用户名: 密码: 验证码:
地震作用下超高墩刚构桥倒塌破坏关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国墩高超过100米的超高墩刚构桥发展迅速,是当前桥梁工程的重要前沿。然而近年来发生的几次大震中,不乏桥梁结构的倒塌事故,造成了巨大的人员伤亡和经济损失。超高墩刚构桥抗震安全,尤其是地震作用下抗倒塌能力成为亟待解决的重要课题。针对目前我国桥梁结构的抗震设计思想——“小震不坏、中震可修、大震不倒”,开展大型桥梁结构的倒塌分析、倒塌极限状态点的确定等有关倒塌问题的研究具有重要的现实意义。
     目前复杂结构的倒塌分析主要借助数值模拟的方法进行,准确建立结构的分析模型是倒塌分析要解决的首要关键问题。其次,合理的倒塌判别准则也是研究结构倒塌问题需要解决的关键问题,现有的倒塌判别准则主要是针对规则桥梁,对于动力响应复杂的超高墩刚构桥还需要专门进行研究。第三,结构在使用过程中由于环境或者其他因素不可避免的存在不同程度的劣化情况,不考虑这一因素,实际上只是对拟建结构的评估,因此,进行倒塌分析还要考虑结构在服役期间的劣化。
     本文首先对国内外研究现状进行了总结,指出了超高墩桥梁结构倒塌分析需要解决的关键问题。其次,提出了考虑纵筋屈曲的方法,并通过钢筋混凝土构件拟静力试验的数值模拟分析,研究了纵筋屈曲对构件后期破坏阶段的模拟的影响;研究结果表明所提出的方法能有效考虑试件在加载后期由于纵筋屈曲而导致强度和刚度的退化现象。第三,提出了超高墩刚构桥倒塌判别准则,建立了超高墩刚构桥基于单地震动IDA的倒塌分析方法,并运用该方法对一典型工程实例进行了倒塌全过程分析,探讨了超高墩刚构桥的破坏模式和倒塌机理;研究结果表明,纵向钢筋屈曲对超高墩刚构桥的倒塌性能影响很大,超高墩刚构桥在地震作用下的倒塌破坏模式为桥墩截面多处同时形成塑性铰的竖向倒塌破坏,所提出的基于墩顶竖向位移的倒塌判断准则适用于周期长、高阶振型贡献大的高柔桥梁。第四,研究了劣化对结构抗倒塌能力的影响,主要考虑了混凝土剥落、钢筋截面减少、和钢筋强度降低对超高墩刚构桥抗倒塌能力的影响;研究结果表明劣化对结构的自振周期和抗倒塌性能有影响。第五,在单地震动倒塌分析的基础上进行了多地震动倒塌分析,即倒塌易损性分析;研究表明考虑结构劣化的地震倒塌易损性分析能反映结构抗地震倒塌破坏的实际能力。
     本文研究工作可为超高墩刚构桥基于性能的抗震设计和地震倒塌研究提供参考。
In recent years, there are many long span rigid bridges with super high rise piers more than100meters have been built in China. They play important role as lifeline engineering in certain cases such as earthquake relief and so on. Research on these bridges is one of the most important frontiers of bridge engineering. Moreover, several earthquakes have made huge casualties and enormous financial loss in China, in which many bridges collapsed and exaggerated the disaster. Avoiding bridges collapse is an important mission in seismic design and has been paid more attention after the earthquake took place in Wenchuan2008. Based on the popular seismic design method "bridges after small earthquakes could be used continuously; bridges after middle earthquakes could be repaired; bridges after huge earthquakes could be stand as usual" researches on the collapse limiting condition and collapse analysis in bridges have a practical significance to ensure a safe life.
     Numerical simulation is the main method to analysis the collapse of the complex structure. The first key point is to build an accurate model to analyse the collapse of structure; the second is to set up a precise collapse criterion for the rigid frame bridges with super-long piers based on dynamic response; the third ont is to simulate the effects of the surroundings and other negative factors during the bridge service period.
