用户名: 密码: 验证码:
人体胃肠道无创诊查系统及生物遥测胶囊磁定位技术与实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在国家教育部博士点基金(项目编号:20040248033)、国家自然科学基金(项目编号:30570485)和国家863计划(项目编号:2006AA04Z368)的资助下,研制了人体胃肠道无创诊查系统,并对系统中生物遥测胶囊的磁定位技术作了比较深入的研究,力图找到一种原理可行,满足实用要求,使用方便可靠的磁定位方法。
     本文研究了了生物遥测胶囊的总体设计方案。为了简化设计和便于功能扩展,生物遥测胶囊共分为电源管理模块、无线通讯模块、信号处理模块和微型传感器模块。本文还详细介绍了各模块的原理与实现、生物遥测胶囊的组装方式及实验情况。
     本文分析了生物遥测胶囊的超声波定位和磁定位技术,并重点探讨了磁定位方法。生物遥测胶囊的磁定位包括静磁定位和交变磁定位两类方法,而磁标记法是静磁定位的典型方法,本文在磁场及磁检测的相关理论研究的基础上,较深入地探讨了生物遥测胶囊的磁标记定位问题。本文结合生物遥测胶囊自身结构特点,通过磁场有限元法的计算,选用了磁性很强的NdFeB45作为磁性材料,采用φ9×5mm的圆柱形永久磁体作为磁标记物封装在生物遥测胶囊内,定位时,通过在体外布置四个三轴传感器构成传感器阵列对磁标记物进行位置检测,然后通过改进的牛顿-拉斐森(Newton-Raphson)算法求解高次非线性超静定方程组,解出生物遥测胶囊的位置坐标。针对生物遥测胶囊的电源部分为两节氧化银纽扣电池,而这种电池的金属外壳为高导磁率的Co-Ni-Fe合金钢带的情况,本文通过相关电磁理论,采用磁场叠加原理,推导出了电池对磁场分布影响的数学模型,完善了生物遥测胶囊磁标记定位理论。
     本文还详细论述了磁标记定位法的实验情况,并开发了利用磁阻传感器进行磁标记定位的相关电路。
     作为利用静磁定位的重要方法,本文提出了三线圈脉冲激磁定位的新方法,实验表明,这种方法可以运用到生物遥测胶囊的定位中,而且对比磁标记法,分析了这种方法具有的优点。
     本文还讨论了利用电涡流对生物遥测胶囊定位的可能性。为此,本文提出了探头激磁线圈与检测线圈分开设置,且探头激磁采取内外双线圈激磁,三个线圈同轴安装的特殊新型电涡流探头结构,这种结构有利于对目标物的远距离定位,本文推导了这种探头的理论计算公式,分析了这种探头应用到生物遥测胶囊定位中的优缺点。另外,线圈感应定位法有抗干扰能力强,检测距离远的特点,作为交变磁定位,本文也对此作了简要分析。
Supported by the Research Fund for the Doctoral Program of Higher Education (No.20040248033), the National Natural Science Foundation of China (No. 30570485) and the 863 program (No.2006AA04Z368), this thesis develops the noninvasive detecting system for gastrointestinal tract and researches magnetic localization for the biotelemetric capsule. The thesis tries to find a magnetic localizing method which is feasible, practical and portable in principle.
     The thesis investigates collectivity project of the biotelemetric capsule. For simplification and extensing its functions easily, the biotelemetric capsule includes power module, RF communication module, signal processing module and sensors module.
     The thesis analyzes ultrasonic localization and magnetic localization technology for the biotelemetric capsule, and the magnetic localization technology is the key. The technology includes two ways of static magnetic localization and alternating magnetic localization. Magnetic mark method is a typical static magnetic localization method. The thesis discussed magnetic mark localization for detecting the biotelemetric capsule in GI based on magnetic field theory and magnetic detecting technology. The thesis analyzes the biotelemetric capsule’s structure, too. According to magnetic finite element method, the thesis draws a conclusion which is a adaptive magnetic mark with profile dimension ofφ9×5mm, NdFeB45 material and cylindrical permanent magnet for localization. The four tri-axis sensors are fixed outside body for localization, and then the coordinate values of the biotelemetric capsule are solved by improved Newton-Raphson method. But there are two battery cells with high magnetic permeability metal shell. The thesis deducted calculating equation for the cells’affection via relative magnetic theory.
     The thesis discusses experiments of magnetic mark localization in detail, too. Besides, the author develops relative electrical circus to detect magnetic field utilizing magnetoresistive sensors.
