用户名: 密码: 验证码:
人体全消化道生理参数介入式遥测系统定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现有消化道动力功能性疾病诊查方法的缺陷,本文在国家自然科学基金项目(编号:60875061)、国家863计划项目(编号:2006AA04Z368)、国家863计划项目(编号:2007AA04Z234)和上海交通大学“医工(理)交叉研究基金”项目资助(编号:YG2007MS21)的资助和支持下,深入研究了人体全消化道生理参数介入式遥测方法及遥测胶囊的体外无线定位技术,研制了定位精度高、抗干扰能力强、便携式的定位系统。
     以诊查消化道动力功能疾病为出发点,研制了能够在人体正常生理状态下监测全消化道生理参数(压力、温度和pH值)的介入式遥测系统。分析了系统的总体方案、硬件电路、MCU程序、以及数据处理软件系统的设计。通过临床试验,验证了人体全消化道生理参数介入式遥测系统的可行性。
     针对遥测胶囊的定位问题,提出了基于区域分割的二维射频信号强度定位法。该方法通过将人体腹部表面进行区域分割,仿真建立“区域号——体外天线接收信号强度”标定数据库。利用查表法,实现对遥测胶囊的二维区域定位。从而,解决了由于人体组织对射频信号衰减特性复杂和受试者个体差异导致的很难建立精确射频信号衰减模型这一问题;提高了射频信号强度定位法的抗干扰能力。此外,研究了射频信号相差定位法、永磁标记物定位法,以及直流脉冲定位法。通过体外实验,比较了各种定位方法的优缺点,并得出结论:这些定位方法的可行性不足。
     在总结以上各定位方法优缺点的基础上,提出了基于低频交流励磁的遥测胶囊定位方案:在人体腹部表面布置多个单维圆柱状励磁线圈,遥测胶囊内封装一个单维感应线圈;各励磁线圈轮流励磁,同时,在感应线圈中产生相应的感应电动势;遥测胶囊中的检测电路检测各感应电动势,并由其射频模块,将检测数据发送至数据接收器存储;最后,将存储在数据接收器中的感应电动势检测数据,导入上位机定位算法软件中,从而解得遥测胶囊位置坐标。为了建立精确的定位模型,从单个励磁线圈磁场分布模型入手,分析了等效磁偶极子模型、等效环形线电流模型、等效环形线电流的简化模型、基于场源离散化的等效载流螺线管磁场分布模型。通过比较这些模型计算磁场强度的精度,确定以基于场源离散化的等效载流螺线管磁场分布模型为基础,建立了交流励磁定位模型。为了求解由定位模型导出的非线性方程组,提出了基于表面响应模型和模拟退火算法的混合定位算法。通过仿真与传统算法相比较,得出此算法计算精度高,收敛速度较快。
     采用上述交流励磁定位方案,研制了便携式交流励磁定位系统。分析了系统总体结构、磁场检测子系统、体外励磁控制和数据接收子系统的设计方案,研究了系统参数的选取和优化方法。提出了基于证据理论决策的多元信息融合定位方法,并通过仿真实验验证了其可行性。
     搭建了定位实验台架,应用便携式交流励磁定位系统,进行了大量的体外定位实验,评价其定位精度。为了对定位结果进行误差修正,分析了多种误差修正方法:传统误差修正法、基于高阶多项式拟合的误差修正法、Hardy’s Multi-Quadrick误差修正法,提出了基于径向基神经网络的误差修正方法。通过评价各修正法对定位数据修正效果,得出基于径向基神经网络的误差修正法能够减小最大定位误差和平均误差。
     验证了便携式交流励磁定位系统与人体组织的电磁相容性,即定位系统对人体的是否存在辐射伤害和人体组织是否对系统定位精度存在影响。用生理盐水和猪肉来模拟人体组织,将遥测胶囊放在其中,通过磁场强度受影响评估实验和定位精度受影响评估实验,验证了生物组织对本定位系统基本无影响。另一方面,通过电磁仿真,获得了定位系统对人体的电磁辐射剂量,将其与国际人体电磁辐射安全标准相比较,验证了定位系统的人体电磁安全性。
     实验和仿真结果表明,交流励磁定位方案能够满足对遥测胶囊进行体外便携定位要求。而且根据此方案设计的便携式交流励磁定位系统,定位精度较高,抗干扰能力强,对人体无电磁辐射伤害。因此,本文设计的定位系统具有很高的临床应用价值。
Aiming at the defects of the current method for detecting gastrointestinal motility, the thesis, supported by the National Natural Science Foundation of China (NO. 60875061), the National 863 program of China (NO. 2006AA04Z368 and NO. 2007AA04Z234), and the Combination of Medicine and Engineering (Science) Foundation of Shanghai Jiaotong University, studied the interventional telemetric method of the human gastrointestinal physiological parameters and localization technique of telemetric capsule. A portable localization system for localizing the telemetric capsule with high localization accuracy and strong anti-jamming ability was developed.