     In this dissertation the present research status at home and abroad and the key points of research on callapse of the rigid frame bridge with super high rise piers are introduced in Chapter1. In Chapter2the method of modeling the buckling of longitudinal reinforcement is presented and verified by the pseudo-static tests. The results show that in order to model the degradation in strength and stiffness of RC columns loaded to their failure, the buckling of reinforcements should be taken into account in simulation. In Chapter3the criterion of collapse based vertical displacement of pier top for rigid frame bridge with high piers is proposed and verified by an engineering example. It is demonstrated that the proposed criterion is effective in evaluating the collapse of the structure, and the failure mode of the structure is vertical callapse with several plastic hinge appeared simultaneously in the bridge piers. In Chapter4the effects of deterioration on the callapse ability including spalling of concrete cover, deceasing of steel areas and strength are investigated in depth. It is shown that the deterioration will result in the change of period and collapse capacity of the structure. In Chapter5, the collapse fragility of the bridge under multiple ground motions is investigated. It is illustrated that the deterioration should be taken into account to reflect the real collapse capacity. Finally in Chapter6the full summary and the future research work are given.
     This study will be a reference for seismic design and earthquake collapse analysis of these rigid frame bridges with super high rise piers.
引文
[1]陈仕刚,吴先树.超高墩大跨连续刚构主墩形式研究及关键技术[J].公路,2012,(5):104-108.
    [2]徐军.超高墩大跨度连续刚构桥地震响应研究[D].重庆:重庆交通大学,2012.
    [3]何钦象,田小红,宋丹.高墩大跨径连续刚构桥抗震性能评估[J].振动与冲击,2009,28(1):68-71.
    [4]周勇.高墩大跨径混凝土连续刚构桥地震响应分析方法研究[D].西安:长安大学,2008.
    [5]谢肖礼,王波,张伟峰,等.罕遇地震作用下高墩连续刚构桥双重非线性抗震分析[J].工程力学,2009,26(4):113-118.
    [6]竹晓华.连续刚构桥地震反应分析[J].铁道工程学报,2008,121(10):15-19.
    [7]何波,朱宏平,李俊,等.大跨薄壁墩连续刚构桥抗震性能分析[J].华中科技大学学报(城市科学版),2006,23(4):51-56.
    [8]史小伟,李黎,杨军,等.地震动空间变异性对大跨刚构桥地震反应的影响[J].公路交通科技,2006,23(1):86-90.
    [9]全伟.大跨桥梁多维多点地震反应分析研究[D].大连理工大学,2008.
    [10]张行.地震作用下高墩刚构桥动力稳定性能研究[D].武汉:华中科技大学,2010.
    [11]谷音,卓卫东.基于IDA和纤维模型的高墩大跨连续刚构桥梁地震反应分析[J].土木工程与管理学报,2011,28(3):235-240.
    [12]张明明.薄壁高墩大跨连续刚构桥地震响应分析[D].西安:西安建筑科技大学,2011.
    [13]熊仁.考虑强余震影响的连续刚构桥抗震性能的评估方法研究[D].广州:广州大学,2011.
    [14]李子春.桥墩形式对连续刚构桥动力特性的影响[J].中国公路学报,2011,24(2):70-76.
    [15]李立峰,黄佳梅,吴文朋,等.基于IDA的高墩大跨桥梁抗震性能评估[J].地震工程与工程振动,2012,32(1):68-77.
    [16]曾金明,朱东生,张永水,等.连续刚构桥顺桥向非线性地震反应研究[J].重庆交通大学学报(自然科学版),2012,31(2):179-183.
    [17]Raul D. Bertero, V. V. B. Performance based seismic engineering:the need for reliable conceptual comprehensive approach[J]. Earthquake Engineering and Structural Dynamics, 2002,31:627-652.
    [18]Lehman, D. E. Seismic performance of well-confined concrete bridge columns. Berkeley: University of California,1998.
    [19]肖明葵.基于性能的抗震结构位移计能量反应分析方法研究[D].重庆:重庆大学,2004.
    [20]Young Ji Park, A. H. S. A. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering,1985,111(4):722-739.
    [21]Fajfar, P. Equivalent ductility factors, taking into account low-cycle fatigue[J]. Earthquake Engineering and Structural Dynamics,1992,21(10):837-848.
    [22]李磊.混合结构的数值建模理论及在地震工程中的应用[D].西安:西安建筑科技大学,2011.
    [23]Biddah, A. G H. A. E. A. Response-based damage assessment of structures[J]. Earthquake Engineering and Structural Dynamics,1999,28(1):79-104.
    [24]孙立,霍立飞,周锡元.桥梁结构地震损伤评估简化分析方法[J].北京工业大学学报,2008,34(10):1048-1052.
