用户名: 密码: 验证码:
中水中有害成分在不同处理工艺中传递规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国属于严重的淡水资源缺少国家,人均淡水资源占有量仅占全世界平均水平的23.4%,在全世界排123位,尤其是中国北方许多大城市缺水状况相当严重。而且中国城市生活污水的处理量不到10%,大量污水未经处理直接排入大江大河,在造成严重环境污染的同时,又浪费了大量宝贵的淡水资源,更为可惜的是现有的生活、工业污水只是经过初步处理进行回用,绝大部分没有继续进行深度处理,让中水回用至上水水平,究其原因是我国整体中水深度处理技术不够成熟,设备、材料性能不够稳定,更主要的是没有配套的安全、经济、可靠的中水深度处理工艺技术。本课题从研究中水中有害成分在不同处理工艺过程中传递通量、传递规律入手,研究中水中有机物、可溶性固体物、氨氮、无机离子等有害成分通过不同孔径的微滤、超滤、活性炭、离子交换树脂颗粒床在不同流量、不同工作时间、不同的组合工艺中传递规律。通过研究发现:
     1.各方法对COD的处理效果
     两个不同位置的5μm微滤膜、活性炭以及阳离子交换树脂对中水中COD有很好的去除作用,而1μm的微滤膜、阴离子交换树脂以及超滤膜对COD的作用不明显。第一个位置微滤膜有效处理量仅0.4m~3,而第二个位置5μm微滤膜达1.96m~3,且处理率较大。而活性炭在使用前需要先用大约1.04m~3水冲洗,有效处理量超过0.72 m~3。阳离子交换树脂对COD的有效处理水量也超过1.96m~3。
     两个不同位置的5μm的微滤膜和超滤膜对COD的去除分别在流量0.25m~3/h、0.30 m~3/h、0.20 m~3/h达到最大去除率30.96%、30.00%、29.04%。而1μm的微滤膜、活性炭及离子交换树脂对COD没有很好的去除能力。
     2.各处理方法对BOD的处理效果
     第一个位置的两个5μm的微滤膜、活性炭和超滤膜对BOD有比较好的去除效果,尤其是第一个位置两个5μm的微滤膜和超滤膜有效处理量超过1.96m~3。
     3.各处理方法对氨氮的处理效果
     微滤膜需通水一段时间后对氨氮才有吸附作用。活性炭对氨氮的有效处理量只0.2m~3。阳离子交换树脂对氨氮去除作用稳定,有效处理量超过1.96m~3;而阴离子交换需要是弱碱性才能对NO_3~-有去除效果。
     第一个位置5μm的微滤膜、1μm的微滤膜和活性炭分别在流量0.35m~3/h、0.25m~3/h、0.20m~3/h对氨氮达最大去除效果48.24%、54.05%、60.00%。其它处理方法作用不明显。
     4.各处理方法对TDS的处理效果
     各处理方法对TDS的去除作用都不大,活性炭后面的微滤膜、活性炭和超滤膜作用相对明显,但去除率均不超过3.76%,有效处理量分别为1.96m~3、1.34m~3和1.04 m~3。
     各处理方法对水中可溶性固体物均没有明显的去除效果,即便有效果也仅在很小的流量范围内,且去除率比较低,但各方法在处理过程中可相互补充。
     5.各处理方法对电导率的处理效果
     各处理方法对无机离子的去除作用不是很明显,离子交换树脂还增加了水中离子的含量。
     活性炭在流量为0.20 m~3/h对电导率有最大去除率10.11%,且去除效果随流量的增大先增加后降低然后趋于稳定值0。其他方法的有效处理流量范围很小,且去除率不高,但各处理方法之间能相互补充。
     6.各处理方法间相互影响
     活性炭可以提高微滤膜对COD和氨氮的去除能力,故在微滤膜前放置活性炭是合理的。离子交换树脂也能提高微滤膜对氨氮的去除。离子交换树脂在无机离子的去除中增加了离子含量,使其后微滤膜压力增大,其它前面的处理对后面的影响均是有利的。
China belongs to the country which be grave short of freshwater resource , occupancy amount of per capita freshwater resources is only 23.4% of average level of the whole world, is 123rd in the whole world, especially a lot of big cities in Chinese north , the situation of lacking water is pretty grave. In Chinese the city domestic sewage treatment amount has been less than 10% , a large amount of sewage has directly entered the river without being disposed, this have wasted a large amount of precious freshwater resources while bringing grave environment pollution, being more unfortunate is than the domestic and industry effluent in existence is reused only through the first step disposal, the most is not continuously carried out the depth disposal, let reclaimed water is reused to drinking water, this reason is that the depth disposal technology of the reclaimed water is not very maturity in our whole country , the equipment and material function is not very stabile, more mainly aspect is that there is not the whole set of the safe , economic and reliable reclaimed water depth disposal technology. This item begins from studying the transfer flux and the transfer law of the harmful components in the reclaimed water in different disposal crafts, to study the transfer law of the harmful components in the reclaimed water such as the organic matter, solubility solid matter, ammonia-nitrogen, inorganic ion passing different aperture MF, UF, activated carbon, Ion-exchange Resin granule bed in different flux, different working-hours, different combination craft. Finding that by studying:
