. Serbin, M. Gu, "Experimental Evidence for Superprism Effects in Three-Dimensional Polymer Photonic. Crystals", Advanced Materials, 18, 221(2006)
    [23] H. Kosaka, et al., " Superprism phenomena in photonic crystals: toward microscalelightwave circuits" , J. Lightwave Technol., 17, 2032 (1999)
    [24] T. Prasad, V. Colvin, and D. Mittleman, "The superprism phenomenon in three-dimensional macroporous polymer photonic crystals" , Phys. Rev. B, 67, 165103 (2003)
    [25]G.Moore,"Progress in digital integrated electronics",Proceedings of IEEE Int.Electron Devices Meeting,Dig.Tech.,11(1995)
    [26]H.R.Harriott,"Limits of Lithography",Proceedings of the IEEE,89(3),366,(2001)
    [27]Semiconductor Industry Association(SIA),"The International Technology Roadmap for Semiconductor",2001
    [28]S.Murthy,M.Falcon,and S.V.Sreenivasan,D.Dance,"SFIL technology:cost of ownership case study",Proceedings of SPIE,5751,Emerging Lithographic Technologies Ⅸ,964(2005)
    [29]I.E.Psarobas,N.Stefanou,"Photonic crystals with planar defects",Phys Rev B,62,5536-5540(2000)
    [30]R.B.Wehrspohn,"Applications of silicon-based photonic crystals",2nd IEEE International Conference on Group Ⅳ Photonics,39(2005)
    [31]S.Y.Chou,P.R.Krauss and P.J.Renstrom,"Imprint of sub-25nm vias and trenches in polymer",Appl.Phys.Lett.,67,3114(1995)
    [32]S.Y.Chou,P.R.Krauss,W.Zhang,L.Guo and L Zhuang,"Sub-10 nm imprint lithography and applications",J.Vac.Sci.Tech.,B 15,2897(1997)
    [33]M.Komuro,Y.Tokano,J.Taniguchi,T Kawasaki,I Miyamoto and H.Hiroshima,"Imprint Characteristics by Photo-Induced Solidification of Liquid Polymer",Jpn.J.Appl.Phys.,39,7075(2000)
    [34]H.Nakamura,A Baba and T.Asano,"Imprint Lithography Using Triple-Layer-Resist and Its Application to Metal-Oxide-Silicon Field-Effect-Transisor Fabrication",Jpn.J.Appl.Phys.,39,7080(2000)
    [35]杨毅彪,王云才,李秀杰等,"二维Kagome格子光子晶体禁带的数值模拟”,光子学报,35(5):724-728(2006)
    [36] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B.J. Choi, M. Wedlake, T. Michaelson, S.V. Sreenivasan, J. Ekerdt and C.G. Willson, " Step and Flash imprint lithography: a new approach to high-resolution patterning" , Proceedings of SPIE 3676, 379 (1999)
    [37] T. Bailey, B.J. Choi, M. Colburn, A. Grot, M. Meissl, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan and C.G. Willson,, " Step and flash imprint lithography: Template surface treatment and defect analysis" , J. Vac. Sci. Tech. B, 18, 3572-3577 (2000)
    [38] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, "Self-collimating phenomena in photonic crystals", Appl. Physics. Lett., 74(9), 1212 (1999)
    [39] Baker, T.C. Bailey, B.J. Choi, S. Johnson, S.V. Sreenivasan, J.G. Ekerdt and C.G. Willson, "Template Fabrication Schemes for Step and Flash Imprint Lithography", Microelectronic Eng., 461, 61-62 (2002)
    [40] Vasseur J. O. et al., "Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid photonic crystals" , Phys. Rev. Letts., 86(14): 3012-3015 (2001)
    [41] Ho, Chan and Soukoulis, "Existence of a photonic gap in periodic dielectric structures" , Phys. Rev. Letts., 65(25), 3152(1990)
    [42] Meade R. D. et al., " Photonic bound states in periodic dielectric materials" , Phys. Rev. B, 44: 13772-13774 (1991)