     As a practice of static magnetic localization, the thesis developed tri-coil pulse inductive magnetic field method for the biotelemetric capsule’s localization. The relative experiment indicates the method can localize the biotelemetric capsule, and the thesis compared it with the magnetic mark method and analyzes its advantages.
     Besides, the thesis discusses eddy current for localizing capsule. In order to make the method be realization, the author developed a tri-coil eddy current detector to detect long distance. The thesis deducted calculating equations for designing the detector. It has strong antijamming ability though it is very difficult to detect the capsule continuously, and the thesis analyses its localization effect. Excluding theses methods, the coil magnetic induction method has strong antijamming ability and is able to detect the biotelemetric capsule in long distance, too. As an alternating magnetic localization method, the thesis analyzes the method simply.
引文
[1] A. Arshaka KA, D. Waldronc, D. Morrisa, O. Korostynskab, E. Jaferb, G. Lyonsb. Review of the potential of a wireless MEMS and TFT microsystems for the measurement of pressure in the GI tract. Medical Engineering & Physics. 2005, No.27: pp. 347-356.
    [2] Oto A. Virtual endoscopy. European Journal of Radiology. 2002, No.42: pp. 231-239.
    [3] Swain P. Wireless capsule endoscopy. Gut. 2003, No.52: pp. 48-50.
    [4] Louis Phee DA, Arianna Menciassi, Cesare Stefanini,Maria Chiara Carrozza, and Paolo Dario. Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Transactions on Biomedical Engineering. 2002, Vol.49, No.6: pp. 613-616.
    [5] A. Menciassi CS, S. Gorini, G. Pernorio, B. Kim, J.O. Park2 and P. Dario. Locomotion of a legged capsule in the gastrointestinal tract: theoretical study and preliminary technological results. in Proceedings of the 26th Annual International Conference of the IEEE EMBS September 1-5, 2004. San Francisco, CA, USA.
    [6] Low-power chip allows tiny camera to broadcast more pictures. www.elecdesign.com.
    [7] 吴云林,张曙,褚晔等. M2A 胶囊内窥镜在消化病诊断中的应用研究. 中华消化内镜杂志. 2003, Vol.20, No.4: pp. 230-233.
    [8] 李运红,徐肇敏,陈隆典等. 胶囊内镜对胃肠道疾病的诊断意义. 中华消化内镜杂志. 2003, Vol.20, No.4: pp. 234-236.
    [9] 卢德优,吕洁梅,朱森林. 胶囊内镜检查患者的护理. 中华护理杂志. 2004.7, Vol.39, No.7: pp. 502-503.
    [10] 褚行琦,周翠萍,熊元治等. 胶囊内镜临床应用 37 例分析. 中华消化内镜杂志. 2003.8, Vol.20, No.4: pp. 237-239.
    [11] 戈之铮,胡运彪,萧树东. 胶囊内镜与推进式小肠镜诊断不明原因消化道出血的评价. 中华消化内镜杂志. 2003.8, Vol.20, No.4: pp. 223-226.
    [12] 王建云,马颖才,褚行琦等. 影响胶囊内镜检查质量因素的探讨. 吉林医学. 2004.2, Vol.25, No.2: pp. 59-60.
    [13] 汤良恕. 生物医学工程解剖学基础: 武汉: 华中理工大学出版社. 1992.
    [14] 朱钦. 人体解剖学: 北京: 人民卫生出版社. 1994.
    [15] 袁申元,王雁,张建忠. 正常人消化间期胃肠移行性复合运动规律的观察. 基础医学与临床. 1998, Vol.18, No.2: pp. 29-32.
    [16] 许国铭. 胃肠动力研究进展. 云南医药. 1997, Vol.18, No.4: pp. 312-315.
    [17] 周吕,柯美云. 胃肠动力学: 北京: 科学出版社. 1999.
    [18] P. Swain GI GM, A. Glukhovsky. Wireless capsule endoscopy of the small-bowel. Development, testing and first human trials in Biomonitoring and Endoscopy Technologies. 2001.
    [19] G. Iddan GM AG, P. Swain. Wireless capsule endoscopy. Nature. 2000, Vol.405, No.25: pp. 417.
    [20] RF SYSTEM lab. Endoscopic Capsule, NORIKA System.
    [21] H.J. Park HWN, B.S. Song, J.L. Choi, H.C. Choi, J.C. Park, M.N. Kim, J.T. Lee, J.H. Cho. Design of bi-directional and multi-channel miniaturized telemetry module for wireless endoscopy. in 2nd Annual International IEEE-EMBS Special Topic Conference onMicrotechnologies in Medicine & Biology. 2002. Madison, USA.