     1. treatment effect of every method to COD
     5μm MF membranes in two different positions, the activated charcoal and the cation exchange resin have very good removal action to COD in reclaimed water, but the removal action to COD of 1μm MF membrane, the anion exchange resin and the UF membrane are not obvious. The effective throughput of the MF membrane in the first position is only 0.4m~3, but that of the second position MF membrane reaches 1.96m~3, and disposal rate is bigger. Activated carbon requires to be cleaned with approximately the approximate 1.04m~3 water before be used, its effective throughput exceeds 0.72m~3 to COD. Cation exchange resin's throughput exceeds 1.96 m~3 to COD.
     The 5um MF membranes in two locations and UF membrane have respectively maximal removal rate 30.96%, 30.00%, 29.04% to COD when their flux is 0.25m~3 /h, 0.30m~3 /h, 0.20m~3/h. The 1μm MF membrane, the activated charcoal and the ion exchange resin have not very great removal ability to COD.
     2. treatment effect of every method to BOD
     Two 5μm MF membranes in the first position, the activated charcoal and the UF membrane can fairly well remove BOD, especially two 5μm MF membranes in the first position and the UF membrane, their effective throughputs exceed 1.96m~3.
     3. treatment effect every method to ammonia-nitrogen
     Only working a time can the MF membrane can adsorb the ammonia nitrogen. The effective throughput of the activated charcoal to ammonia nitrogen only is 0.2m~3. The removal action of the cation exchange resin to the ammonia nitrogen is stable, and the effective throughput exceeds 1.96m~3. But the anionic exchange resin can remove NO_3~- under weak alkaline condition.
     5μm MF membrane in the first position, 1μm MF membrane and the activated charcoal respectively reach greatest removal effect 48.24%, 54.05%, 60.00% to the ammonia nitrogen in flux 0.35m~3/h, 0.25m~3/h, 0.20m~3/h. The action of other disposal methods is not obvious.
     4. treatment effect of every method to TDS
     The removal action to TDS of each disposal method is not great, the action of MF membrane behind the activated charcoal , the activated charcoal and the UF membrane is relatively obvious, but removal rate of all does not exceed 3.76%, the effective throughput respectively is 1.96m~3,1.34m~3 and 1.04 m~3.
     Each disposal method has not obvious removal effect to the soluble solid in the water, even if has the effect, but only within the very small flux scope, and removal rate is quite low, but various methods may mutually supplement in the treating process.
     5. treatment effect of every method to conductivity
     The removal action of each disposal method to the inorganic ion is not very obvious, and the ion exchange resin increased the ion content in the water.
     The activated charcoal has greatest removal rate 10.11% in the flux 0.20 m~3/h to the conductance, and the removal effect enhances firstly, falls, reaches a stabile value 0 lastly with flux increasing. The effective processing flux scopes of the other methods are very small, and the removal rate is not high, but various methods may mutually supplement in the treating process.