     For detecting gastrointestinal motility diseases, an interventional telemetric system was developed, for monitoring the physiological parameters (pressure, temperature and pH value) of the whole gastrointestinal tract under the normal physiological state of human. The whole scheme of the system, the circuits, the program of the MCU, and the data-processing software, were analyzed. By clinical experiments on human, the feasibility of the interventional telemetric system was verified.
     To solve the problem localizing the telemetric capsule in vitro, the 2D localization method based on region segmentation and RF signal strength, was proposed. The method segmented the region of the abdomen of human. By simulation, the calibration database of“district number and received RF signal strength”was built. Then, by the look-up-table method, the telemetric capsule was localized on 2D districts. So the method solve problem that the attenuation model of RF signal in human body cannot be built accurately because of the complicated characteristics of RF signal attenuation and the difference of the different people. And the anti-jamming ability of the localization method based on received signal strength, was improved. Besides, the localizationg method based on phase difference of received RF signal, the localization method based on permanent magnetic markers, and the localization method based on pulsed DC electromagnetic field, were studied. And by experiments in vitro, the advantages and disadvantages of the methods were compared. And a conclusion can be drawn that the methods outlined above were unfeasible for localizing the telemetric capsule.
     Based on the analysis of the advantages and disadvantages of the above method, a method for localizing the telemetric capsule based on low-frequency AC electromagnetic field was put forward. In the method, several excitation coils were placed on the abdomen of people, and an induction coil was encapsulated in the telemetric capsule. When localizing the telemetric capsule, the excitation coils were excited with alternating current alternately. And meanwhile, the induction coil detected the electromagnetic field strength produced by each excitation coil, and transmitted the measurement results to the data receiver in vitro to store. Finally, the stored measurement results were uploaded to the software of localization algorithm, and then the position of the telemetric capsule can be acquired. To build the accurate localization model, analyze the magnetic field distribution model of an excitation coil, including the magnetic dipole model, the circle current model, the simplified circle current model, and the current solenoid model based on discretization of field source. By comparing the computation accuracy of the magnetic field strength with the models, the current solenoid model based on discretization of field source, was found more accurate. And with the model, the AC excitation localization model was built. To solve the nonlinear equations deduced from the localization model, the hybrid algorithm, based on the surface response model and simulated annealing algorithm, was proposed; and proved that compute fast and accurately.
     A portable localization system based on AC excitation was developed. The system was analyzed from the design of system structure, subsystem for detecting magnetic field, subsystem for excitation control and data receiving, and optimization method of system parameters. The multi-information fusion localization method based on D-S theory decision-making, was put forward; and its feasibility was verified by simulation.
     A test-bed for localization experiments was build. From the results of localization experiments with the portable AC excitation localization system, the localization accuracy was evaluated. To calibration the localization results, the methods of error correction were studied, including the conventional method, high order polynomial fit method, Hardy’s Multi-Quadrick method. So the calibration method based on RBF neural network was proposed, and proved that the method can minimize the maximum localization error and mean error.