    [22] D. Wingate MH, J. Kellow, G. Lindberg, A. Smout. Disorders of gastrointestinal motility: Towards a new classification. Journal of Gastroenterology and Hepatology. 2002, Vol.17, No.Suppl.: pp. 1-14.
    [23] T.B. Tang EAJ, L. Wang, A. Astaras, M. Ahmadian, A.F. Murray, J.M. Cooper, S.P. Beaumont, B.W. Flynn, D.R.S. Cumming. Toward a miniature wireless integrated multisensor microsystem for industrial and biomedical applications. IEEE Sensors Journal. 2002, Vol.2, No.6: pp. 628-635.
    [24] 许国铭. 重视对消化系功能性疾病的基础与临床研究. 中华内科杂志. 1998, Vol.37, No.8: pp. 21-24.
    [25] L. Wang TBT, E. Johannessen, A. Astaras, M. Ahmadian, A.F. Murray, J.M. Cooper, S.P. Beaumont, B.W. Flynn, D.R.S Cumming. Integrated micro-instrumentation for dynamic monitoring of the gastro-intestinal tract. in 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology. 2002. Madison, USA.
    [26] Laboratory NsP. Technical support package on improved snsor pills for physiological monitoring. http://www.nasatech.com/Briefs/Feb00/NPO20652.html.
    [27] Company M. BRAVO pH Monitoring System. http://www.medtronic.com/neuro/gerd/.
    [28] Garay LI CE, Ramos EG. Non invasive ultrasonic detector for monitoring gastric motility in rats, using a emitter based on a crystal oscillator. in Second Joint EMBS/BMES Conference. 2002. in Houston, USA.
    [29] An YJ LH, Chang D, et al. Application of pulsed Doppler ultrasound for the evaluation of small intestinal motility in dogs. Journal of Veterinary Science. 2000, Vol.vol.2, No.No.1: pp. 71-74.
    [30] Lambert A VF, Crenner F et al. Autonomous telemetric capsule to explore the small bowel. Med Biol Eng Comput. 1991, Vol.29, No.2: pp. 191-196.
    [31] lWeitschies W CD, Karaus M et al. Magnetic marker monitoring of esophageal, gastric and duodenal transit of non-disintegrating capsules. Pharmazie. 1999, Vol.54, No.6: pp. 426-430.
    [32] Weitschies W WJ, Stehr R et al. Magnetic markers as a noninvasive tool to monitor gastrointestinal transit. IEEE Transactions on Biomedical Engineering. 1994, Vol.41, No.2: pp. 192-196.
    [33] Weitschies W KR, Cordini D et al. High-resolution monitoring of the gastrointestinal transit of a magnetically marked capsule. Journal of Pharmaceutical Sciences. 1997, Vol.86, No.11: pp. 1218-1222.
    [34] A Wilfried DH, K Walter et al. A novel method for real-time magnetic marker monitoring in the gastrointestinal tract. Phys. Med. Biol. 2000, No.45: pp. 3081-3093.
    [35] Mani PN SF. Localization of a magnetic marker for GI motility studies: an in vitro feasibility study. in Proceedings - 19th International Conference - IEEE/EMBS. 1997. in Chicago, IL.USA.
    [36] Jacob H LD, Shreiber R et al. Localization of the given M2A ingestible capsule in the given diagnostic imaging system. Gastrointestinal Endoscopy. 2002, Vol.55, No.5: pp. 135.
    [37] Fischer D SR, Meron G et al. Localization of the wireless capsule endoscope in its passage through the GI tract. Gastrointestinal Endoscopy. 2001, Vol.53, No.5: pp. 126.
    [38] The SmartPill GI Monitoring System. smartpilldiagnostics.com.
    [39] 侯文生 郑, 彭承琳等. 基于永磁体空间磁场检测的体内微型诊疗装置定位系统的研究. 北京生物医学工程. 2004, Vol.23, No.2: pp. 81-83.
    [40] 侯文生,郑小林,彭承琳等. 基于磁定位的消化道微型药物释放装置动态跟踪技术研究. 北京生物医学工程. 2005, Vol.24, No.1: pp. 36-38.
    [41] S . Casciardi CDG, S. Di Luzio, G. L. Romani,V. Foglietti, A. Pasquarelli, V. Pizzella, G. Tomoli. 11 channel magnetometer for biomagnetic measurement in unshield environments. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY. 1993, Vol.3, No.1: pp. 1894-1897.