    [43] Winn J N, Fink Y, Fan Shanhui et al., "Omnidirectional reflection from a one-dimensional photonic crystal" , Opt. Lett., 23(20):1573~ 1575 (1998,
    [44] Li Wang,Wei jiang, Xiaonan Chen,Lanlan Gu,Jiaqi Chen and Ray T. Chen, "Fabrication of polymer photonic crystal superprism structures using polydimethylsioxane soft molds" , Journal of Applied Physics, Vol.101,1(2007)
    [45] Marrian C. R. K., Tennant D. M., "Nanofabrication" , J. Vac. Sci. Technol. A, 21, S207 (2003)
    [46] K.Inoue and K. Ohtaka, "Photonic Crystals, Physics, Fabrication and Applications," (Springer 2004)
    [47] Pisignano D., Persano L. Gigli G., Visconti P., Stomeo T., Vittorio M. D.,Barbarella G., Favaretto L., and Cingolani R., "Planar organic photonic crystals fabricated by soft lithography", Nanotechnology, 15, 766 (2004)
    
    [48] Johnson S.C., Bailey T.C., Dickey M.D., Kim E.K., Smith B.J., Stacey N.A., Ekerdt J.G., Wilson C.G., Jamieson A.T., Resnick D.J., Mancini D.P., Dauksher W.J., Nordquist K.J., "Advances in Step and Flash imprint lithography" , Proceedings of SPIE 5037, 197 (2003)
    [49] Chou S. Y., Krauss P.R., Zhang W., Guo L., Zhuang L., "Sub-10 nm imprint lithography and applications" , J. Vac. Sci. Technol. B , 15, 2897 (1997)
    [50] Wang L., Wang X., Jiang W., Choi J., Chen R. T., " 45° Polymer-based Total Internal Reflection Coupling Mirrors for Fully-Embedded Intraboard Guided Wave Optical Interconnects" , Appl. Phys. Lett., 87, 141110(2005)
    [51] Bender M., Plachetka V., Ran J., Fuchs A., Vratzov B., Karz H., Glinsner T., Lindner F., "High resolution lithography with PDMS molds" , J. Vac. Sci. Technol. B, 22, 3229 (2004)
    [52] Kim W., Yoon K. B., Bae B., " Nanopatterning of photonic crystals with a photocurable silica-titania" , J. Mater. Chem., 15, 4535 (2005)
    [53] Belotti M., Torres J., Roy E., Pepin A., Gerace D., Andreani L.C., GGalli M., Chen Y., " Fabrication of SOI photonic crystal slabs by soft UV-nanoimprint lithography" , Microelectronic Engineering, 83, 1773(2006)
    [54] Belotti M., Torres J., Roy E., Pepin A., Chen Y., Gerace D., Andreani L.C., GGalli M., " Replication of photonic crystals by soft ultraviolet-nanoimprint lithography", J. Appl. Phys., 99, 024309 (2006)
    [55] Plachetka V., Bender M., Fuchs A., Vratzov B., Glinsner T., Lindner F., Karz H., "Wafer scale patterning by soft UV-Nanoimprint Lithography", Microelectronic Engineering, 167, 73-74, (2004)
    [56] Xia Y. and Whitesides G. M., " Soft Lithography" , Angew. Chem. Int. Ed. , 37, 550(1998)
    [57] Guo L., " Recent progress in nanoimprint technology and its applications" , J. Phys. D: Appl. Phys., 37, R123 (2004)
    [58] Hui C. Y. , Jagota A., Lin Y. Y., Kramer E. J., "Soft Lithography" , Langmuir 18, 1394 (2002)
    [59] Sakoda K., "Optical Properties of Photonic Crystals" , Springer (2004)
    [60] W. Jiang and R. T. Chen, " Multichannel Optical Add-Drop Processes in Symmetrical Waveguide-Resonator Systems" , Phys. Rev. Lett., 91, 213901 (2003)
    [61] Zhmud B.V., Tiberg F., Hallstensson K., "Dynamics of Capillary Rise", Journal of colloid and interface science, 228, 263 (2000).