    [25]刘爱荣,熊仁,禹奇才,等.考虑强余震影响的变形和能量地震损伤模型[J].深圳大学学报理工版,2011,28(3):189-194.
    [26]于琦,孟少平,吴京.基于变形与能量双重准则的钢筋混凝土结构地震损伤评估[J].土木工程学报,2011,44(5):16-23.
    [27]丁阳,伍敏,徐龙河,等.钢筋混凝土柱基于易损性曲线的地震损伤评估[J].工程力学,2012,29(1):81-86.
    [28]师燕超.爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D].天津:天津大学,2009.
    [29]丁阳,伍敏,徐龙河,等.钢柱考虑损伤累积效应的强震下损伤演化规律[J].建筑结构学报,2011,32(7):112-117.
    [30]Vesna Terzic, B. S. Post-Earthquake Traffic Capacity of Modern Bridges in California[R]. University of California, Berkeley,2010.
    [31]程玲,贡金鑫,李颖.基于Pushover方法分析的受腐蚀钢筋混凝土柱抗震性能评价[J].振动与冲击,2012,31(10):19-23.
    [32]洪定海.混凝土中钢筋的锈蚀与保护[M].北京:中国铁道出版社,1998.
    [33]Mucip Tapan, R. S. A. Strength evaluation of deteriorated RC bridge columns[J]. Journal of Bridge Engineering,2008,13(3):226-236.
    [34]潘洪科,边亚东,杨林德.钢筋混凝土结构基于耐久性劣化度的可靠性分析[J].建筑结构学报,2011,32(1):105-109.
    [35]陈朝晖,黄河.混凝土劣化对结构性能的影响[J].重庆大学学报,2003,26(2):4246.
    [36]孙彬,牛荻涛.在役损伤结构基于能力谱方法的抗震性能评估[J].世界地震工程,2006,22(1):9-14.
    [37]Poornachand Pandit, I. G, K. S. Babunarayan. Effect of Corrosion on Performance of Reinforced Concrete structure using Pushover analysis[J]. International Journal of Earth Sciences and Engineering,2011,4(6):885-888.
    [38]Mohammed, A. M., Almansour, H., Martin-Perez, B. Combined effect of reinforcement corrosion and seismic loads on RC bridge columns:modelling[C].2nd International Engineering Mechanics and Materials Specialty Conference, Ottawa, Ontario. Institute for Research in Construction, June 14-17,2011, pp.1-10.
    [39]Azadeh Alipour, B. S., Masanobu Shinozuka. Performance Evaluation of Deteriorating Highway Bridges Located in High Seismic Areas[J]. Journal of Bridge Engineering,2011, 16(5):597-611.
    [40]Harvat, J. A. Effect of Corrosion on the Seismic Response of a Single-Bent, Reinforced Concrete Bridge[D]. San Marcos:Texas A&M University,2009.
    [41]Do-Eun Choe, P. G., David Rosowsky, et al. Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion[J]. Reliability Engineering and System Safety,2008,93(3):383-393.
    [42]Do-Eun Choe, P. G., David Rosowsky, et al. Seismic fragility estimates for reinforced concrete bridges subject to corrosion[J]. Structural Safety,2009,31(4):275-283.
    [43]Jayadipta Ghosh, J. E. P. Aging Considerations in the Development of Time-Dependent Seismic Fragility Curves[J]. Journal of Structural Engineering,ASCE,2010,136(12): 1497-1511.
    [44]JINQUAN, Z. Seismic fragility estimates for corroded reinforced concrete bridge structures with two-column bents[D]. Texas:Texas A&M University,2008.
    [45]Jessica Simon,. J. M., Paolo Gardoni. Seismic Response and Fragility of Deteriorated Reinforced Concrete Bridges[J]. JOURNAL OF STRUCTURAL ENGINEERING,2010, 136(10):1273-1281.
    [46]谢开仲.桥梁在地震作用下损伤破坏和倒塌机理研究[D].上海:同济大学,2010.
    [47]秦东.扩散单元法在钢筋混凝土桥梁倒塌分析中的应用[D].上海:同济大学博士学位论文,2000.
    [48]孙利民,秦东,范立础.扩展散体单元法在钢筋混凝土桥梁倒塌分析中的应用[J].土木工程学报,2002,35(6):53-58.