    [42] Xiaona Wang MQ-HM, Yawen Chan. A Low-Cost Tracking Method Based on Magnetic Marker for Capsule Endoscope. in Proceedings of 2004 International Conference on Information Acquisition. 2004.
    [43] E Costa Monteiro CHB, E Andrade Lima, P Costa Ribeiro, P Boechat. Locating steel needles in the human body using a SQUID magnetometer. Phys. Med. Biol. 2000, No.45: pp. 2389-2402.
    [44] 吴旭东 侯, 彭承琳, 郑小林. 体内微型装置计算机辅助定位系统中简易 3D 人体模型的实现. 医疗卫生装备. 2004, No.4: pp. 5-7.
    [45] Carlos Hall Barbosa ECM, Flávia Pompéia. Metallic foreign bodeis localization using magnetometers in METROLOGIA-2003 – Metrologia para a Vida Sociedade Brasileira de Metrologia (SBM),. Setembro 01-05, 2003. Recife, Pernambuco - BRASIL.
    [46] W.Weitschies MK, D Cordini et al. Magnetic marker monitoring of disintegrating capsules. European Journal of Pharmaceutical Sciences. 2001, No.13: pp. 411-416.
    [47] Schlageter V TB, Meyrat B et al. Non-invasive examination of gastrointestinal motility by using magneto-detection. Neurogastroenterol Motil. 1998, No.10: pp. 105.
    [48] Schlageter V BP, Popovic RS, et al. Tracking system with five degrees of freedom using a 2D array of Hall sensors and a permanent magnet. Sens actuat. 2001, No.A92: pp. 37-42.
    [49] E.Stathopoulos VS, B.Meyra, et al. Magnetic pill tracking: a novel non-invasive tool for investigation of human digestive motility. Neurogastroenterol Motil. 2005, No.17: pp. 148-154.
    [50] Richert H SO, Wangemann S, et al. Development of a magnetic capsule as a drug release system for future applications in the human GI tract. Journal of Magnetism and Magnetic Materials. 2005, No.293: pp. 497.
    [51] 牛蒙年 袁. pH-ISFET 传感器及其测量方法研究. 固体电子学研究与进展. 1995, Vol.15, No.1: pp. 50-54.
    [52] 彭承琳. 生物医学传感器原理及应用. 北京: 高等教育出版社. 2000.
    [53] 鲍敏杭 吴. 集成传感器. 北京: 国防工业出版社. 1987.
    [54] 曹志刚. 现代通信原理. 北京: 清华大学出版社. 1992.
    [55] 田民波. 电子封装工程. 北京: 清华大学出版社. 2003.
    [56] 张文典. 实用表面组装技术. 北京: 电子工业出版社. 2002.
    [57] 中国电子学会生产技术学分会丛书编委会. 微电子封装技术. 合肥: 中国科学技术大学出版社. 2003.
    [58] 郭引川 翁, 杨万全. 无源探测定位技术分析. 现代电子技术. 2004, No.21: pp. 9-11.
    [59] 唐劲飞 龚, 王金根. 基于磁偶极子模型的目标定位和参数估计. 电子学报. 2002.4., Vol.30, No.4: pp. 615-617.
    [60] 唐劲飞,龚沈光,王金根. 磁偶极子模型下目标定位和参数估计的两种新方法. 电 子 学 报. 2003.1., Vol.31, No.1: pp. 154-157.
    [61] 唐劲飞,龚沈光,王金根. 磁偶极子信号检测和参数估计. 海军工程大学学报. 2001.4., Vol.13, No.2: pp. 54-58.
    [62] 林安,杨平. 电磁场基本教程. 哈尔滨: 哈尔滨工业大学出版社. 1996.
    [63] 牛中奇等编著. 电磁场理论基础. 北京: 电子工业出版社. 2001.1.
    [64] 林为干等. 电磁场理论. 北京: 人民邮电出版社. 1996.1.
    [65] 张玉民,戚伯云. 基础物理教程之三 电磁学 北京: 科学出版社. 1997.
    [66] 吴万春,李缉熙,冯亚件等. 电磁场理论. 北京: 电子工业出版社. 1985.
    [67] 张晓华 李李陈. 基于磁偶极子模型的管道机器人定位技术研究. 电波科学学报. 2006.8., Vol.21, No.4: pp. 553-557.
    [68] Cohen D. Measurements of the magnetic fields produced by the human heart, brain, and lungs. IEEE Transactions on Magnetics. 1975, Vol.11, No.2: pp. 694-700.
    [69] 李国栋. 生物磁学及其应用: 北京: 科学出版社. 1983.
    [70] 毛振珑. 磁场测量. 北京: 原子能出版社. 1985.1.