     The electromagnetic interaction of the AC excitation localization system with the human tissue was studied, which included the possible electromagnetic radiation of the localization system and influence of the localization accuracy by human tissue. Two experiments were designed to verify the influence of the localization accuracy by human tissue, in which pork and physiological saline were used to simulate the human tissue. On the other hand, by electromagnetic simulation, the electromagnetic radiation dosages of the localization system to human were acquired. By comparing them with the international electromagnetic safety standard for huma, a conclusion was drawn that the localization system cannot cause electromagnetic hazards to human.
     From the results of experiments and simulation, the AC excitation localization method can satisfy the requirements for localizing the telemetric capsule in vitro. And the portable localization system based on the method, were verified that it achieved high localization accuracy, strong anti-jamming capacity, and no electromagnetic radiation hazard to human. Thus, the localization system developed in the thesis has great clinical practical value.
引文
[1]张经济,消化道生理学.广州:中山大学出版社, 1990. 3-4.
    [2]汤良恕,生物医学工程解剖学基础.武汉:华中理工大学出版社, 1992.
    [3]萧树东,许国铭,中华胃肠病学.北京:人民卫生出版社, 2008. 1-5.
    [4] D. Wingate MH,J. Kellow,G. Lindberg,A. Smout, Disorders of gastrointestinal motility: Towards a new classification. Journal of Gastroenterology and Hepatology, 2002. 17(Suppl.): pp. 1-14.
    [5] http://www.givenimaging.com/.
    [6]吴云林,张曙,褚晔, M2A胶囊内窥镜在消化病诊断中的应用研究.中华消化内镜杂志, 2003. 20(4): pp. 230.
    [7] G. Iddan,G. Meron,A. Glukhovsky,P. Swain, Wireless capsule endoscopy. Nature, 2000. 405(25): pp. 417.
    [8] RF SYSTEM Lab, NORIKA3 System. http://www.rfnorika.com/eng/system/sys_001.html, 2006.
    [9] A. Uehara,K. Hoshina, Capsule endoscope NORIKA system. Minimally Invasive Therapy & Allied Technologies, 2003. 12(5): pp. 227-234.
    [10] RF SYSTEM Lab., the Next Generation Capsule Endoscope. http://www.rfamerica.com /sayaka/index.html, 2007.
    [11] http://www.olympus-global.com/en/news/2004b/nr041130capsle.cfm.
    [12] H.J. Park,H.W. Nam,B.S. Song. Design of bi-directional and multi-channel miniaturized telemetry module for wireless endoscopy. in 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology. 2002. Madison, USA.
    [13] http://www.microsystem.re.kr.
    [14] http://www.gla.ac.uk/R-E/pub/commops/bio/lab-pill.html.
    [15] Pietro Valdastri, An Implantable Telemetry Platform System for In Vivo Monitoring of Physiological Parameters. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2004. 8(3): pp. 271-278.
    [16] Ian Wilding,Peter Hirst,Alyson Connor, Development of a new engineering-based capsule for human drug absorption studies Pharmaceutical Science & Technology Today, 2000. 3(11): pp. 385-392.
    [17] Casper,RA., Medical capsule device activated by radiofrequency (RF) signal. US Patent: 5170801, 1992.
    [18] Lambert A,Vaxman F,Crenner F,Wittmann T,Grenier JF, Autonomous telemetric capsule to explore the small bowel. Med Biol Eng Comput, 1991. 29(2): pp. 191-196.
    [19] Richert H,Surzhenko O,Wangemann S, Development of a magnetic capsule as a drug release system for future applications in the human GI tract. Journal of Magnetism and Magnetic Materials, 2005. 293(1): pp. 497-500.
    [20] ALTEN THOMAS W VON, A swallowable internal drug dispensing capsule with memory GB Patent:2374149, 2000.
    [21] Shunichi Yuda,Hiroshi Ito,Mamoru Tanaka, Medical capsule and apparatus for activating the same US Patent 5217449, 1993.
    [22] Sinaiko,Robert J., Externally controlled intestinal content sampler. US Patent 5316015, 1994.
    [23] ByungKyu Kim, Seunghak Lee, Jae-Wook Ryu, YoungHun Tak, Tae-Song Kim, Jong-Oh Park, Micro capsule robot. US Patent 6911004, 2005.
