用户名: 密码: 验证码:
RC框架结构整体抗震性能系数与综合反应修正系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构整体抗震性能系数(Seismic Perfomance Factors, SPFs)是“结构反应修正系数R”、“整体超强系数RS”和“位移放大系数Cd”的统称,它们是基于承载力抗震设计中确定设计地震力的关键因素,也是基于性能抗震设计中确定等延性非弹性反应谱的主要依据。
     美国、欧洲和日本等国家的抗震设计规范主要采用结构反应修正系数对设防烈度下的弹性反应进行折减来确定地震力,以考虑不同类型结构延性的影响。但是,目前世界各国抗震设计规范或标准中对抗震性能系数的取值主要都是根据经验确定的,且各规范之间取值的差异很大,因此,为了合理量化结构整体抗震性能系数,美国的FEMA P695提出了一套科学合理的概率抗震性能评定方法来评定按现行抗震规范规定的整体抗震性能系数所设计的结构能否满足预期的抗倒塌性能目标。
     我国1978年以前的抗震规范是通过结构影响系数(即结构反应修正系数的倒数)折减设防烈度下的弹性地震力来定义设计地震作用的。但是,在1989年以后修订的三个版本的抗震规范中,都摈弃了结构影响系数的概念,转而采用众值烈度(小震)下的弹性设计反应谱直接计算总的水平地震作用标准值。为此,国内很多学者对现行抗震规范的小震地震力理论和小震弹性设计法开始进行反思,针对钢结构的整体抗震性能系数进行了较为深入的研究,但是对于钢筋混凝土结构整体抗震性能系数的研究则相对较少。所以系统深入地研究钢筋混凝土结构整体抗震性能系数的量化与评定,是由弹性设计力向延性设计地震力转变的关键科学问题,也是基于性能的抗震设计理论的重要基础性问题。该问题的解决对于提高我国工程结构抗震设计的科学性、合理性和经济性,尽快促进性能设计理论在我国的应用步伐具有重要的理论意义和现实意义。
     本文以量大面广的钢筋混凝土框架结构为研究对象,考虑不同设防烈度,严格按现行抗震规范设计了17个具有不同层数的典型钢筋混凝土框架结构,采用OpenSees进行有限元建模与分析,采用课题组的振动台试验数据和清华大学的试验数据进行验证;针对所设计的典型结构,分别采用非线性静力方法和非线性动力方法对其整体抗震性能系数的需求值和能力值进进行了系统深入的分析,采用能力需求比的概念从确定性的角度对整体抗震性能系数进行了评定,并联合应用调整倒塌裕度比和位移需求能力系数法从随机性的角度对抗震性能系数的合理取值进行了综合概率评定,最终给出了其建议取值。由于目前国内外对于抗震性能系数的研究很少考虑损伤结构连续倒塌的鲁棒性,为此,本文在传统的结构反应修正系数基础上,进一步提出结构“综合反应修正系数”的概念,通过引入抗震鲁棒性系数对损伤结构的抗震性能进行评价,从而实现在抗震设计中考虑地震作用下结构连续倒塌的影响。
     本文的主要研究内容如下:
     1)按照我国现行抗震设计规范,考虑不同设防烈度,设计了17个不同层数的RC框架结构,基于地震工程模拟平台OpenSees,建立了17个结构的非线性有限元模型。通过与结构振动台试验以及结构拟静力倒塌试验的对比分析,验证了本文OpenSees模型的正确性与分析结果的准确性。在此基础上,分别采用非线性静力方法和非线性动力方法,对所设计的RC框架结构进行分析,得到“临界倒塌状态”时结构整体抗震性能系数的能力值及其变化规律。
     2)分别采用静力能力谱方法、动力能力谱方法和时程分析方法,对所设计的RC框架结构进行分析,得到了不同强度需求谱作用下结构整体抗震性能系数的需求值。提出了结构抗震性能系数能力需求比的概念和计算方法,从确定性的角度对我国抗震规范所隐含的RC框架结构的抗震性能系数进行了评定。在此基础上,进一步采用本文得到的罕遇地震作用下结构反应修正系数的需求值,对我国抗震规范中给出的多遇地震影响系数曲线进行了修正。
     3)联合应用调整倒塌裕度比(Adjusted Collapse Margin Ratio, ACMR)和位移需求能力系数法(Demand and Capacity Factor Method, DCFM),对所设计的结构是否具有一致的抗倒塌概率风险水准和结构能否满足“临界倒塌”性能目标进行了综合评定,从不确定性的角度对RC框架结构的整体抗震性能系数进行了概率评定,并给出了结构反应修正系数的建议取值。
     4)针对“侧向连续倒塌”失效模式,采用基于备用荷载路径的Pushover方法、静力能力谱方法、IDA方法和位移需求能力系数法,分别从强度、耗能以及变形的角度,对所设计结构的抗侧向连续倒塌能力进行了研究,并将基于承载力的鲁棒性指标分别拓展到基于谱加速度和变形的鲁棒性指标。通过结构抗侧向连续倒塌鲁棒性系数对结构反应修正系数进行修正,得到了考虑侧向连续倒塌失效模式的结构综合反应修正系数。
     5)针对“竖向连续倒塌”失效模式,采用考虑构件失效加载方案的Pushdown分析方法和考虑构件失效时长的竖向IDA分析方法,分析了损伤结构在初始屈服状态、整体屈服状态和承载能力极限状态时的抗竖向连续倒塌能力,并得到了其相应的抗竖向连续倒塌鲁棒性指标。采用竖向连续倒塌鲁棒性系数,进一步对结构综合反应修正系数进行了修正。在此基础上,采用结构综合反应修正系数来得到结构的设计地震作用,实现了在抗震设计中考虑结构连续倒塌失效模式的影响。
     通过上述内容的研究,本文发现:采用现行抗震规范所隐含的结构整体抗震性能系数所设计的结构能够满足预期的抗倒塌性能目标,但是结构整体抗震性能系数取值比较保守,本文给出了结构反应修正系数的建议取值,从而为促进我国抗震规范从小震弹性设计向中震延性设计和性能设计理论在我国抗震规范中的应用提供了理论参考。同时,本文提出的结构综合反应修正系数,可以统一考虑结构抗侧向连续倒塌和抗竖向连续倒塌鲁棒性的影响,从而可以实现在抗震设计中考虑结构连续倒塌的影响。
Global seismic performance factors (SPFs) include response modificationcoefficient R, system overstrength factor RSand displacement amplification factorCd. The values of SPFs are fundamentally critical in the specification of designseismic action, in which the R factors are used in the current building codes toestimate strength demands for seismic-force-resisting systems designed using linearmethods. Moreover, the SPFs are also the key parameters to determine the eual-ductility inelastic response spectra in performance-based seismic design.