     6. mutual effect between each treatment method
     The activated charcoal can enhance the removal ability to COD and the ammonia nitrogen of the MF membrane, so laying the activated charcoal in front of the MF membrane is reasonable. The ion exchange resin can enhance the removal of to ammonia nitrogen, too. Except that the ion exchange resin increased the ion content in the course of removing the inorganic ion, and make the pressure of MF membrane flowing it increase, other treatment methods have advantaged influence to the methods behind of them.
引文
[1] 黄寰,水污染“世界头号杀手”[J],科学与文化,2006,(3):10~11.
    [2] 孙承咏.黑色绿色的岔口[M].太原:山西经济出版社,1996.
    [3] 马有江.节约用水是长期的必要的方针[J].给水排水,1998,24(3):26~29.
    [4] 钱茜,王玉秋.我国中水回用现状及对策[J].再生资源研究,2003,(1):27~30。
    [5] 田雁冰,段文玲.呼和浩特市城市中水深度处理试验分析[J].内蒙古电力技术,2005,23(1):36~38.
    [6] 孙心利,莫逆.中水回用深度处理的必要性及与系统腐蚀与防护的关系[J].华北电力技术,2006(2):48~50.
    [7] 沈光范.要积极稳妥地开展中水回用工作[J].中国环保产业2001(1):21~22.
    [8] 甘一萍.北京城市污水资源化及中水回用发展现状[J].城市管理与科技.2003,5(4):160~161.
    [9] 张轶,陈颉.天津开发区中水回用项目自控系统设计[J].中国给水排水,2003,19(13):133~134.
    [10] 韩剑宏等.中水回用技术及工程实例[M].北京:化学工业出版社,2004.
    [11] 肖锦.城市污水处理及回用技术[M].北京:化学工业出版社,2002.
    [12] 闫健,谢小妍.对中水处理在南方建筑中应用的思考[J].房材与应用,2005,33(4):52~53.
    [13] 朴芬淑,赵玉华,许秀红.吸附与超滤法深度处理城市污水试验研究[J],沈阳大学学报,2005,17(2):47~49.
    [14] Michal Bodzek, Krystyna Konicczny.Comparison of various membrane types and module configurations in the treatment of natural water by means of low-pressure membrane methods. Separation and Purification Technology 1998,14:69~78.
    [15] M. Bodzek, J. Bohdziewicz, K. Konieczny, Membrane Techniques in Environmental Protection [M]. Gliwicc in Polish: SilesianTechnical University Press, 1997.
    [16] 沙中魁,王同春.微滤膜及微滤技术用于反渗透预处理的研究[J].电力建设,2001,22(10):26~29.
    [17] 许振良,马炳荣 微滤技术与应用[M].北京:化学工业出版社,2005.
    [18] 王湛.膜分离技术基础[M].北京:化学工业出版社,2000.
    [19] 张捍民,王宝贞.UF膜和MF膜技术在饮用水处理中应用现状的研究[J].哈尔滨建筑大学学报,2000,33(6):58~61.
    [20] 曾坚贤.膜技术制备饮用水的应用综述[J].南京农专学报,2000,16(1):23~27.
    [21] 杨顺生,叶梅.活性污泥法废水处理技术的困境以及可能的出路[J].西南交通大学学报,2001,36(1):1~4.
    [22] 谢长血.连续微滤技术在反渗透预处理系统中的应用.工业水处理,2001,21(12):31~33.
    [23] 李庆新,刘煦晴,毕亚凡,郭立,金丽.管式膜连续微滤装置处理回用城市污水的中试研究.环境污染治理技术与设备,2004,5(7):79~82.
    [24] 陈卫文,顾平,刘锦霞.MBR对不同分子质量有机物的去除规律.中国给水排水,2003,19(2):43~45.
    [25] Xiao-yan Li, Hiu-ping Chu. Membrane bioreactor for the drinking water treatment of polluted surface water supplies.Water Research, 2003, 37(19):4781~4791.
    [26] Huang xia,Mo Li.Powdered activated carbon-MBR process for treatment of micro-polluted raw water. China Water & Wastewater,2002, (12): 16~19.
    [27] 郝爱玲,陈永玲,顾平.膜生物反应器用于微污染地表水处理的中试研究[J].化工学报,2006,57(1):136~139.