    [71] 张宝裕 刘. 电磁测量与仪表丛书 磁场的产生. 北京: 机械工业出版社. 1987.1.
    [72] (苏)阿法纳西耶夫(Ю.В.Афанасьев)/张伦译. 磁场参数测量器具. 北京: 科学出版社. 1983.1.
    [73] 赖宗声 蔡, 郑学军, 贺德洪, 郑筱莉. 一种新型磁敏集成角度传感器及其测量系统. 传感器技术. 2001, Vol.20, No.1: pp. 28-30.
    [74] 赖宗声 蔡, 景圳, 贺德洪. 一种新型两维霍尔角度传感器研究. 传感技术学报. 2001., No.1: pp. 14-17.
    [75] Y.Deribaupierre PK. Magnetic pill tracking: a novel non-invasive tool for investigation of human digestive motility. Neurogastroenterol Motil. 2005, No.17: pp. 148-154.
    [76] Werner Weitschies MK, Dino Cordini, Lutz Trahms, Jorg Breitkreutz,Wolfhard Semmler. Magnetic marker monitoring of disintegrating capsules. European Journal of Pharmaceutical Sciences. 2001, No.13: pp. 411-416.
    [77] Hendryk Richert_ OS, Sebastian Wangemann,Jochen Heinrich. Development of a magnetic capsule as a drug release system for future applications in the human GI tract. Journal of Magnetism and Magnetic Materials. 2005, No.293: pp. 497-500.
    [78] Wilfried Andr¨a HD, Walter Kirm?e, Hans-Helmar Kramer,Pieter Saupe A novel method for real-time magnetic marker monitoring in the gastrointestinal tract. Phys. Med. Biol. 2000, No.45: pp. 3081-3093.
    [79] T. Cordova-Fraga MS-A, C. Wiechers-Medina. Measurement of the esophageal transit time using a magnetic marker. in Medical Physics: Eighth Mexican Symposium on Medical Physics. 2004: AIP Conference Proceedings.
    [80] N. Mani Prakash FAS. Localization of a magnetic marker for GI motility studies: an in wtro feasibility study. in 19th International Conference - IEEE/EMBS Oct. 30 - Nov. 2,. 1997. Chicago, IL. USA.
    [81] S. Yabukami HK, M. Yamaguchi, K. I. Ara, K. Takahashi, A. Itagaki,and N. Wako. Motion capture system of magnetic markers using three-axial magnetic field sensor. IEEE TRANSACTIONS ON MAGNETICS. 2000, Vol.36, No.5: pp. 3646-3648.
    [82] Hazel A. Shute JCM, Fellow, IEEE, David T. Wilton, and Desmond J. Mapps. One-sided fluxes in planar, cylindrical, and spherical magnetized structures. IEEE TRANSACTIONS ON MAGNETICS. 2000, Vol.36, No.2: pp. 440-451.
    [83] V.Schlageter P-AB, R.S.Popovic, P.Kucera. Tracking system with five degrees of freedom using a 2D-array of Hall sensors and a permanent magnet. Sensors and Actuators. 2001, No.A92: pp. 37-42.
    [84] 佟为明,张荣岭,刘茂恺. 永久磁铁的等效处理. 电子元件. 1997, Vol.17, No.3-4: pp. 37-41.
    [85] Fangshi Lai JKW. A sectioned spheroid model for cylindrical permanent magnets. IEEE TRANSACTIONS ON MAGNETICS. 1980, Vol.MAG-16, No.2: pp. 473-476.
    [86] Shungwu Lee SSA-N. Approximate asymptotic solution of surface field due to a magnetic dipole on a cylinder. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. 1978, Vol.AP-26, No.4: pp. 593-598.
    [87] A. I. Ageev IVB, V. V. Zubko, S. S. Kozub,K. P. Myznikov, A. A. Olyunin,P. I. Slabodchikov, V. V. Sytnik,L. M. Tkachenko, and P. . Development and investigation of a dipole magnet with a high temperature superconductor winding. Atomic Energy. 2002, Vol.93, No.6: pp. 950-956.
    [88] Torre óAaED. Improving numerical simulations of preisach for accuracy and speed. IEEE TRANSACTIONS ON MAGNETICS. 2000, Vol.36, No.5: pp. 3102-3104.
    [89] H. Igarashi TH, and A. Kost,. Inverse inference of magnetization distribution in cylindrical permanent magnets. IEEE TRANSACTIONS ON MAGNETICS,. 2000, Vol.36, No.4: pp. 1168-1171.