     In order to take into account the influences of different ductility levels ofstructures, the design seismic force is generally determined by the responsemodification factors to reduce the elastic responses under the design intensity. Thisconventional design approach has been widely utilized in seismic codes in theUnited States, Europe, Japan and other countries. However, the values of the SPFsin the current seismic codes all over the world are based largely on judgments ofengineers, so there are significant differences in the values of the SPFs in the codesor standards in different countries. To reasonbaly quantify the SPFs of differentstructures, recently, the FEMA P695report has recommended a methodology forassessing if the structures designed according to the values of the SPFs specified bythe current seismic codes could satisfy the performance objective of collpaseprevention under major earthquakes.
     In Chinese seismic codes which had been issued before1978, the seismicdesign forces were established by applying a seismic influence coefficient (thereciprocal of response modification coefficient) to the elastic earthquake forcesunder the design seismic intensity. While since1989, Chinese seismic design codeshave discarded the concept of structural influence coefficient, instead the seismicdesign forces are directly determined by the elastic design response spectrum underminor earthquake. Therefore, many researchers in the mainland of China began tore-think the shortcomings in the current elastic design method and the problem ofthe current seismic design method. The studies on global seismic perfomancefactors of steel structures have been carried out by many researchers, while therelevant research for reinforced concrete structures has been relatively little. Therefore, a thorough research on reasonably quantifying global seismicperformance factors of reinforced concrete frames has been made in thisdissertation. From the viewpoint of the author, the quantification and assessment ofthe global SPFs is not only a key scientific problem in the paradigm transition fromthe elastic seismic design force theory to the ductility-based seismic design forcetheory, but also a basic scientific problem of performance-based seismic design.The solution to this problem will have great both theoretical and realistic meaningsfor improving the science, rationality and economy of seismic design, and furtherfor promoting the applications of performance-based seismic design (PBSD) inChina.
     In this dissertation,17RC frame buildings with different fortificationintensities and storeys are designed according to the current Chinese Codes. Thesestructures are modeled and analyzed in the platform OpenSees. By comparison ofthe quasi-static test data in Tsinghua university and the shaking table test data of theauthor’s research group for RC frame structures with the analytical datacorrespondingly, the OpenSees models are verified and validated. For these17RCframes, the values of the “capacity” and the “demand” of the global seismicperformance factors are analyzed by nonlinear static procedures (NSP) andnonlinear dynamic procedures (NDP) respectively. A capacity-demand ratio λ isproposed for deterministically assessing the acceptability of the values of the globalseismic performance factors implicitly adopted by the current design codes.Furthermore, the adjusted collapse margin ratio (ACMR) and the demand-capacity-factor method (DCFM) are jointly utilized to comprehensively evaluate the globalseismic performance factors from the viewpoint of randomness, and the reasonablevalues of structural response modification factors are suggested. Considering thefact that the seismic robustness of damaged structures are rarely accounted for inthe current global seismic performance factors, in this thesis, a comprehensiveresponse modification factor is put forward by introducing seismic robustnessindices for both sidesway and vertical progressive collapse failure modes into theconventional structural response modification factor. In this way, the effects ofprogressive collapse of damaged structures under major earthquakes can beconsidered in seismic design of structures.
     The main contents of this dissertation are as follows:
     1)17RC frame buildings with different fortification intensities and storeys are designed according to the current Chinese seismic code. The nonlinear finiteelement models of these structures are set up in the platform OpenSees. Throughcomparing with the shaking table test data of RC frame structures performed by theresearch group of the author, and with the quasi-static test data of RC framestructures performed by Tsinghua University, these OpenSees models are verifiedand validated to be adequate to describe the dynamic nonlinear behavior of thestructures in consideration. The analyses of seismic performance are then carriedout for the17RC frames by nonlinear static procedures (NSP) and nonlineardynamic procedures (NDP). On the basis of this, the “capacity” values of the globalseismic performance factors and their variation rules with structural storeys anddesign fortification intensities are analyzed and derived.
     2) The seismic performance of the17RC frames is evaluated by the staticcapacity spectrum method, the dynamic capacity spectrum method and the timehistory analysis method, respectively. And then, the “demand” values of the globalseismic performance factors of these17RC frames are evaluated. The concepts andthe formula of capacity-demand ratios for the four seismic performance factors areput forward correspondingly to assess the acceptability of the default values ofthese global seismic performance factors implicit in the current design codes.Furthermore, the seismic influence coefficient curves under minor earthquakes inthe current Chinese seismic code is improved by the “demand” values of responsemodification factors obtained in this thesis.
     3) The adjusted collapse margin ratio (ACMR) proposed by FEMA P695andthe demand-capacity-factor method (DCFM) adopted by FEMA350are jointlyutilized to comprehensively evaluate if the consistent probability levels of seismiccollapse and the performance objectives of collapse prevention of the structuresdesign according to the current design codes could be achieved, and toprobabilistically assess the global seismic performance of these structures from theviewpoint of uncertainty. Based on the above analytical study, the recommendedvalues of the response modification factors for RC frame structures are suggested.
     4) For the sidesway progressive collapse failure mode of structures, theresistance for sidesway progressive collapse prevention of these RC framestructures is analyzed and evaluated by four kinds of alternative load path (ALP)based approaches, namely, ALP-based pushover method, ALP-based static capacityspectrum method, ALP-based IDA method, and ALP-based DCFM. The reserve load carrying capacities of the damaged structures are evaluated from the viewpointof strength, deformation, and energy dissipation, respectively. The traditionalrobustness indices based on load carrying capacity are extended to the newrobustness indexes based on spectral acceleration and deformation. By introducingthe seismic robustness index RR1for sidesway progressive collapse into theresponse modification factor, the comprehensive response modification factors forRC frame structures considering sidesway progressive collapse modes are derived.