    [24] Byungkyu Kim,Younkoo Jeong,Hun-Young Lim,Tae Song Kim,Jong-Oh Park. Smart colonoscopesystem. in IEEE/RSJ Intemational Conference on Intelligent Robots and System. 2002. EPFL, Switzerland.
    [25] Slatkin A. B.,Burdick J.,Grundfest W. The development of a robotic endoscope. in IEEE/RSJ International Conference on Intelligent Robots and Systems Human Robot Interaction and Cooperative Robots. 1995.
    [26] Paolo Dario,Maria Chiara Carrozza,Andrea Pietrabissa, Development and in vitro testing of a miniature robotic system for computer-assisted colonoscopy,. Computer Aided Surgery, 1999. 4(1): pp. 1-14.
    [27] Stefanini Cesare,Menciassi Arianna,Dario Paolo, Modeling and experiments on a legged microrobot locomoting in a tubular, compliant and slippery environment. International Journal of Robotics Research, 2006. 25(5): pp. 551-560.
    [28] Kim Byungkyu,Lee Moon Gu,Lee Young Pyo, An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators, A: Physical, 2006. 125(2): pp. 429-437.
    [29] Olympus Medical Systems Corporation, Development of Capsule Endoscopes and Peripheral Technologies for further Expansion and Progress in Endoscope Applications. http://www. olympus.co.jp/en/news/2004b/nr041130capsle.cfm.
    [30] http://www.cqjs.net/products_1.shtml.
    [31]皮喜田,彭承琳,郑小林,用于人体药物吸收研究的定点释放药丸系统研制.中国生物医学工程学报, 2004. 23(5): pp. 166-170.
    [32]周银生,贺惠农,顾大强,医用微型机器人无损伤体内驱动方法.科学通报, 1999. 44(20): pp. 2210-2213.
    [33]李立新周银生,赵东福,一种新型的微型机器人.机械工程学报, 2001. 37(1): pp. 11-13.
    [34]章亚男罗继军,沈林勇,机器人主动内窥镜的自动介入技术初探,.机电一体化, 2003. 9(3): pp. 21-23.
    [35]杨杰,中村仁彦,吴月华,张松,吉本坚一,医用微型机器人——SMA内窥镜与SMA腹腔手术钳子.中国科学技术大学学报, 1996. 26(4): pp. 444-449.
    [36]黄标,胃肠道多元医学信息无创遥测系统及动力功能分析.上海交通大学博士学位论文, 2006.
    [37]朱玫,王荣福,放射性核素胃排空显像.国外医学放射医学核医学分册, 2000(4): pp. 23-25.
    [38]郑妙瑢张遵城,肖连东,核素显像对功能性消化不良患者胃排空功能的研究.天津医药, 1999(9): pp. 6-8.
    [39] Werner Weitschies, Michael Karaus, Dino Cordini, Lutz Trahms, J?rg Breitkreutz, Wolfhard Semmler, Magnetic marker monitoring of disintegrating capsules European Journal of Pharmaceutical Sciences, 2001. 13(4): pp. 411-416.
    [40] S. Yabukami, H. Kikuchi, M. Yamaguchi, K. I. Arai, K. Takahashi, A. Itagaki, Motion capture system of magnetic markers using threeaxial magnetic field sensors. IEEE transactions on magnetics, 2000. 36(5): pp. 3646-3648.
    [41] Weitschies W,Cordini D,Karaus M, Magnetic marker monitoring of esophageal, gastric and duodenal transit of non-disintegrating capsules. Pharmazie, 1999. 54(6): pp. 426.
    [42] Andra W,Danan H,Kirmsse W, A novel method for real-time magnetic marker monitoring in the gastrointestinal tract. Physics in Medicine and Biology, 2000. 45(10): pp. 3081-3093.
    [43] Wenger MA,Henderson EB,Dinning JS, Magnetometer Method for Recording Gastric Motility. Science 1957. 125(3255): pp. 990-991.