    [49]秦东,范立础.钢筋混凝土结构倒塌全过程数值模拟[J].同济大学学报,2001,29(1):80-83.
    [50]周岑.考虑倒塌的钢筋混凝土桥梁地震反应全过程仿真分析研究[D].上海:同济大学博士学位论文,2003.
    [51]张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报,2003,20(6):730-742.
    [52]游新鹏.RC高墩桥梁非线性地震响应分析及倒塌仿真[D].上海:同济大学,2006.
    [53]程纬,孙利民,范立础.ANSYS二次开发功能及其在双层高架桥墩地震倒塌仿真分析中的应用[J].计算机工程与应用,2002,38(13):208-209.
    [54]张雷明,刘西拉.钢筋混凝土结构倒塌分析的前沿研究[J].地震工程与工程振动,2003,23(3):47-52.
    [55]彭成明.地震作用下高墩桥梁抗倒塌性能研究[D].上海:同济大学,2008.
    [56]兰兴荣.钢筋混凝土连续梁桥立交在强震作用下的倒塌仿真分析[D].南宁:广西大学,2010.
    [57]孙利民,游新鹏,魏朝柱.跨越山谷高墩混凝土桥地震倒塌分析[J].工程抗震与加固改造,2005,27:108-112.
    [58]卢啸,陆新征,张劲泉,等.某石拱桥连续倒塌模拟及构件重要性评价[J].兰州交通大学学报,2010,29(6):25-30.
    [59]Hong Hao, E. K. C. T. Numerical simulation of a cable-stayed bridge response to blast loads, Part Ⅱ:Damage prediction and FRP strengthening[J]. Engineering Structures,2010,32(10): 3193-3205.
    [60]成丕富.桥梁结构连续倒塌研究[D].长沙:中南大学,2012.
    [61]黄盛楠,陆新征,郑建春,等.超载导致钢筋混凝土拱桥倒塌的破坏模拟[J].工程力学,2012,29(Suppl Ⅱ):122-127.
    [62]梁仁杰,吴京,王春林,等.考虑P-A效应的结构地震倒塌及影响因素分析[J].建筑结构学报,2013,34(2):69-75.
    [63]FEMA273. NEHRP Guidelines for the seismic rehabition of buildings[M]. FEMA. Wsahington, D.C.,1997.
    [64]FEMA274. NEHRP Commentary on the guidelines for the seismic rehabilitation of buildings[M]. FEMA, Washington, D.C.,1997.
    [65]ATC40. Seismic evaluation and retrofit of concrete buildings[M]. Redwood City, CA,1996.
    [66]韩建平,吕西林,李慧.基于性能的地震工程研究的新进展及对结构非线性分析的要求[J].地震工程与工程振动,2007,27(4):15-23.
    [67]吕大刚,于晓辉,王光远.基于单地震动记录IDA方法的结构倒塌分析[J].地震工程与工程振动,2009,29(6):33-39.
    [68]韩建平,杨军平.考虑结构构件退化特性评估大震下RC框架抗整体倒塌能力[J].地震工程与工程振动,2012,32(6):53-64.
    [69]杨军平.大震作用下考虑退化特性的RC框架结构抗整体性倒塌能力分析评估[D].兰州:兰州理工大学,2012.
    [70]孙治国,王东升,郭讯,等.汶川大地震绵竹市回澜立交桥震害调查[J].地震工程与工程振动,2009,29(4):132-138.
    [71]王东升,孙治国,郭迅,等.汶川地震桥梁震害经验及抗震研究若干新进展[J].公路交通科技,2011,28(10):44-53.
    [72]夏修身,陈兴冲,王常峰,等.桥梁震害分析与合理抗震体系研究[J].工程抗震与加固改造,2011,33(6):132-136.
    [73]李贵乾,郑罡,高波.基于OpenSees的钢筋混凝土桥墩拟静力试验数值分析[J].世界地震工程,2011,27(3):110-114.
    [74]李贵乾.钢筋混凝土桥墩抗震性能试验研究及数值分析[D].重庆:重庆交通大学,2010.
    [75]杨玄.钢筋混凝土桥墩地震损伤分析与模型研究[D].重庆:重庆交通大学,2011.
    [76]李贵乾,郑罡,王军.圆形钢筋混凝土桥墩抗震性能(Ⅱ):试验结果评估[J].重庆交通大学学报(自然科学版),2011,30(6):1270-1274.