     5) For the vertical progressive collapse failure mode of structures, theresistance for vertical progressive collapse prevention of these RC frame structuresis analyzed and evaluated by two kinds of alternative load path (ALP) basedapproaches, namely, ALP-based pushdown method, which considers the effect ofloading scheme for simulating column loss; and ALP-based vertical IDA method,which considers the effect of duration of element removing. The reserve loadcarrying capacity of the damaged structures and the corresponding robustnessindices are analyzed and evaluated for three different limit states: the local yieldlimit state, the global yield limit state, and the global failure limit state. Thesidesway robustness structural index RR1and the vertical robustness index RR2aresimultaneously introduced into the response modification factor, which results inthe comprehensive response modification factor. The improved comprehensiveresponse modification factor can be used to obtain the seismic design forces, and torealize the performance based seismic design which considers the effects ofprogressive collapse failure modes.
     Through the study of this dissertation, it has been founded that the RC framesdesigned using the global seismic perfomance factors implied in the currentChinese seismic design code can meet the expected safety goal against collapseunder major earthquakes, however, the global seismic perfomance factors arerelatively conservative, and the reasonable values of the response modificationfactors are suggested. This study will provide theoretical reference for transformingthe elastic seismic design theory under minor earthquakes into the ductility-basedseismic design theory under moderate earthquakes. Meanwhile, based on thecomprehensive response modification factor put forward in this thesis, the sideswayrobustness index and the vertical robustness index can be simultaneouslyconsidered, and the influence of progressive collapse failure modes can be takeninto account in seismic design of structures.
引文
[1]吕大刚,于晓辉,宋鹏彦,崔双双.从汶川地震反思建筑结构的地震安全性、易损性和鲁棒性[C].纪念汶川地震一周年-地震工程与减轻地震灾害研讨会论文集,2009:276-287.
    [2] Federal Emergency Management Agency (FEMA). Quantificaiton of buildingseismic performance factors (FEMA P695)[R]. Report No. ATC-63. AppliedTechnology Council, Redwood City, CA,2009.
    [3] Applied Technology Council (ATC). Tentative provisions for the developmentof seismic regulations for buildings [R]. Report No. ATC-3-06. AppliedTechnology Council, Redwood City, CA,1978.
    [4] Building Seismic Safety Coucil (BSSC). NEHRP recommended provisions forseismic regulations for new buildings and other structures [R]. BuildingSeismic Safety Council, Washington, D.C.,1985,1988,1991,1994,1997(FEMA-302/303),2000(FEMA-368/369),2003(FEMA-450),2006(FEMA-451),2009(FEMA-P750).
    [5] International Conference of Building Officials (ICBO)[S]. Uniform BuildingCode (UBC), Los Angeles, CA, CA,1958,1988,1991,1997.
    [6] Building Officials Conference of America (BOCA)[S].(1966). NationalBuilding Code (NBC), Chicago,1965(4ed.),1996,1999.
    [7] Southern Building Code Congress International (SBCCI)[S]. StandardBuilding Code (SBC), Southern Building Code Congress International,1997,1999.
    [8] International Code Council (ICC). International Building Code (IBC)[S].Country Club Hills, IL: International Code Council,2000,2006,2009.
    [9] International Code Council (ICC). International Residential Code (IRC)[S].Country Club Hills, IL: International Code Council,2003,2006,2009.
    [10] National Fire Protection Association (NFPA). Building Construction and SafetyCode (NFPA500)[S]. Batterymarch Park, Quincy, MA: National FireProtection Association,2000,2003,2009.
    [11] American Society of Civil Engineers. Minimum Design Loads for Buildingsand Other Structures (ASCE7)[S]. Structural Engineering Institute, AmericanSociety of Civil Engineers, New York,2002(ASCE7-02),2005(ASCE7-05),2009(ASCE7-09).
    [12] National Research Council of Canada (NRCC)[S]. National Building Code ofCanada. Ottawa, Canada,1975.
    [13] International Association for Earthquake Engineering (IAEE)[S]. Mexico CityBuilding Code. Earthquake Resistant Regulations, A world List.1996:28.1-28.17.
    [14] Cormte Europeen de Normalisation (CEN). Design provisions for earthquakeresistance of structures [S]. Part1-1,1-2, and1-3(Eurocode8). European Pre-standard ENV, Bruxelles,1998,2002.
    [15] Standards Australian. Structural design actions-General principles (AS/NZS1170)[S]. Standards Australian, Sydney,1984,1992,2002,2007.
    [16] Standards New Zealand. General structural design and design loadings forbuildings (NZS4203)[S]. Standards New Zealand, Wellington,1984,1990,1992,1995,2002.
    [17] International Association for Earthquake Engineering (IAEE)[S]. BuildingStandard Law of Japan. Earthquake Resistant Regulations, A world List.1992:23-90.
    [18]中华人民共和国国家标准.工业与民用建筑抗震设计规范(TJ11-74)(试行)[S].中国建筑工业出版社,北京,1974.
    [19]中华人民共和国国家标准.工业与民用建筑抗震设计规范(TJ11-78)[S].中国建筑工业出版社,北京,1979.
    [20]中华人民共和国国家标准.建筑抗震设计规范(GBJ11-89)[S].中国建筑工业出版社,北京,1989.
    [21]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].中国建筑工业出版社,北京,2001.
    [22]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2010)[S].中国建筑工业出版社,北京,2010.
    [23]中国工程建设标准化协会标准.建筑工程抗震性态设计通则(CECS160:2004)[S].中国计划出版社,北京,2004.
    [24] Ellingwood B R. Mitigating risk from abnormal loads and progressive collapse[J]. Journal of Performance of Constructed Facilities, ASCE,20(4):315-323,2006.
    [25] Baker J W, Schubert M, Faber M H. On the assessment of robustness [J].Structural Safety,2008,30(3):253-267.
    [26] Structural Engineers Association of California (SEAOC). Recommended lateralforce requirements [J]. Seismology Committee, Structural EngineersAssociation of California (SEAOC),1959,1988,1996,1999.