    [44] Day J S,Murdoch D J,Dumas G A, Calibration of position and angular data from a magnetic tracking device Journal of Biomechanics, 2000. 33(8): pp. 1039-1045.
    [45] Yan Guozheng He Wenhui, Jiang Pingping, Guo Xudong, A novel localization method for noninvasive monitoring capsule. High technology letter, 2006. 12(3): pp. 255-259.
    [46] Mani PN,Spelman FA. Localization of a magnetic marker for GI motility studies: an in vitro feasibility study. in 19th International Conference - IEEE/EMBS. 1997. Chicago,.USA
    [47] P Hiroz,V Schlageter,J McManus,P Kucera,JC Givel. Motility of the human colon: comparison of radio marker technique with Magnet Tracking System. in 41st World Congress of Surgery of ISS. 2005. Durban, South Africa,.
    [48] Cordova-Fraga T,Sosa-Aquino M,Wiechers-Mediners-Medina C., Measurement of the Esophageal Transit Time Using a Magnetic Marker. Medical Physics: Eighth Mexican Symposium on Medical Physics, 2004. 724(1).
    [49] Forsman M., Intragastric movement assessment by measuring magnetic field decay of magnetised tracer particles in a solid meal Medical and Biological Engineering and Computing, 2006. 38(2): pp. 169-174.
    [50] Stathopoulos E,Schlageter V,Meyrat B,DE Ribaupierre Y,Kucera P, Magnetic pill tracking: a novel non-invasive tool for investigation of human digestive motility. Neurogastroenterology & Motility, 2004. 17(1): pp. 148-154.
    [51] Johannessen E. A.,Wang L.,Reid S. W. J., Implementation of radiotelemetry in a lab-in-a-pill format. Lab on a Chip, 2006. 16(1): pp. 39-45.
    [52] Acob H.,Levy D.,Shreiber R., Localization of the given M2A ingestible capsule in the given diagnostic imaging system. Gastrointestinal Endoscopy, 2002. 55(5): pp. AB135.
    [53] Fischer D.,Shreiber R.,Meron G., Localization of the wireless capsule endoscope in its passage through the GI tract. Gastrointestinal Endoscopy, 2001. 53(5): pp. 126.
    [54] Olympus Corporation., Olympus Launches High-resolution Endo Capsule System in Europe. http://www.olympus-global.com/en/news/2007b/nr070921capsulee.cfm, 2007.
    [55] Hwang J.S.,Kim J.D.,Park C.Y. Relative Location Estimation of Power-Receiver from Transmitter for In Vivo Robotic Capsules. in IEEE Engineering in Medicine and Biology 27th Annual Conference. 2005. Shanghai, China.
    [56] XIAONA WANG,MAX Q.-H. MENG, STUDY OF A POSITION AND ORIENTATION TRACKING METHOD FOR WIRELESS CAPSULE ENDOSCOPE. International Journal of Information Acquisition, 2005. 2(2): pp. 113-121.
    [57]侯文生,郑小林,彭承琳,基于永磁体空间磁场检测的体内微型诊疗装置定位系统的研究.北京生物医学工程, 2004. 23(2): pp. 81-85.
    [58]姜萍萍,人体胃肠道生理参数无创检测及胃肠压力信号处理识别方法研究.上海交通大学博士学位论文.上海, 2005.
    [59]肖凤英,多束圆盘式钨/氧化钨微型pH传感器研制.华侨大学学报(自然科学版), 2001(2): pp. 158-160.
    [60]蒋青,吕翊,通信原理与技术.北京:北京邮电大学出版社, 2007.
    [61]刘奇,无线通信与网络应用技术.上海:浦东电子出版社, 2001.
    [62] Scanlon W. G.,Burns J. B.,Evans N. E, Radio Propagation from a Tissue-Implanted Source at 418 MHz and 916.5 MHz. IEEE Transactions on Biomedical Engineering, 2000. 47(4): pp. 527-534.
    [63] Vaillancourt P.,Djemouai A.,Harvey J. F. EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. in Proceedings of 19th International Conference of IEEE/EMBS. 1997. Chicago IL. USA. pp. 2499-2502.