    [90] L. Vaizer JL, J.Bono, . Localization of magnetic dipole targets. in OCEANS '04. MTS/IEEE TECHNO-OCEAN '04. 9-12 Nov. 2004.
    [91] 佟为明,梁慧敏,刘宁滨等. 永久磁铁的两种工作状态. 机电元件. 1998, Vol.18, No.4: pp. 2-6.
    [92] 刘陵顺,姜忠山,梁慧敏等. 永久磁铁工作点的优化计算. 低压电器. 2000, No.2: pp. 10-12.
    [93] Breinl 德 W. 制动技术德新途径——永久性磁铁. 国外内燃机. 1997, No.9: pp. 13-16.
    [94] 游一民 陈, 罗文科, 张敬菽. 关于永磁机构中永磁工作点的讨论. 高压电器 2002.8., Vol.38, No.4: pp. 39-42.
    [95] 杨庆新,颜威利,徐桂枝等. 永久磁铁磁场数值计算软件包 FEPM. 河北工学院学报. 1994, Vol.23, No.1: pp. 8-15.
    [96] 韦怀忠. 永久磁铁磁稳定化分析. 柳州师专学报. 1996, Vol.11, No.4: pp. 87-91.
    [97] Chao TSLB. The use of finite elements and neural networks for the solution of inverse electromagnetic problems. in Magnetics Conference, Digests of Intermag apos. 1992.
    [98] Iliana Marinova CP, Demetrios Katsakos. A neural network inversion approach to electromagnetic device design. IEEE TRANSACTIONS ON MAGNETICS,. 2000, Vol.36, No.4: pp. 1080-1084.
    [99] Shiyou Yang JMM, Guangzheng Ni, S. L. Ho, Ping Zhou. A self-learning simulated annealing algorithm for global optimizations of electromagnetic devices. IEEE TRANSACTIONS ON MAGNETICS. 2000, Vol.36, No.4: pp. 1004-1008.
    [100] Lager ATdHaIE. Domain-integrated field equations approach to static magnetic field computation—application to some two-dimensional configurations. IEEE TRANSACTIONS ON MAGNETICS. 2000, Vol.36, No.4: pp. 654-658.
    [101] Tamburrino A. A communications theory approach for electromagnetic inverse problems. IEEE TRANSACTIONS ON MAGNETICS. 2000, Vol.36, No.4: pp. 1136-1139.
    [102] Swithenby SJ. Biomagnetism and the biomagnetic inverse problem. Phys. Med. Biol. 1987, Vol.32, No.1: pp. 3-4.
    [103] K. H. KNUTH and H. G. VAUGHAN J. Convergent Bayesian for mulations of blind source separation and electromagnetic source estimation. in W. von der Linden, V. Dose, R. Fischer and R. Preuss (eds.),Maximum Entropy and Bayesian Methods, Munich 1998. 1998. Dordrecht. Kluwer.
    [104] Tamás Barbarics AK, Member, IEEE, Dieter Lederer, and Péter Kis. Electromagnetic field calculation for magnetic shielding with ferromagnetic material. IEEE TRANSACTIONS ON MAGNETICS. 2000, Vol.36, No.4: pp. 986-989.
    [105] Jens Haueisen RU, Thomas Beuker, and Matthias E. Bellemann. Evaluation of inversealgorithms in the analysis of magnetic flux leakage data. IEEE TRANSACTIONS ON MAGNETICS. 2002, Vol.38, No.3: pp. 1481-1488.
    [106] H. Igarashi TH, and A. Kost,. Inverse inference of magnetization distribution in cylindrical permanent magnets. IEEE TRANSACTIONS ON MAGNETICS. 2000, Vol.36, No.4: pp. 1168-1171.
    [107] Coffey MW. An inverse problem for the magnetic force microscopy of a superconducting sphere. Inverse Problems. 1999, No.15: pp. 669-682.
    [108] Mohd A. Alhamadi NAD. Optimization of the skew angle of rotor poles in permanent magnet machines based on the inverse problem method. IEEE Transactions on Energy Conversion,. 1999, Vol.14, No.4: pp. 1496-1501.
    [109] Demerdash AAASS-SNAO. Shape optimization of PM devices using constrain gradient based inverse problem methodology. IEEE TRANSACTIONS ON MAGNETICS,. 1996, Vol.32, No.3: pp. 1222-1225.
    [110] 解可新,韩立兴,林友联. 最优化方法. . 天津: 天津大学出版社. 2002.5.
    [111] B. Sareni LK, and A. Nicolas. Efficient genetic algorithms for solving hard constrained optimization problems. IEEE TRANSACTIONS ON MAGNETICS,. 2000, Vol.36, No.4: pp. 1027-1030.