    [27]中国科学院土木建筑研究所.地震区建筑设计规范(草案)[S].中国科学院土木建筑研究所,哈尔滨,1959.
    [28]中国科学院土木建筑研究所.地震区建筑设计规范(草案稿)[S].中国科学院土木建筑研究所,哈尔滨,1964.
    [29]中华人民共和国国家标准.工程结构可靠性设计统一标准(GB50153-2008)[S].中国建筑工业出版社,北京,2008.
    [30]李英民,白绍良,赖明.不同地震水准反应谱之间的关系和罕遇地震作用设计反应谱的确定[J].地震工程与工程振动,2003,23(6):9-16.
    [31]沈建文,石树中.大中小震与抗震设防标准[J].地震学报,2004,26(5):533-538.
    [32] Uang C M, Bertero V V. Earthquake simulation tests and associated studies of a0.3-scale model of a six-story concentrically braced steel structure [R]. Rep. No.UCB/EERC-86/10, University of California, Berkeley, California,1986.
    [33] Whittaker A S, Uang C M, Bertero V V. Earthquake simulation tests andassociated studies of a0.3-scale model of a six story eccentrically braced steelstructure [R]. Rep. No. UCB/EERC-87/02, University of California, Berkeley,California,1987.
    [34] Uang C M. Establishing R (or Rw) and Cdfactors for building seismicprovisions [J]. Journal of Structural Engineering, ASCE,1991,117(1):19-28.
    [35] Uang C M. Comparison of seismic force reduction factors used in U.S.A. andJapan [J]. Earthquake Engineering and Structural Dynamics,1991,20:389-397.
    [36] Applied Technology Council (ATC). Structural response modification factors[R]. Report No. ATC-19. Applied Technology Council, Redwood City, CA,1995.
    [37] Whittaker A, Hart G, Rojahn C. Seismic response modification factors [J].Journal of Structural Engineering, ASCE,1999,125(4):438-444.
    [38] Salvitti L M, Elnashai A S. Evaluation of behavior factors for RC buildings bynonlinear dynamic analysis [C]. The11th World Conference on EarthquakeEngineering. Paper No.1820. June23-28,1996, Acapulco, Mexico.
    [39] Elnashai A S, Broderick B M. Seismic response of composite frames-II.Calculation of behaviour factors [J]. Engineering Structures,1996,18(9):707-723.
    [40] Mwafy A M, Elnashai A S. Calibration of force reduction factors of RCbuildings [J]. Journal of Earthquake Engineering,2002,6(2):239-273.
    [41] Kappos A J. Evaluation of behaviour factors on the basis of ductility andoverstrength studies [J]. Engineering Structures,1999,21:823-835.
    [42] Fathi M, Daneshjoo F, Melchers R E. A method for determining the behaviourfactor of moment-resisting steel frames with semi-rigid connections [J].Engineering Structures,2006,28:514-531.
    [43] Balkaya C, Kalkan E. Seismic vulnerability, behavior and design of tunnel formbuilding structures [J]. Engineering Structures,2004,26:2081-2099.
    [44] Kurban C O, Topkaya C. A numerical study on response modification,overstrength and displacement amplification factors for steel plate shear wallsystems [J]. Earthquake Engineering and Structural Dynamics,2009,38:497-516.
    [45] Kim J K, Chao H H. Response modification factors of chevron-braced frames[J]. Engineering Structures,2005,27:285-300.
    [46] Karavasilis T L, Bazeos N, Beskos D E. Behavior factor for performance-basedseismic design of plane steel momentresisting frames [J]. Journal of EarthquakeEngineering,2007,11(4):531-559.
    [47] Maheri M R, Akbari R. Seismic behaviour factor R for steel X-braced andknee-braced RC buildings [J]. Engineering Structures,2003,25:1505-1513.
    [48] Varela J L, Tanner J E, Klingner R E. Development of seismic force reductionand displacement amplification factors for autoclaved aerated concretestructures [J]. Earthquake Spectra,2006,22(1):267-286.
    [49] Ghaffarzadeh H, Mansouri. Investigation of the behavior factor in SMA bracedframes [C].The14th World Conference onEarthquake Engineering. Paper No.05-06-0182, October12-17,2008, Beijing, China.
    [50] Asgarian B, Shokrgozar H R. BRBF response modification factor [J]. Journalof Constructional Steel Research,2009,65:290-298.
    [51]何若全,顾强,孙国华.关于钢结构抗震设计中结构影响系数的讨论[J].苏州科技学院学报(工程技术版),2004,17(4):29-32.
    [52]顾强,何若全,苏明周.钢结构的地震作用[J].苏州科技学院学报(工程技术版),2005,18(2):1-5.
    [53]李成.多层抗弯钢框架的结构影响系数和尾翼放大系数.[D].西安:西安建筑科技大学博士学位论文,2008.
    [54]杨俊芬.中心支撑钢框架的结构影响系数和位移放大系数研究[D].西安:西安建筑科技大学博士学位论文,2009.
    [55]李国强,孙飞飞.关于钢结构抗震存在的问题及建议[J].地震工程与工程振动,2006,26(3):108-114.
    [56]童根树.与抗震设计有关的结构和构件的分类及结构影响系数[J].建筑科学与工程学报,2007,24(3):65-75.
    [57]童根树,赵永峰.中日欧美抗震规范结构影响系数的构成及其对塑性变形需求的影响[J].建筑钢结构进展,2008,10(5):53-62.
    [58]沈祖炎,孙飞飞.关于钢结构抗震设计方法的讨论与建议[J].建筑结构,2009,39(11):115-122.
    [59]杨媛,白绍良.从各国规范对比看我国抗震设计安全水准评价中的有关问题[J].重庆大学学报,2000,22(Sup.):192-200.
    [60]李英民,吴雪萍,韦峰,白绍良.按中、欧规范设计的钢筋混凝土框架结构抗震性态的对比分析[J].地震工程与工程振动,2007,27(6):82-88.
    [61]白绍良,李刚强,李英民等.从R-μ-T关系研究成果看我国钢筋混凝土结构的抗震措施[J].地震工程与工程振动,2006,26(5):144-151.