    [64] Chirwa L.C,Hammond P.A,Roy S. Electromagnetic radiation from ingested sources in the human intestine. in 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Biology. 2002. Madison, USA. pp. 309-313.
    [65] Chirwa L.C.,Hammond P.A.,Roy S., Electromagnetic Radiation from Ingested Sources in the Human Intestine between 150 MHz and 1.2 GHz. IEEE Transactions on Biomedical Engineering, 2003. 50(4): pp. 484-492.
    [66] Chirwa L.C.,Hammond P.A.,Roy S., Radiation from ingested wireless devices in biomedical telemetry bands. Electronics Letters, 2003. 39(2): pp. 178-179.
    [67]刘笃仁, PIC软硬件系统设计.北京:电子工业出版社, 2005.
    [68]黄标,基于UML的胃肠动力数据分析系统的开发.计算机工程与应用, 2005. 41(35): pp. 183-185.
    [69]游战清,李苏剑,无线射频识别技术(RFID)理论与应用.北京:电子工业出版社, 2004.
    [70] K. Arshak,F. Adepoju. A Model for Estimating the Real-Time Positions of a moving Object in Wireless Telemetry Applications using RF Sensors. in IEEE Sensors Applications Symposium. 2007. San Diego, California USA.
    [71] Khalil Arshak,Francis Adepoju,David Waldron, A Review and Adaptation of Methods of ObjectTracking to Telemetry Capsules. IC-MED, 2007. 1(1): pp. 35-46.
    [72] Khalil Arshak,Francis Adepoju. Adaptive Linearized Methods for Tracking a Moving Telemetry Capsule. in IEEE International Symposium on Industrial Electronics. 2007. Vigo, Spain.
    [73] Khalil Arshak,Francis Adepoju. Application of RSS output of a Radio Transceiver to 2D Tracking of Ingestible Capsules. in the 9th European Conference on Wireless Technology. 2006. Manchester,UK.
    [74] Taimoor Shah,Syed Mahfuzul Aziz,Tharshan Vaithianathan. DEVELOPMENT OF A TRACKING ALGORITHM FOR AN INVIVO RF CAPSULE PROTOTYPE. in 4th International Conference on Electrical and Computer Engineering. 2006. Dhaka, Bangladesh.
    [75] Khalil Arshak,Francis Adepoju. Linearized Transformation of RF Data for Capsule Tracking in Wireless Telemetry. in 21st International Conference on Advanced Information Networking and Applications Workshops. 2007. Niagara Falls, Canada.
    [76] Teruhiro Haga,Yamato Horikoshi,Sosuke Tsukamoto,Hiroshi HoshinoI. Two-dimensional Location and Direction Estimating Method. in 6th International Special Topic Conference on ITAB,. 2007. Tokyo, Japan.
    [77] Khalil Arshak,Francis Adepoju,Declan McDonagh. A Method for Estimating the Geometric Position of a Wireless Telemetry Capsule in Real-Time. in 10th European Conference on Wireless Technology. 2007. Munich, Germany.
    [78]贾娜莉,基于相差测量原理的兵器实验弹落点的无线电定位方法的研究.太原:中北大学, 2005.
    [79]石小莉,载波相位测量的定位解算算法研究.成都:电子科技大学, 2008.
    [80]易冰歆,林钢锤,黄永波, Galileo/GPS组合接收机载波相位定位方法.中国惯性技术学报, 2007. 15(2): pp. 193-196.
    [81]叶林,周弘,张洪,张杰,相位差的几种测量方法和测量精度分析.电测与仪表, 2006. 43(484): pp. 11-14.
    [82]宋长宝,杨瑞民,竺小松,杨景曙,用AD8302实现幅相测量系统.电子产品世界, 2002: pp. 54-56.
    [83]涂向阳,一种小信号微弱相位差的测量方法.计算机与网络, 2002: pp. 48-49.
    [84]王旭明,王志云,江阳,接收机相位差测试系统的设计与实现.电磁场与微波, 2006. 36(8): pp. 40-60.