    [112] T. S. Low BC. The use of finite elements and neural networks for the solution of solution of inverse electromagnetic problems IEEE TRANSACTIONS ON MAGNETICS. 1992, Vol.28, No.5: pp. 2811-2813.
    [113] Swithenby RHaSJ. A Bayesian test for the appropriateness of a model in the biomagnetic inverse problem. Inverse Problems. 1999, No.15: pp. 1439-1454.
    [114] M. Caldora Costa GC, JL. Coulomb , JP. Bongiraud Localization and identification of a magnetic dipole by the application of genetic algorithms. in OIPE 2000 September 25-27, 2000. Turin.
    [115] Chao Hu MQ-HM, Mrinal Mandal. Efficient linear algorithm for magnetic localization and orientation in capsule endoscopy. in IEEE on engineering in medicine and biology 27th annual conference. september 1-4, 2005. shanghai, china.
    [116] 赖炎连. 拟牛顿算法的基本性质. 咸宁师专学报. 2002.6, Vol.22, No.3: pp. 1-9.
    [117] 梁晓东. 牛顿-拉斐森法及其误差的控制方法. 东北大学学报(自然科学版). 1996.12., Vol.17, No.6: pp. 668-670.
    [118] 林友仰. 牛顿迭代法在非线性电磁场解算中的限制. 中国电机工程学报. 1985.2., Vol.5, No.1: pp. 64-67.
    [119] 赖炎连. 优化问题的拟牛顿算法. 咸宁师专学报. 2001.12, Vol.21, No.6: pp. 1-7.
    [120] 谭学富 王. 供水管路网络模拟计算. 设计与研究. No.1: pp. 5-7.
    [121] 谭学富 王, 秦忠顺. 多效蒸发过程模拟的严格 Broyden 法计算. 沈阳化工学院学报. 1998.9., Vol.12, No.3: pp. 204-209.
    [122] 吴旭东. 侯郑彭彭. 体内微型诊疗装置磁定位简化模型的实验研究. 仪器仪表学报. 2005.9, Vol.26, No.9: pp. 895-901.
    [123] 刘福贵,杨庆新. 三维永久磁铁磁场的标量磁位数值计算. 河北工业大学学报. 1997, Vol.26, No.3: pp. 49-54.
    [124] 佟为明,赵志衡,刘茂恺. 永磁磁路的图解法. 电气电子教学学报. 1998, Vol.20, No.4: pp. 65-67.
    [125] Dibbern.U. Magnetic field sensors using the magnetoresistive effect. Sensors and actuators. 1986, No.10: pp. 127-140.
    [126] B.Pantbharat. Magnetoresistive Sensors. Scientific Honeywelle. 1987, Vol.18, No.1: pp. 29-34.
    [127] 三维磁阻微电路芯片(HMC1023). http://www.honeywell-sensor.com.cn/prodinfo/sensor_magnetic/datasheet/HMC1023.pdf.
    [128] 黄一菲,郑神,吴亮. 坡莫合金磁阻传感器的特性研究和应用. 物理实验. 2002, Vol.22, No.4: pp. 45-48.
    [129] 刘笃仁. PIC 软硬件系统设计——基于 PIC16F87X 系列. 北京: 电子工业出版社出版. 2005.1.
    [130] 彭小燕,彭承琳,侯文生等. 一种用于体内微型诊疗装置定位的磁场检测电路设计. 医疗卫生装备. 2003.12., No.12: pp. 7-8.
    [131] A Lambert FV, F Crenner et al. Autonomous telemetric capsule to explore the small bowel. Med Biol Eng Comput. 1991, Vol.29, No.2: pp. 191-196.
    [132] 刘炳云,卢大伟,万德钧,王庆. 基于磁阻传感器的组合定位系统及误差补偿. 测控技术. 2001, Vol.20, No.2: pp. 10-12.
    [133] S. Sato SS, K. Futamata, K. Katou. Coil optimization for homogeneous magnetic with small leakage field. IEEE TRANSACTIONS ON MAGNETICS. 2000, Vol.36, No.4: pp. 649-674.
    [134] IE.PA N. Characterization of eddy current distortion effects on magnetic resonance axonography of human brain. Review of Quantitative. Nondestructive Evaluation. 2002, Vol.21: pp. 1843-1849.
    [135] N.Nakagawa TAK, J.Gray. Eddy current probe characterization for model input and validation. Review of Progress in Quantitative Nondestructive Evaluation. Vol.6: pp. 473-480.