    [62]周靖,蔡健,方小舟.钢筋混凝土结构抗震强度折减系数的谱分析[J].华南理工大学学报(自然科学版),2006,34(2):100-106.
    [63] Tong G S, Huang J Q. Seismic force modification factor for ductile structures[J]. Journal of Zhejiang University SCIENCE,2005,6A(8):813-825.
    [64] Tong G S, Zhao Y F. Seismic force modification factors for modified-Cloughhysteretic model. Engineering Structures,2007,29:3052-3070.
    [65]赵永峰,童根树.修正Clough滞回模型下的地震力调整系数[J].土木工程学报,2006,39(10):34-41.
    [66]童根树.钢结构设计方法[M].北京:中国建筑工业出版社,2007.
    [67]王栉枫,何若全. V型中心支撑钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2007,20(2):1-5.
    [68]沙广璟,何若全. K形中心支撑钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2007,20(4):1-5.
    [69]余翔,顾强. X型中心支撑钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2007,20(1):15-20.
    [70]李成,徐柏荣,顾强.抗弯钢框架结构影响系数研究[J].建筑结构,2007,37(10):43-45.
    [71]杨俊芬,张凡,顾强.人字形中心支撑钢框架的结构影响系数研究[J].建筑结构,2007,37(10):46-49.
    [72]李蕾,何若全,王栉枫.不同场地下多层钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2008,21(2):6-9.
    [73]刘彩霞,何若全.狗骨式刚性连接对钢框架结构影响系数的影响[J].苏州科技学院学报(工程技术版),2009,22(3):30-33.
    [74]张文娟,顾强.单斜杆中心支撑钢框架强度折减系数[J].苏州科技学院学报(工程技术版),2009,22(3):22-25.
    [75]陆懿,顾强.多层抗弯钢框架的结构影响系数[J].苏州科技学院学报(工程技术版),2009,22(3):1-4.
    [76]刘文渊,何若全,冷捷.单层钢框架结构影响系数分析[J].苏州科技学院学报(工程技术版),2010,23(2):32-36.
    [77]孙国华,何若全,顾强等.半刚接钢框架内填RC墙结构超强及强度折减系数研究[J].北京工业大学学报,2009,35(10):1338-1343.
    [78] Osteraas J D, Krawinkler H. Strength and ductility considerations in seismicdesign [R]. Report No.90, John A. Blume Earthquake Engineering Center,Stanford University, California,1990.
    [79] Rahgozar M A, Humar J L. Accounting for overstrength in seismic design ofsteel structures. Canadian Journal of Civil Engineering,1998,25:1–5.
    [80] Calderoni B, Ghersi A, Rinaldi Z. Statistical analysis of seismic behaviour ofsteel frames: Influence of overstrength [J]. Journal of Constructional SteelResearch,1996,39(2):137-161.
    [81] Balendra T, Huang X. Overstrength and ductility factors for steel framesdesigned according to BS5950[J]. Journal of Structural Engineering, ASCE,2003,129(8):1019-1035.
    [82] Stefano M D, Marino E M, Rossi P P. Effect of overstrength on the seismicbehaviour of multi-storey regularly asymmetric buildings [J]. Bulletin ofEarthquake Engineering,2006,4:23-42.
    [83] Rossi P P, Lombardo A. Influence of the link overstrength factor on the seismicbehaviour of eccentrically braced frames [J]. Journal of Constructional SteelResearch,2007,63:1529-1545.
    [84] Annan C D, Youssef M A, EI Naggar M H. Seismic overstrength in bracedframes of modular steel buildings [J]. Journal of Earthquake Engineering,2008,13(1):1-21.
    [85] Jain S K, Navin R. Seismic overstrength in reinforced concrete frames [J].Journal of Structural Engineering, ASCE,1995,121(3):580-585.
    [86] Mwafy A M, Elnashai A S. Overstrength and force reduction factors ofmultistorey reinforced-concrete buildings [J]. The Structural Design of TallBuildings,2002,11:329-351.
    [87] Lee D G, Cho S H, Ko H. Response modification factors for seismic design ofbuilding structures in low seismicity regions. Korea Earthquake EngineeringResearch Center,2005.
    [88] Lee H J, Kuchma D A. Seismic overstrength of shear walls in parkingstructures with flexible diaphragms [J]. Journal of Earthquake Engineering,2007,11:86-109.
    [89] Maheri M R, Ghaffarzadeh H. Connection overstrength in steel-braced RCframes [J]. Engineering Structures,2008,30:1938-1948.
    [90]韦锋,李刚强,白绍良.各国设计规范对基准设防地震和结构超强的考虑[J].重庆大学学报(自然科学版),2007,30(6):102-120.
    [91]李英民,刘兰花,韦峰等.钢筋混凝土框架体系R-μ关系的分析验证[J].地震工程与工程振动,2008,28(2):51-58.
    [92]翟长海,谢礼立.钢筋混凝土框架结构超强研究[J].建筑结构学报,2007,28(1):101-106.
    [93]周靖,蔡健,方小丹.钢筋混凝土框架结构抗震超强系数分析[J].世界地震工程,2007,23(4):227-233.
    [94]赵风雷,梁兴文.钢筋混凝土框架结构实际抗震承载力分析[J].工业建筑,2008,38(Sup.):200-203.
    [95]马宏旺,曹晓昀.一种简化的RC框架结构地震位移反应分析方法[J].工程力学,2007,24(12):113-119.
    [96]季静,韩小雷,郑宜等.基于能力设计原理的双肢剪力墙极限承载力研究[J].地震工程与工程振动,2006,26(4):114-120.
    [97]季静,李首方,王建区等.罕遇地震作用下联肢剪力墙极限承载力分析[J].昆明理工大学学报(理工版),2007,32(4):39-42.
    [98]辛力,梁兴文,童岳生.基于位移的抗震设计中结构设计承载力的取值研究[J].地震工程与工程振动,2009,29(2):35-41.
    [99] Newmark N M and Hall W J. Seismic design criteria for nuclear reactorfacilities [R]. Tech. Rep.46, Building Practices for Disaster Mitigation,National Bureau of Standards, U.S. Department of Commerce,1973:209-236.