    [28] 郭春禹,杜启云,王庆生.膜生物反应器污水再生工程的运行与优化[J].工业水处理,2006,26(1):63~66.
    [29] 翁晓姚.关于超滤膜的几个问题[J].工业水处理.1997,17(1):15~17.
    [30] Irena Gancarz, Gryzelda Pozniak, and Marek Bryjak.Modification of polysulfone membranes:3.Effect of nitrogen plasma[J]. European Polymer Jourmal,2000,36(8): 1563~1569.
    [31] 朱建文,吴浩汀.BAF+常规工艺+UF工艺在微污染源水处理中的应用展望[J].工业水处理,2004,24(1):12~16.
    [32] 黄瑾辉,曾光明,许珂,刘萍.超滤分离技术在污水处理中的研究与应用[J].过滤与分离,2005,15(1):5~8.
    [33] 续曙光,胡晓松,刘忠洲.聚丙烯腈/醋酸纤维素共混超滤膜的研制与改性[J].膜科学与技术,2002,22(2):10~12.
    [34] 张丹霞,刘保国,陈翠仙.等离子体技术在膜分离领域的应用[J].膜科学与技术,2002, 22(4):65~70.
    [35] 张捍民等.淹没式中空纤维膜过滤装置去除水中污染物的实验研究[J].给水排水,2000,26(6):28~31.
    [36] 吴光,邱广明,陈翠仙,甘一萍,刘雪春.超滤膜法城市污水深度处理中水回用中试试验研究[J].膜科学与技术,2004,24(1):38~41.
    [37] 孙德栋,张启修.混凝-UF膜处理生活污水阻力特性的研究[J].水处理技术.2004,30(6):323~326.
    [38] 彭日亮,陈泽萍.超滤技术在生活污水处理回用系统中的应用[J].华北电力技术,2005(8):24~26,54.
    [39] 彭跃莲,纪树兰.废水处理新技术-胶团强化超滤[J].膜科学与技术.2001,21(1):39~43.
    [40] 兰淑澄,活性炭水处理技术[M],北京:中国环境科学出版社,1991.
    [41] 苗永宏.煤制离子交换功能活性炭的初步研究[J].甘肃科技,2003,19(5),14~15,46.
    [42] 立本英机,安培郁夫.活性炭的应用技术——其维持管理及存在问题[M].南京:东南大学出版社,2002.
    [43] 马峥,于惠芳,活性炭对水中有机物去除的研究[J],环境保护,1999(5):41~44.
    [44] 王琳,王宝贞,优质饮用水净化技术[M],北京:科学出版社,2000.
    [45] 王琳,王宝贞,饮用水深度处理技术[M],北京:化学工业出版社,2002.
    [46] 许保玖,给水处理理论[M],北京:中国建筑工业出版社,2000.
    [47] 胡志光.城市污水深度处理及回用技术的研究[J].环境卫生工程,2006,14(1):29~31.
    [48] 张增强,孟昭福,张一平.Freundlich动力学方程及其参数的物理意义探析[J].西北农林科技大学学报.2003,31(5):202~204.
    [49] 翁晓姚,周仰原.臭氧-活性炭组合工艺在微污染原水深度处理中的应用[J].公用科技,1996.12(1):23~26.
    [50] J P. Van der Hoek, J. A. M. H. Hofman, and A. Graveland.The use of biological activated carbon filtration for the removal of natural organic matter and organic micropollutants from water [J]. Water Sci Technol,1999,40(9):257~264.
    [51] J.Y. Hu, Z.S. Wang, W. Ng J, and S.L.Ong.The effect of water treatment processes on the biological stability of potable water[J].Water Research,1995,33(11):2587~2592.
    [52] G.T.Thibault et al.用粉状活性碳吸附法处理污水[J].国外农业环境保护,1992(3): 42~45.
    [53] 左金龙,崔福义,赵志伟,刘智晓,冯岩.国内外臭氧活性炭工艺在饮用水处理中的应用实例[J].中国给水排水,2006,22(10):68~72.