    [136] Mired LG. Eddy current modeling using neural networks. in Applications of Artificial Neural Networks in Image Processing Proceedings of SPIE 2000.
    [137] Barbosa CH. Localization of firearm projectiles in the human body using a superconducting quantum interference device magnetometer: A theoretical study. REVIEW OF SCIENTIFIC INSTRUMENTS. 2004, Vol.75, No.6: pp. 2098-2106.
    [138] S.Ueno TT, K.Harada. Localizaed stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. Journal of Applied Physics. 1988, Vol.64, No.10: pp. 5862-5864.
    [139] Jae-yel Yi SL. Magnetic effects in eddy current nondestructive method. Journal of Applied Physics. 1986, Vol.59, No.2: pp. 671-673.
    [140] Harold A. Sabbagh EHS, and R. Kim Murphy. Recent advances in modeling eddy-current probes Review of Quantitative Nondestructive Evaluation. 2002, Vol.21: pp. 423-429.
    [141] 贾伯年,俞朴. 传感器技术(第二版): 南京:东南大学出版社. 2000. 85.
    [142] Radhika Satveli JCM, Bing Wang,James H. Roseb. Impedance of a coil near an imperfectly layered metal structure: The layer approximation. Journal of Applied Physics. 1995, Vol.79, No.6: pp. 2811-2820.
    [143] Erol Uzal JCM, Sreeparna Mitra, and James H. Rose. Impedance of coils over layered metals with continuously variable conductivity and permeabillity: Theory and experiment. Journal of Applied Physics. 1993, Vol.74, No.3: pp. 2076-2089.
    [144] Wrzuszczak M. Modeling of eddy current sensors. in Optoelectronic and Electronic Sensors IV. Proceedings of SPIE. 2001.
    [145] Benson CW. "FOOTPRINT" assessment of eddy current probes. Review of Progress in Quantitative Nondestructive Evaluation. 2001, Vol.20: pp. 1995-2000.
    [146] C.C.Feng WED, C.V.Dodd. Analysis of eddy-currrent flowmeters. Journal of Applied Physics. 1975, Vol.46, No.7: pp. 2935-2940.
    [147] PAN Haifeng ZH, FU Zhibin, XU Yuzheng, FENG Guanping. A new type of eddy currentsensor for large displacement test. in International Conference on Sensor Technology.Proceedings of SPIE. 2001.
    [148] 张卫平,施立亭,赵徐森. 长距离双线圈电涡流传感器的原理与设计. 电子学报. 1998, Vol.26, No.12: pp. 61-65.
    [149] C.V.Dodd WED. Analytical solutions to eddy-current probe-coil problems. Journal of Applied Physics. 1968, Vol.39, No.6: pp. 2829-2838.
    [150] J.R.Bowler. Eddy current calculations using half-space Green's functions. Journal of Applied Physics. 1986, Vol.3, No.61: pp. 833-839.
    [151] 谭祖根,汪乐宇. 电涡流检测技术: 原子能出版社出版. 1986.
    [152] 林东 陈. 三维空间磁场结构数学模型及磁场方式三维定位装置. 福州大学学报(自然科学版). 2003.4, Vol.31, No.2: pp. 151-155.
    [153] 李建新,陈新,刘心宇. 用四面体结构磁偶极子对内窥镜定位探头微型化的研究. 福州大学学报(自然科学版). 2002.12., Vol.30, No.6: pp. 809-813.
    [154] 陈 新 田, 林 东, 杜 谊. 磁传感方式的内窥镜三维定位与引导方法. 计算机研究与发展. 2002.2, Vol.39, No.2: pp. 242-245.
    [155] 陈新 林, 张庆辉, 郑惠如, 杜谊, 田村进一. 磁场方式的内窥镜体内三维定位与追踪方法研究. 中国生物医学工程学报. 2002.10., Vol.21, No.5: pp. 465-470.
    [156] Eugene Paperno IS, and Eduard Leonovich. A new method for magnetic position and orientation tracking. IEEE TRANSACTIONS ON MAGNETICS. 2001.7., Vol.37, No.4: pp. 1938-1940.
    [157] Xiaonong Xu AS, Xin Jin, Hongchang Fan, and Xixian Yao. Method for calculating the induced voltage in a vibrating sample magnetometer detection coil system. Rev. Sci. Instrum. November, 1996, Vol.67, No.11: pp. 3914-3923.
    [158] Schneider MR. Electromagnetic Tracking for Catheter Localization. in Part of the SPIE Conference on Biomedical Diagnostic, Guidance, and Surgical-Assist Systems 1999. California.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700