    [100] Newmark N M, Hall W J. Earthquake spectra and design [R]. EERI MonographSeries, Earthquake Engineering Research Institute. Oakland, California, USA,1982.
    [101] Ridell R, Hidalgo P, Cruz E. Response modification factors for earthquakeresistant design of short period buildings [J]. Earthquake Spectra,1989,5(3):571-590.
    [102] Nassar A A, Krawinkler H. Seismic demands for SDOF and MDOF systems [R].Report No.95, The John A. Blume Earthquake Engineering Center, StanfordUniversity, Stanford, California,1991.
    [103] Miranda E. Evaluation of site-dpendent inelastic seismic design spectra [J].Journal of Structural Engineering, ASCE,1993,119(5):1319-1338.
    [104] Miranda E, Bertero V V. Evaluation of strength reduction factors forearthquake-resistant design [J]. Earthquake Spectra,1994,10(2):357-379.
    [105] Vidic T, Fajfar P, Fischinger M. Consistent inelastic design spectra: strengthand displacement [J]. Earthquake Engineering and Structural Dynamics,1994,23(3):507-521.
    [106] Ordaz M, Perez-Rocha L E. Estimation of strength-reduction factors forelastoplastic systems: a new approach [J]. Earthquake Engineering andStructural Dynamics,1998,27:889-901.
    [107] Borzi B, Elnashai A S. Refined force reduction factors for seismic design [J].Engineering Structures,2000,22(5):1244-1260.
    [108] Cuesta I, Aschheim M A, Fajfar P. Simplified R-factor relationships for strongground motions [J]. Earthquake Spectra,2003,19(1):25-45.
    [109] Jalali R S, Trifunac M D. Inelastic response spectra using conventional andpulse R-factors [J]. Journal of Structural Engineering, ASCE,2001,127(9):1013-1020.
    [110] Jalali R S, Trifunac M D. A note on strength-reduction factors for design ofstructures near earthquake faults [J]. Soil Dynamics and EarthquakeEngineering,2008,28:212-222.
    [111] Seneviratna G D P K, Krawinkler H. Evaluation of inelastic MDOF effects forseismic design [R]. Report No.120, The John A. Blume Earthquake EngineeringCenter, Stanford University, Stanford, California,1997.
    [112] Santa-Ana P R, Miranda E. Strength reduction factors for multi-degree-of-freedom systems [C]. Proc.12th WCEE. IAEE.Auckland, New Zealand.2000:Paper1446.
    [113] Moghaddam H, Mohammadi R K. Ductility reduction factor of MDOF shear-building structures [J]. Journal of Earthquake Engineering,2001,5(3):425-440.
    [114] Dolsek M, Fajfar P. Inelastic spectra for infilled reinforced concrete frames [J].Earthquake Engineering and Structural Dynamics,2004,33:1395-1416.
    [115]卓卫东,范立础.结构抗震设计中的强度折减系数研究[J].地震工程与工程振动,2001,21(1):84-88.
    [116]翟长海,公茂盛,张茂花等.工程结构等延性地震抗力谱研究[J].地震工程与工程振动,2004,24(1):22-29.
    [117]翟长海,谢礼立.考虑设计地震分组的强度折减系数的研究[J].地震学报,2006,28(3):284-294.
    [118]翟长海,谢礼立.多自由度体系效应对强度折减系数的影响[J].工程力学,2006,23(11):33-37.
    [119]翟长海,谢礼立.近场脉冲效应对强度折减系数的影响分析[J].土木工程学报,2006,39(7):15-18.
    [120]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004,24(1):39-48.
    [121]童根树,赵永峰.动力P-Δ效应对地震力调整系数的影响[J].浙江大学学报(工学版),2007,41(1):120-125.
    [122]赵永峰,童根树.双折线弹塑性滞回模型的结构影响系数[J].工程力学,2008,25(1):61-70.
    [123]赵永峰,童根树.剪切滑移滞回模型的结构影响系数[J].工程力学,2009,26(4):73-81.
    [124]赵永峰,童根树.弹塑性屈服强度需求系数谱[J].浙江大学学报,2009,43(10):1909-1914.
    [125] Uang C M, Maarouf A. Deflection amplification factor for seismic designprovisions [J]. Journal of Structural Engineering, ASCE,1994,120(8):2423-2436.
    [126] Mohammadi R K. Approximate evaluation of deflection amplification factor [J].Journal of Structural Engineering, ASCE,2002,128(2):179-187.
    [127] Miranda E. Inelastic displacement ratios for structures on firm sites [J]. Journalof Structural Engineering, ASCE,2000,126(10):1150-1159.
    [128] Chopra A K, Chintanapakdee C. Inelastic deformation ratios for design andevaluation of structures: SDOF bilinear systems [R]. EERC Report No.UCB/EERC2003-09.2003.
    [129] Moroni M, Astroza M, Gomez J, Guzman R. Establishing Rwand Cdfactors forconfined masonry buildings. Journal of Structural Engineering, ASCE,1996,122:1208-1215.
    [130] Fahnestock L A, Sause R, Ricles J M. Seismic response and performance ofbuckling-restrained braced frames [J]. Journalof Structural Engineering, ASCE,2007,133(9):1195-1204.
    [131] Mehanny S S F, El Howary H A. Assessment of RC moment frame buildings inmoderate seismic zones: Evaluation of egyptian seismic code implicaitons andsystem configuration effects [J]. Engineering Structures,2010.
    [132]韦承基.弹塑性结构的位移比谱[J].建筑结构学报,1983,28(1):40-48.
    [133]夏洪流,李英明,杨溥等.罕遇地震作用下SDOF结构位移响应的统计特性分析[J].重庆建筑大学学报,2000,22(Sup.):139-143.
    [134]翟长海,谢礼立,张敏政.工程结构等强度位移比谱研究[J].哈尔滨工业大学学报,2005,37(1):45-73.
    [135]翟长海,公茂盛,谢礼立等.工程结构等强度位移比谱影响因素分析[J].哈尔滨工业大学学报,2005,37(4):45-73.
    [136]肖明葵,白绍良,刘纲等.求弹塑性位移谱的一种简化方法[J].重庆大学学报,2002,25(7):99-103.