    [77]孙治国.钢筋混凝土桥墩抗震变形能力研究[D].哈尔滨:中国地震局工程力学研究所,2012.
    [78]司炳君,孙治国,杜修力,等.钢筋混凝土桥墩地震弯剪破坏机理与震后快速修复技术研究[J].土木工程学报,2011,44(7):90-99.
    [79]杜修力,陈明琦,韩强.钢筋混凝土空心桥墩抗震性能试验研究[J].振动与冲击,2011,30(11):254-259.
    [80]Sheikh S. A., K. S. S. Confined concrete columns with stubs[J]. ACI Struct J,1993,90(4): 414-431.
    [81]Sheikh S. A., S. D. V., Khoury S. S. Confinement of high-strength concrete columns[J]. ACI Struct J,1994,91(1):100-111.
    [82]司炳君,孙治国,任晓丹,等.钢筋混凝土桥墩滞回性能的有限元模拟分析[J].哈尔滨工业大学学报,2009,41(12):105-109.
    [83]李正,李忠献.基于梁柱单元的钢筋混凝土桥墩地震损伤分析[J].天津大学学报,2011,44(3):189-195.
    [84]艾庆华,王东升,向敏.基于纤维单元的钢筋混凝土桥墩地震损伤评价[J].计算力学学报,2011,28(5):737-742.
    [85]王建民,朱晞.地震作用下高架桥结构的脆弱性[J].中国公路学报,2007,20(1):68-72.
    [86]照冠远.钢筋混凝土桥梁非线性分析与基于性能的抗震设计[D].北京:北京交通大学,2006.
    [87]陆本燕,刘伯权,刘鸣,等.钢筋混凝土桥墩性能指标量化研究[J].中国公路学报,2010,23(6):49-57.
    [88]孙颖,卓卫东,房贞政.规则桥梁抗震性能水准的定义及其量化描述[J].地震工程与工程振动,2011,31(5):104-112.
    [89]吴文朋,李立峰,王连华,等.基于IDA的高墩大跨桥梁地震易损性分析[J].地震工程与工程振动,2012,32(3):117-123.
    [90]郑成龙,龙晓鸿,彭元诚,等.大跨斜腿刚构桥地震易损性分析[J].土木工程与管理学报,2011,28(3):391-394.
    [91]刘艳辉,赵世春,强士中.城市高架桥抗震性能水准的量化[J].西南交通大学学报,2010,45(1):54-58.
    [92]梁智垚.非规则高墩桥梁抗震设计理论研究[D].上海:同济大学,2007.
    [93]聂利英,张雷,李硕娇.地震作用下大跨度悬索桥纵向破坏模式研究[J].土木工程学报,2011,44(4):91-97.
    [94]Wilson, J. L. Earthquake response of tall reinforced concrete chimneys[J]. Engineering Structures,2003,25:11-24.
    [95]中华人民共和国交通运输部.公路桥梁抗震设计细则JTG/T B02-01-2008[M].北京:人民交通出版社,2008.
    [96]陆新征,叶列平,江见鲸,等.考虑地震行波效应大型高架桥梁破坏模拟[J].工程抗震与加固改造,2007,29(3):1-5.
    [97]刘鸣,陆本燕,刘伯权.钢筋混凝土桥墩破坏模式识别方法[J].中国公路学报,2011,24(3):58-63.
    [98]白久林,欧进萍.基于IDA方法的钢筋混凝土结构失效模式优化[J].工程力学,2011,28(S2):198-203.
    [99]刘金龙.地震作用下多塔斜拉桥失效模式控制研究[D].哈尔滨:哈尔滨工业大学,2009.
    [100]Berry M, E. M. Performance Models for flexural damage in reinforced conrete columns[R]. Pacific Earthquake Engineering Research Center, University California, Berkeley,2003.
    [101]王东升,孙治国,郭迅,等.汶川地震桥梁震害经验及抗震研究若干新进展[J].公路交通科技,2011,28(10):44-53.
    [102]夏修身,陈兴冲,王常峰,等.桥梁震害分析与合理抗震体系研究[J].工程抗震与加固改造,2011,33(6):132-136.
    [103]李贵乾,郑罡,高波.基于OpenSees的钢筋混凝土桥墩拟静力试验数值分析[J].世界地震工程,2011,27(110-114).