    [85]沙占友,刘阿芳,王科,基于AD8302的单片宽频带相位差测量系统的设计.国外电子元器件, 2006(1): pp. 57-60.
    [86]王秀霞,郑绳楦,刘丰,基于DSP的高精度相位差测量系统.自动化技术与应用, 2004. 23(5): pp. 58-61.
    [87] Xiaona WANG,Max Q.-H. MENG. Dipole Modeling of Magnetic Marker for Capsule Endoscope Localization. in the 6th World Congress on Intelligent Control and Automation. 2006. Dalian, China.
    [88] V. Schlageter,P. -A. Besse,R. S. Popovic,P. Kucera., Tracking system with five degrees of freedom using a 2D-array of Hall sensors and a permanent magnet. Sensors and Actuators A: Physical, 2001. 92(1): pp. 37-42.
    [89] X. Wang,M. Q. -H. Meng,Y. Chan. A low-cost tracking method based on magnetic marker for capsule endoscope. in IEEE International Conference on Information Acquisition. 2004. Hefei, China.
    [90] X. Wang,M. Q. -H.Meng,C. Hu. A localization method using 3-axis magnetoresistive sensors for tracking of capsule endoscope. in the 17th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2006. New York, USA.
    [91] C. Hu,M. Q.-H. Meng,M. Mandal, Efficient magnetic localization and orientation technique for capsule endoscopy. International Journal of Information Acquisition, 2005. 12(1): pp. 23-25.
    [92] Bhag Singh Guru (著),周克定(译),电磁场与电磁波.北京:机械工业出版社, 2000.
    [93]刘国强,赵凌志,蒋继娅, Ansoft工程电磁场有限元分析.北京:电子工业出版社, 2005.
    [94]刘陵顺,姜忠山,梁慧敏,永久磁铁工作点的优化计算.低压电器, 1998. 18(4): pp. 2-6.
    [95]佟为明,梁慧敏,刘宁滨,永久磁铁的两种工作状态.机电元件, 1998. 18(4): pp. 2-6.
    [96]陈德桂游一民,罗文科,关于永磁机构中永磁工作点的讨论.高压电器, 2002. 38(4): pp. 39-41,51.
    [97] Olaf Suess,Silke Suess,Sven Mularski,Bj?rn Kühn,Thomas Picht, Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy. Head & Face Medicine, 2006.
    [98] Yue Liu,Yongtian Wang,Da Zhou,Xiaoming Hu,Jianfei Wu. Study on an Experimental AC Electromagnetic Tracking System. in the 5th World Congress on Intelligent Control and Automation,. 2004. Hangzhou, P.R. China.
    [99] L.J. van Ruijven,E. Donker M. Beek,T.M.G.J. van Eijden, The accuracy of joint surface models constructed from data obtained with an electromagnetic tracking device. Journal of Biomechanics, 2000. 33: pp. 1023-1028.
    [100] FREDERICK H. RAAB,ERNEST B. BLOOD,TERRY O. STEINER,HERBERT R. JONES, Magnetic Position and Orientation Tracking System. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1979. 15(5): pp. 709-718.
    [101]冯慈璋,电磁场.北京:高等教育出版社, 1979.
    [102]倪光正,工程电磁场原理.北京:高等教育出版社, 2002.
    [103]冯亚伯,电磁场理论.成都:电子科技大学出版社, 1995.
    [104]朱平,圆电流空间磁场分布.大学物理2005. 24(9): pp. 13-17.
    [105]龚善初,朱秀阁,载流圆线圈在空间任一点磁场分布.商丘师范学院学报, 2005. 21(2): pp. 162-164.
    [106]刘新纯,陈玉珂,载流螺线管内部磁场与横截面积的形状无关.辽宁工学院学报, 1997. 17(4): pp. 76-78.
    [107]徐萃薇,孙绳武,计算方法引论.北京:高等教育出版社, 2007.
    [108]李庆扬,莫孜中,祁力群,非线性方程组的数值解法.北京:科学出版社, 1999.
    [109]王德人,非线性方程组解法与最优化方法.北京:人民教育出版社, 1979.