    [137]肖明葵,王耀伟,严涛等.抗震结构的弹塑性位移谱[J].重庆建筑大学学报,2000,22(Sup.):34-40.
    [138]孙亚民.抗震结构非弹性位移估计研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2006.
    [139]赵永峰,童根树.等强度折减下延性结构的位移放大系数[J].哈尔滨工业大学学报,2009,41(8):107-110.
    [140]童根树,翁赟.顶部带伸臂的框架-核心筒结构的稳定性和位移、弯矩放大系数[J].工程力学,2008,25(3):132-138.
    [141]童根树,胡进秀.弯曲型支撑-框架结构的屈曲及位移和弯矩放大系数[J].建筑钢结构进展,2007,9(1):52-56.
    [142] Bento R, Azevedo J. Methodology for the probabilistic assessment of q factors:a damage index approach [J]. Journal of Earthquake Engineering,2000,4(1):115-139.
    [143] Chryssanthopoulos M K, Dymiotis C, Kappos A J. Probabilistic evaluation ofbehaviour factors in EC8-designed R/C frames [J]. Engineering Structures,2000,22:1028-1041.
    [144] Foutch D A, Wilcoski J. A rational approach for determining responsemodification factors for seismic design of buildings using current codeprovisions [J]. Earthquake Spectra,2005,21(2):339-352.
    [145] Lee K H, Foutch D A. Seismic evaluation of steel moment frame buildingsdesigned using different R-values. Journal of Structural Engineering, ASCE,2006,132(9):1461-1472.
    [146] Frangopol D M, Curley J P. Effects of damage and redundancy on structuralreliability [J]. Journal of Structural Engineering, ASCE,1987,113(7):1533-1549.
    [147] Feng Y S, Moses F. Optimum design, redundancy and reliability of structuralsystems [J]. Computers and Structures,1986,24(2):239-251.
    [148] Biondini F, Frangopol D M, Restelli S. On structural robustness, redundancyand static indeterminacy [C]. ASCE SEI2008Structural Congress–CrossingBorders, Vancouver, Canada, April24-26,2008.
    [149] Izzuddin B A, Vlassis A G, Elghazouli A Y, Nethercot D A. Progressive collapseof multi-storey buildings due to sudden column loss-Part I: Simplifiedassessment framework. Engineering Structures,2008,30:1308-1318.
    [150]方召欣,李惠强.结构鲁棒性与风险防控[J].工程力学,2007,24(Sup.I):79-82.
    [151]方召欣,李惠强.基于能量观点的结构安全性与鲁棒性[J].建筑结构学报,2007,28(Suppl.):269-273.
    [152] Pandey P C, Barai S V. Structural sensitivity as a measure of redundancy [J].Journal of Structural Engineering, ASCE,1997,123(3):360-364.
    [153]日本钢结构协会,美国高层建筑和城市住宅理事会著,陈以一,赵宪忠译.高冗余度钢结构倒塌控制设计指南[M].上海:同济大学出版社,2007.
    [154] Bertero R D, Bertero V V. Redundancy in earthquake-resistant design [J].Journal of Structural Engineering, ASCE,1999,125(1):81-88.
    [155] Wang C H, Wen Y K. Evaluation of pre-northridge low-rise steel buildings. II:Reliability [J]. ASCE,2000,126(10):1169-1176.
    [156] Liao K W, Wen Y K, Foutch D A. Evaluation of3D steel moment frames underearthquake excitations. II: Reliability and redundancy [J]. Journal of StructuralEngineering, ASCE,2007,133(3):471-480.
    [157] Husain M, Tsopelas P. Measures of structural redundancy in reinforced concretebuildings. I: Redundancy indices [J]. Journal of Structural Engineering, ASCE,2004,130(11):1651-1658.
    [158] Tsopelas P, Husain M. Measures of structural redundancy in reinforced concretebuildings. II: Redundancy response modification factor [J]. Journal ofStructural Engineering, ASCE,2004,130(11):1659-1666.
    [159] Kaewkulchai G and Williamson E B. Modeling the impact of failed membersfor progressive collapse analysis of frame structures [J]. Journal ofPerformance of Constructed Facilities,20(4):375-383,2006.
    [160] Ellingwood B R and Dusenberry D O. Building design for abnormal loads andprogressive collapse [J]. Computer-Aided Civil and Infrastructure Engineering,20:194-205,2005.
    [161] Ellingwood B R, et al. Best practices for reducing the potential for progressivecollapse in buildings [R]. National Institute of Standards and Technology(NIST),2005.
    [162] Talaat M M. Computational modeling of progressive collapse in reinforcedconcrete frame structures [D]. Ph.D Dissertation, University of Califonia atBerkeley,2007.
    [163] Gurley C. Progressive collapse and earthquake resistance [J]. PracticePeriodical on Structural Design and Construction,2008,13(1):19-23.
    [164] AI Hafian S M and May I M. Seimic progressive collapse of reinforcedconcrete framed structures [C]. Proc.15th WCEE. IAEE. Lisbon, Portugal.2012: Paper0453.
    [165] Tavakoli H R, Alashti A R and Abdollahzadeh G R.3-D nonlinear staticprogressive collapse analysis of multi-story steel braced buildings [C]. Proc.15th WCEE. IAEE. Lisbon, Portugal.2012: Paper1112.
    [166] Marchis A, Botez M and Ioani A M. Vulnerability to progressive collapse ofseismically designed reinforced concrete framed structures in romania [C]. Proc.15th WCEE. IAEE. Lisbon, Portugal.2012: Paper1891.
    [167] Reshotkina S S and Lau D T. Modeling damage-based degradations in stiffnessand strength in the post-peak behaviour in seismic progressive collapse ofreinforced concrete structures [C]. Proc.15th WCEE. IAEE. Lisbon, Portugal.2012: Paper2456.
    [168] Papavasileiou G S and Charmpis D C. Design optimization of steel-concretecomposite structures with requirements on progressive collapse resistance [C].Proc.15th WCEE. IAEE. Lisbon, Portugal.2012: Paper2796.
    [169] Silva G M and Mendes L C, Progressive collapse analysis in buildings [C].Proc.15th WCEE. IAEE. Lisbon, Portugal.2012: Paper0776.