    [104]李贵乾,郑罡,王军.圆形钢筋混凝土桥墩抗震性能(Ⅱ)[J].重庆交通大学学报(自然科学版),2011,30(6):1270-1274.
    [105]司炳君,孙治国,任晓丹,等.钢筋混凝土桥墩滞回性能的有限元模拟分析[J].哈尔冰工业大学学报,2009,41(12):105-109.
    [106]何政,欧进萍.钢筋混凝土结构非线性分析[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [107]王东升,孙治国,李晓莉,等.汶川大地震回澜立交桥震害分析[J].土木建筑与环境工程,2010,32(增刊2):21-23.
    [108]陈彦江,李庆择,闫维明,等.汶川地震中简支梁桥震害分析[J].土木建筑与环境工程,2010,32(增刊2):45-48.
    [109]李乾贵.钢筋混凝土桥墩抗震性能试验研究及数值分析[D].重庆:重庆交通大学,2010.
    [110]禚一,李忠献.基于FENAP平台的RC高桥墩破坏过程模拟及分析[J].地震工程与工程振动,2010,30(4):90-96.
    [111]Hitoshi, T. Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns[D]. Christchurch:University of Canterbury,1990.
    [112]Maurizio Papia, G. R. Compressive concrete strain at buckling of longitudinal reinforcement[J]. Journal of Structural Engineering,1989,115(2):382-397.
    [113]谷音,黄怡君,卓卫东.高墩大跨连续刚构桥梁地震易损性分析[J].地震工程与工程振动,2011,31(2):91-97.
    [114]张凯,朱晞,陈思孝等.高墩大跨连续刚构桥梁的地震经济风险分析[J].北方交通大学学报,2011,35(6):23-27.
    [115]Casarotti Chiara, P. R. Seismic response of continuous span bridges through fiber-based finite element analysis[J]. Earthquake Engineering and Engineering Vibration,2006,5(1): 119-131.
    [116]Dimitrios Vamvatasikos, C. A. C. Incremental Dynamic Analysis[J]. Earthquake Engineering and Structural Dynamics,2002,31(3):491-514.
    [117]Agency, F. E. M. FEMA350-Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings[R]. Washington D C,2000.
    [118]Jennings P C, H. R. Collapse of yielding structures during earthquakes[J]. Journal of Engineering Mechanics,1968,95(5):1045-1065.
    [119]Wu C L, K. W. W., Yang Y S, et al. Collapse of a nonductile concrete frame:shaking table tests[J]. Earthquake Engineering and Structural Dynamics,2009,38(2):205-224.
    [120]Lignos D G, K. H., Whittaker A S. Prediction and validation of sidesway collapse of two scale models of a 4-story steel moment frame[J]. Earthquake Engineering and Structural Dynamics,2011,40(7):807-825.
    [121]杜修力,李小军,尹之潜.极限后负刚度模型对RC框架结构地震倒塌反应的影响[J].计算结构力学及其应用,1993,10(2):179-186.
    [122]童根树,赵永峰.动力P-A效应对地震力调整系数的影响[J].浙江大学学报(工学版),2007,41(1):120-125.
    [123]魏斌,李建中,蒋娜芳.考虑P-Δ效应的桥梁地震反应分析与设计[J].地震工程与工程振动,2010,30(3):129-135.
    [124]Williamson, E. B. Evaluation of damage and P-Δ effects for systems under earthquake excitation[J]. Journal of Structural Engineering,2003,129(8):1036-1046.
    [125]梁仁杰,吴京,王春林.P-Δ效应下滞回特征对结构抗倒塌能力的影响[J].东南大学学报(自然科学版),2013,43(1):188-194.
    [126]舒启军.细长柱动力二阶效应非线性分析及振动台试验设计[D].重庆:重庆大学,2011.
    [127]江哲.竖向地震下高桥墩单质点体系二阶效应研究[D].重庆:重庆大学,2010.
    [128]张勇.水平地震下高桥墩单自由度体系二阶效应研究[D].重庆:重庆大学,2010.
    [129韩风霞.钢筋混凝土细长柱结构精细化分析模型及动力二阶效应研究[D].重庆:重庆大学,2011.
    [130]徐艳,胡世德.钢管混凝土拱桥的动力稳定极限承载力研究[J].土木工程学报,2006,39(9):68-73.
    [131]吴玉华.大跨度钢管混凝土拱桥抗震性能及动力稳定研究[D].浙江大学,2009.