    [54] 田明,张天彬.臭氧化-活性碳工艺在水处理中的应用效果初探[J].城镇供水,2001(5):13~14.
    [55] David F Ollis, Ezio Pelizzetti, and Nick Serpone. Photocatalyzed destruction of water contaminants.Environ Sci & Tcchnol, 1991, 25(9):1522~1529.
    [56] 贺北平,王占生.半导体光催化氧化有机物的研究现状及发展趋势[J].环境科学,1994,15(3):80~83.
    [57] 李田,陈超鹏.活性炭吸附-光催化氧化深度净水工艺实验研究[J].上海环境科学,2002,21(6),342~343,349.
    [58] 肖月竹,赵光.用活性碳纤维处理炼油厂废水的研究[J].水处理技术,1994,20(3):177~182.
    [59] 刘成波.活性碳吸附法深度去除废纸造纸废水中COD的试验研究[J].江苏造纸,2003(3):25~28.
    [60] 陆柱等.给水与用水处理技术[M].北京:化学工业出版社,2004.
    [61] 钱庭宝.离子交换树脂[J].高分子通报,1989(1):51~56.
    [62] 陆少红,宫葵.高纯度水的制取-离子交换树脂法[J].沈阳航空工业学院学报,2004,21(3):66~68.
    [63] Amit Sonune, Rupali Ghate.Developments in wastewater treatment methods [J]. Desalination 2004,167(15): 55~63.
    [64] 赵巨雷,吉红.用离子交换树脂法处理高硬度水[J].煤化工,2002,12(6):34~36.
    [65] S.Leakovic, I.Mijatovic,S,Cerjan-Stefanovic and E. Hodz ic.Nitrogen Removal from Fertilizer Wastewater by Ion Exchange [J]. Water Research, 2000, 34(1): 185~190.
    [66] 刘宝敏,林钰等.强酸性阳离子交换树脂对焦化废水中氨氮的去除作用[J].郑州工程学院学报,2003,24(1):46~49.
    [67] 何云.连续式离子交换法处理硝铵废水[J].大氮肥,2000,23(4):264~266.
    [68] 邵锡寰,张四维,顾伯雄,赵亮.离子交换树脂处理氨氮废水的试验研究[J].化工环保,1991,11(3):136~143.
    [69] 张丽珍.弱碱离子交换树脂应用于含酚废水的处理[J].惠州大学学报,2001,21(4):52~ 56.
    [70] 张云祥.大孔离子交换树脂在废水处理终端中应用探讨[J].净水技术,2001,20(2):34~36.
    [71] 张全兴,刘天华.我国应用树脂吸附法处理有机废水的进展[J].化工环保,1994,14(6):344~347.
    [72] Mersmann A. Purification of waste water in the chemical industry[J].Chemical Engineering and Processing,1995,34(3):279~282.
    [73] 方华,毛绍春,李春林,李应,王家强.离子交换树脂处理高浓度有机废水初探[J].云南大学学报(自然科学版).2004,26(B07):160~162.
    [74] 武贵桃.离子交换法去除与回收电镀废水中铬酸的实验研究[J].河北省科学院学报,2000,17(1):43~45.
    [75] 刘冰扬,赵建民.离子交换处理含铜废水的实验研究[J].南京理工大学学报,2000,17 (1):43~45.
    [76] 梁志冉,涂勇,田爱军,白永刚.离子交换树脂及其在废水处理中的应用[J].污染防治技术,2006,19(3):34~36.
    [77] 陈秀芳.离子交换法在废水处理中的应用[J].科技情报开发与经济.2004,14(7):146~149,155.
    [78] 刘凌,郝振纯,赵学民.离子交换水处理过程模拟研究[J].水利水电技术,2000,31(8):55~58.
    [79] P.Aptel. Membranes, Processes and Applications.Valladolid [M].Spain: Preprints of X Summer School, 1993.
    [80] P.Aptel, J.L.Bersillon. Membranesin Bioprocessing-Theory and Applications [M].London: Blackie Academic and Professional, 1993.
    [81] 魏复盛等.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [82] 耿英慧等.微污染原水生物膜法预处理技术概述[J].环境保护,2002.18(7):6~9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700