    [170] Alahi F N and Parsaeifard N. Analytical study of seismic progressive collapsein one-story steel building [C]. Proc.15th WCEE. IAEE. Lisbon, Portugal.2012: Paper2916.
    [171] Kazem A, Kazem H and Monavari B. Effect of progressive collapse inreinforced concrete structures with irregularity in height [C]. Proc.15th WCEE.IAEE. Lisbon, Portugal.2012: Paper4388.
    [172] Rezvani F H, Gh. M M and Alam S. Seismic progressive collapse analysis ofconcentrically braced frames through incremental dynamic analysis [C]. Proc.15th WCEE. IAEE. Lisbon, Portugal.2012: Paper4404.
    [173] Tavakoli H and Kiakojouri F. Assessment of earthquake-induced progressivecollapse in steel moment frames [C]. Proc.15th WCEE. IAEE. Lisbon,Portugal.2012: Paper4413.
    [174] Rahai A R, Banazadeh M, Asghshahr M R S and Kazem H. Progressivecollapse assessment of rc structures under instantaneous and gradual removal ofcolumns [C]. Proc.15th WCEE. IAEE. Lisbon, Portugal.2012: Paper4928.
    [175] Kurban C O and Topkaya C. A numerical study on response modification,overstrength, and displacement amplification factors for steel plate shear wallsystems [J]. Earthquake Engineering and Structural Dynamics,2008,38(4):497-516.
    [176] Shahrooz B M and Moehle J P. Experimental study of seismic response of R. C.setback buildings [R]. Report No. UCB/EERC-87/16, Earthquake EngineeringResearch Center, University of California, Berkeley, California,1987.
    [177] Bertero R D and Bertero V V. Redundancy in eartquake-resistant design [J].Journal of Structural Engineering, ASCE,1999,125(1):81-88.
    [178] Ben-Haim Y. Design certification with information-gap uncertainty [J].Structural Safety,1999,21(3):269-289.
    [179] Ziha K. Redundancy and robustness of systems of events [J]. ProbabilisticEngineering Mechanics,2000,15(4):347-357.
    [180] Baker J W and Cornell C A. Spectral shape, epsilon and record selection [J].Earthquake Engineering and Structural Dynamics,2006,34(10):1193-1217.
    [181]于晓辉.钢筋混凝土框架结构的概率地震易损性与风险分析[D].哈尔滨工业大学,2012.
    [182]宋鹏彦.结构整体可靠度方法及RC框架非线性整体抗震可靠度分析[D].哈尔滨工业大学,2012.
    [183]王代玉. FRP加固非延性钢筋混凝土框架结构抗震性能试验与分析[D].哈尔滨工业大学,2012.
    [184]李雁军,吕大刚,王震宇,王光远.钢筋混凝土框架结构拟静力倒塌实验数值模拟[J].工程力学,2012,29(增刊II):205-209.
    [185]陈志恒.钢筋混凝土框架结构倒塌失效模式、风险与鲁棒性分析[D].哈尔滨工业大学,2012.
    [186] Scott B D, Park R and Priestley M J N. Stress-strain behavior of concreteconfined by overlapping hoops at low and high strain rates [J]. ACI Journalproceedings,1982,79(2):13-27.
    [187] Karsan I D and Jirsa J O. Behavior of concrete under compressive loading [J].ASCE Journal of structural Division1969,95(ST12):2543-2563.
    [188] Menegotto M and Pinto P E. Method of analysis of cyclically loaded RC planeframes including changes in geometry and non-elastic behavior of elementsunder normal force and bending [R]. Preliminary Report IABSE,1973, vol13.
    [189] Priestley M J N, Seible F, Calvi G M S. Seismic design and retrofit of bridges[M]. New York: John Wiley&Sons;1996.
    [190] PEER StrongMotion Database [M/O]. http://peer.berkeley.edu/smcat.
    [191]吕大刚,崔双双,陈志恒.基于Pushover分析的钢筋混凝土框架结构抗侧向倒塌能力评定[J].工程力学,2013,30(1):180-189.
    [192] Applied Technology Council (ATC). Rapid visual screening of buildings forpotential seismic hazard: A handbook [R]. Palo, Alto,1988, ATC21.
    [193] Maranda E. Site-dependent strength reduction factors [J]. Journal of StructuralEngineering.1993,119(12):3503-3519.
    [194] Vidic T, Fajfar P and Fischinger M. A Procedure for determining consistentinelastic design spectra [C]. Proceeding of Workshop on Nonlinear SeismicAnalysis of RC Structures, Beld, Slovenia,1992:10-25.
    [195]卓卫东.桥梁结构延性抗震设计研究[D].同济大学博士论文.2000:1-48.
    [196]翟长海.最不利设计地震动及强度折减系数研究[D].哈尔滨工业大学博士论文.2004:121-124.
    [197]罗开海.建筑抗震设防标准和性能设计方法研究——中美欧抗震设计规范比较分析[D].北京:中国建筑科学研究院,2005.
    [198] Leyendecker E V, Hunt R J, Frankel A D, et al. Development of maximumconsidered earthquake ground motion maps [J]. Earthquake Spectra,2000,16(1):21-40.
    [199] Pandey P C, Barai S V. Structural sensitivity as a measure of redundancy [J].Journal of Structural Engineering.123(3):360-364,1997.
    [200] Faber M H, Maes M A, Straub D, Baker J W. On the quantification ofrobustness of structures [J]. OMAE2006-92095,2006.
    [201]吕大刚,崔双双.基于备用荷载路径能力谱方法的RC框架结构侧向连续倒塌鲁棒性分析[C].第二届建筑结构抗倒塌学术交流会.上海,中国,2012年11月3日-4日.
    [202]吕大刚,崔双双,李雁军,王光远.基于备用荷载路径Pushover方法的结构连续倒塌鲁棒性分析[J].建筑结构学报,2010,31(增刊2):112-118.
    [203] Lu D G, Cui S S, Song P Y, Chen Z H. Robustness assessment for progressivecollapse of framed structures using pushdown analysis methods [J].International Journal of Reliability and Safety,2012,6(1-3):15-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700