    [132]吕大刚,于晓辉,陈志恒.钢筋混凝土框架结构侧向倒塌地震易损性分析[J].哈尔滨工业大学学报,2011,43(6):1-5.
    [133]Mander J. B., P. M. J. N., Park R. Observed stress-strain behavior of confined concretefJ]. Journal of Structural Engineering,1988,114(8):1827-1849.
    [134]庞于涛,袁万城,党新志,等.考虑材料劣变过程的桥梁地震易损性分析[J].同济大学学报(自然科学版),2013,41(3):348-354.
    [135]C. Andrade, C. A., F. J. Molina. Cover cracking as a function of bar corrosion:Part I-Experimental test[J]. Materials and Structures,1993,26(8):453-464.
    [136]YG Du, L. C., AHC Chan. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research,2005,57(2):135-147.
    [137]YG Du, L. C., AHC Chan. Effect of corrosion on ductility of reinforcing bars[J]. Magazine of Concrete Research,2005,57(7):407-419.
    [138]周奎,李伟,余金鑫.地震易损性分析方法研究综述[J].地震工程与工程振动,2011,31(1):106-113.
    [139]Shinozuka M., F., M.Q., Jee L. Statistic analysis of fragility curves[J]. Journal of Engineering Mechanics,ASCE,2000,126(20):1224-1231.
    [140]Karim KR, Y. F. Effect of earthquake ground motions on fagility curves of highway bridge piers based on numerical simulation[J]. Earthquake Engineering and Structural Dynamics, 2001,30(12):1839-1856.
    [141]Karim KR, Y. F. A simplified method of constructing fragility curves foe highway bridges[J]. Earthquake Engineering and Structural Dynamics,2003,2003(32):10.
    [142]Kim SH, F. M. Fragility analysis of bridges under ground motion with spatial variation[J]. International Journal of Non-Linear Mechanics,2003,38(5):705-721.
    [143]Choi E, D. R., Nielson B. Seismic fragility of typical bridges in moderate seismic zones[J]. Engineering Structures,2004,26(2):187-199.
    [144]Mackie K, S. B. Fragility curves foe reinforced concrete highway overpass bridges[C].13th World Conference on Earthquake Engineering, Vancouver, B.C. Canada 2004.
    [145]Lupoi A, F. P., Schotanus M. Seismic risk evaluation of RC bridge structures[J]. Earthquake Engineering and Structural Dynamics,2003,32:1275-1290.
    [146]Nielson, B. G Analytical fragility curves for highway bridges in moderate seismic zones[D]. Atlanta:Georgia Institute of Technology,2005.
    [147]Nielson, B. G, DesRoches, R. Analytical Seismic Fragility Curves for Typical Bridges in the Central and Southeastern United States[J]. Earthquake Spectra,2007,23(3):615-633.
    [148]Banerjee, S. Statistical, empirical and mechanistic fragility analysis of concrete bridges. Irvine:University of California,2007.
    [149]Howard Hwang, J. B. J., Yang-Wei Lin. Evaluation of seismic damage to Memphis bridges and highway system[J]. Journal of Bridge Engineering,2000,5(4):322-330.
    [150]Jamie E. Padgett, R. D. Retrofitted Bridge Fragility Analysis for Typical Classed of Multispan Bridges[J]. Earthquake Spectra,2009,25(1):117-141.
    [151]Y. Pan, A. K. A., M. Ghosn et al. Seismic Fragility of Multispan Simply Supported Steel Highway Bridges in New York State. I:Bridge Modeling, Parametric Analysis, and Retrofit Design [J]. Journal of Bridge Engineering,2010,15(5):448-461.
    [152]Y. Pan, A. K. A., M. Ghosn et al. Seismic Fragility of Multispan Simply Supported Steel Highway Bridges in New York State. II:Fragility Analysis, Fragility Curves, and Fragility Surfaces[J]. Journal of Bridge Engineering,2010,15(5):462-472.
    [153]Sullivan, I. T. Analitical Seismic Fragility Curves for Skewed Multi-Span Steel Girder Bridges. Clemson:Clemson University,2010.
    [154]Joonam Park, E. C. Fragility analysis of track-on steel-plate-girder railway bridges in Korea[J]. Engineering Structures,2011,33(3):696-705.