    [62] Lee T., Mitrofanov O., Hsu J. W. P., "Pattern transfer fidelity in soft lithography: the role of pattern density and aspect ratio", Adv. Funct. Mater., 15(10), 1683-1688 (2005)
    [63] Chuang W., Ho C., Wang W., "Fabrication of a high-resolution periodical structure using a replication process", Optics Express, 13(18), 6685-6692(2005)
    [64] Sugimoto Y., Tanaka Y., Ikeda N., Nakamura Y., Askawa K., " Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length" , Optics Express, 12(6), 1090 (2004)
    [65] http://www.vp-scientific.com/hydrophobic_coating.htm
    [66]M.Campbell,D.N.Sharp,M.T.Harrison,R.G.Denning,and A.J.Turberfield,"Fabrication of photonic crystals for the visible spectrum by holographic lithography",Nature,404:53-56(2000)
    [67]T.Kondo,S.Juodkazis,and H.Mosawa,"Reduction of capillary force for high aspect-ratio nanofabrication",Applied Physics A:Materials Science & Processing,81(8):1583-1586(2005)
    [68]L.Z.Cai,X.L.Yang,and Y.R.Wang,"All fourteen Bravais lattices can be formed by interference of four noncoplanar beams",Optics Letters,27(11):900-902(2002)
    [69]I.Divliansky,T.S.Mayer,K.S.Holliday,and V.H.Crespi,"Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography",Applied Physics Letters,82(11):1667-1669(2003)
    [70]L.Wu,Y.Zhong,C.T.Chan,K.S.Wong,and G.P.Wang,"Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography",Applied Physics Letters,86:241102-1-3(2005)
    [71]R.C.Rumpf and E.G.Johnson," Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography",J.Opt.Soc.Am.A,21(9),1703-1713(2004)
    [72]Y Yang,S Zhang,and G P Wang,"Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography",Appl.Phys.Lett.,88(25),251104(2006)
    [73]L Wu,Y Zhong,C T Chan,K S Wong,and G P Wang,"Fabrication of Large Area Two- and Three-dimensional Polymer Photonic Crystals Using Single Refracting Prism Holographic Lithography",Appl.Phys.Lett.,86(24),241102(2005)
    [74]Glassmaker N.J.,Jagota A.,Hui C.Y.,Kim J.,"Design of biomimetic fibrillar interface",J.R.Soc.Lond.Interface,1(2004)
    [75]刘启能,“一种简便的研究一维光子晶体禁带特征的新方法”,光子学 报,36(6):103-1034(2007)
    [76]阎守胜,“固体物理基础”,北京:北京大学出版社,2000
    [77]LI B,CHEN R T.,"Optical waveguide superprism in 2-D low index contrast photonic crystal",LEOS2001,The 14th annual meeting of the IEEE,1:149-150(2001)
    [78]谢东华,何晓东,佟传平等.“平板型光子晶体谐振腔性能分析”,光子学报,36(3):434-438(2007)
    [79]E.Yablonovitch,T.J.Gmitter,and K.M.Lung,"Photonic band structure:The face-centered-cubic case employing nonspherical atoms",Phys.Rev.Lett.,67,2295(1991)
    [80]K.M.Ho,C.T.Chan,C.M.Soukoulis,R.Biswas,and M.Sigalas,"Photonic band gaps in three dimensions:New layer-by-layer periodic structures",Solid State Communications,89,5,413(1994)
    [81]J.Choi,K.Nordquist,A.Cheralal,L.Casoose,K.Gehoski,W.J.Dauksher,S.V.Sreenivasanl,D.J.Resnick,"Distortion and Overlay Performance of UV Step and Repeat Imprint Lithography",MNE Micro-and Nano-Engineering Conference,September 2004.
    [82]I.McMackin,P.Schumaker,D.Babbs,J.Choi,W.Collison,S.V.Sreenivasan,N.Schumaker,M.Watts,R.Voisin,"Design and Performance of a Step and Repeat Imprinting Machine",SPIE Microlithography Conference,February 2003.
    [83]P.B.Zantye,A.Kumar,A.K.Sikdar,"Material Reliability and Integration Issues of Polyimide and Benzocyclobutene Interlayer Dielectric Materials",Mater.Sci.Eng.89,R45(2004)
    [84]J.M.Steigerwald,S.P.Murarka,R.Gutmann,"Chemical mechanical planarization of microelectronic materials",Wiley,New York(1997)
    [85]S.V.Babu,K.C.Cadien,H.Yano,Eds." Chemical-Mechanical Polishing 2001:Advances and Future Challenges",Materials Research Society,Warrendale(2001)
    [86]EBL manual
    [87] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures", Solid State Commun., 89, 413 (1994)
    [88] Y. A. Vlasov, X-Z. Bo, J. G. Strum, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals", Nature (London), 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700