    [155]Bayram Aygun, L. D.-O., Jamie E. Padgett,et.al. Efficient Longitudinal Seismic Fragility Assessment of a Multispan Continuous Steel Bridge on Liquefiable Soils [J]. Journal of Bridge Engineering,2011,16(1):93-107.
    [156]李磊,郑山锁,李谦.基于IDA的型钢混凝土框架的地震易损性分析[J].广西大学学报(自然科学版),2011,36(4):535-541.
    [157]刘晶波,刘阳冰,闫秋实,等.基于性能的方钢管混凝土框架结构地震易损性分析[J].土木工程学报,2010,43(2):3947.
    [158]杜鹏,姜慧,王东明.陇南公路总段桥梁震害及易损性分析[J].地震工程与工程振动,2010,30(4):103-108.
    [159]H.Wang,刘.地震作用下钢筋混凝土桥梁结构易损性分析[J].土木工程学报,2004,37(6):47-51.
    [160]张菊辉.基于数值模拟的规则桥梁墩柱的地震易损性分析[D].上海:同济大学,2006.
    [161]冯杰.桥梁结构地震易损性分析研究[D].成都:西南交通大学,2010.
    [162]黄明刚.钢筋混凝土连续梁桥的地震易损性、危险性及风险分析[D].哈尔滨工业大学,2009.
    [163]吴少峰,上官萍.横桥向地面运动作用下独塔部分斜拉桥易损性分析[J].地震工程与工程振动,2010,30(2):142-149.
    [164]焦驰宇.基于性能的大跨斜拉桥地震易损性分析[D].上海:同济大学,2008.
    [165]冯清海.特大跨度斜拉桥初步地震易损性分布趋势[J].公路,2011,(3):46-49.
    [166]Farzin Zareian, H. K. Assessment of proba-bility of collapse and design for collapse safety[J]. Earthquake Engineering and Structural Dynamics,2007,36(13):1901-1914.
    [167]Farzin, Z. Simplified performance-based earthquake engineering[D]. San Francisco: STANFORD UNIVERSITY,2006.
    [168]Villaverde, R. Methods to Assess the Seismic Collapse Capacity of Building Structures: State of the Art[J]. Journal of Structural Engineering (ASCE),2007,133(1):57-66.
    [169]陆新征,叶列平.基于IDA分析的结构抗地震倒塌能力研究[J].工程抗震与加固改造,2010,32(1):13-18.
    [170]叶列平,陆新征,赵世春,等.框架结构抗地震倒塌能力的研究——汶川地震极震区几个框架结构震害案例分析[J].建筑结构学报,2009,30(6):67-76.
    [171]施炜,叶列平,陆新征,等.不同抗震设防RC框架结构抗倒塌能力的研究[J].工程力学,2010,27(12):4148.
    [172]唐代远,陆新征,叶列平,等.柱轴压比对我国RC框架结构抗地震倒塌能力的影响[J].工程抗震与加固改造,2010,32(5):26-35.
    [173]陆新征,施炜,张万开,等.三维地震动输入对IDA倒塌易损性分析的影响[J].工程抗震与加固改造,2011,33(6):1-7.
    [174]施炜,叶列平,陆新征.基于一致倒塌风险的建筑抗震评价方法研究[J].建筑结构学报,2012,33(6):1-7.
    [175]唐代远,陆新征,马玉虎,等.钢支撑滞回模型及防倒塌加固效果分析[J].工程抗震与加固改造,2011,33(4):94-100.
    [176]唐代远,陆新征,马玉虎,等.汶川地震典型教学楼附加BRB支撑防倒塌加固效果分析[J].灾害学,2010,25(So):157-160.
    [177]李宁,翟长海,谢礼立,等.单向偏心结构的简化增量动力分析方法[J].工程力学,2011,28(5-12).
    [178]陆新征,张万开,柳国环.基于推覆分析的RC框架地震倒塌易损性预测[J].地震工程与工程振动,2012,32(4):1-6.
    [179]FEMA. Applied Technology Council, Federal Emergency Management Agency[R]. Quantification of Building seismic performance factors,2008.
    [180]马千里.钢筋混凝土框架结构基于能量抗震设计方法研究[D].北京:清华大学,2009.
    [181]Bazzurro Paolo, C. A. C., Nilesh Shome, et al. Three proposals for characterizing MDOF nonlinear seismic response[J]. Journal of Structural Engineering,1998,124(11):1281-1289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700