    [110]冯果忱,非线性方程组迭代解法.上海:上海科学技术出版社, 1989.
    [111]何文辉,体胃肠道无创诊查系统及生物遥测胶囊磁定位技术与实验.上海:上海交通大学, 2007.
    [112]倪光正,杨仕友,钱秀英,邱捷,工程电磁场数值计算.北京:机械工业出版社, 2004.
    [113]谢德馨,杨仕友,工程电磁场数值分析与综合.北京:机械工业大学, 2008.
    [114]罗平,杨仕友,倪光正,改进的表面响应模型及其在电磁装置优化设计中的应用.电机与控制学报, 2003. 7(3): pp. 195-201.
    [115] Alotto P,Gaggero M,Molinari G, A "design of experiment" and statistical approach to enhance the "generalized response surface" method in the optimization of multi-minima problems. IEEE Transactions on Magnetics, 1997. 33: pp. 1896-1899.
    [116]杨建刚,人工神经网络实用教程.杭州:浙江大学出版社, 2001.
    [117]李大明,磁场的测量.北京:机械工业出版社, 1993.
    [118] http://www.hmwire.com/technical.html.
    [119]黄智,王科,基于卡尔曼滤波的DR/MM组合定位方法.汽车工程, 2008. 30(4): pp. 364-375.
    [120]吴昊,张晔,陈浩,基于证据理论的双传感器决策融合目标检测.计算机工程与设计, 2009. 30(2): pp. 261-264.
    [121]徐志强,刘明光,基于证据理论的铁路电力线故障定位方法.铁道学报, 2008. 30(5): pp. 31-35.
    [122]杨万海,多传感器数据融合及应用.西安:西安电子科技大学出版社, 2003.
    [123]康耀红,数据融合理论与应用.西安:西安电子科技大学出版社, 1997.
    [124]何友,王国宏,彭应宁,多传感器信息融合及应用.北京:电子工业出版社, 2007.
    [125]邓鹏华,毕义明,刘卫东,王晓梅,改进的证据理论在目标识别中的应用.系统工程与电子技术, 2008. 30(7): pp. 1295-1297.
    [126]金峰,蔡鹤皋,机器人IM U与激光扫描测距传感器数据融合.机器人, 2000. 22(6): pp. 470-473.
    [127]杨帆,刘畅,基于D-S证据理论的多传感器目标识别应用.武汉工程大学学报, 2009. 31(1): pp. 73-75.
    [128]苏惠敏,周鹏,陈哲,基于D-S证据理论的GPS/MM组合系统车辆定位算法.北京航空航天大学学报, 2001. 27(2): pp. 157-162.
    [129]李合平,黄允华,电子装备单点多征兆故障D—S理论诊断方法研究.电光与控制, 2005. 12(4): pp. 24-27.
    [130] M.Czernuzenko,D.Sandin,T.Defanti, Line of Sight Method for Tracker Calibration in Projection-Based VR Systems, in 2nd International Immersive Projection Technology Workshop. 1998: Ames, Iowa.
    [131] M.Ghazisaedy,D.Adamczyk,D.Sandin,Kenyon,T.Defanti, IEEE Virtual Reality Annual International Symposium (VRIS '95). 1995: Research Triangle Park, NC.
    [132] M.A.Livingston,A.State, Magnetic Tracker Calibration for Improved Augmented Reality Registration. Presence, 1997. 6(5): pp. 532-546.
    [133] G.Zachmann, Vitual Reality in Assembly Simulation - Collision Detection, Simulation Algorithms and Interaction Techiques. 2000, TU: Darmstadt.
    [134] S.Bryson, Measurement and Calibration of Static Distortion of Position Data from 3D Trackers, in SPIE Conference on Stereoscopic Displays and Applications III. 1992: San Jose, CA.
    [135] W.Briggs. Magnetic Calibration by Terahedral Interpolation. in NIST-ASME Industrial Virtual Reality Symposium. 1999. Chicago, IL. pp. 27-32.
    [136] V. Kindratenko,A. Bennett. Evaluation of Rotation Correction Techniques for Electromagnetic Position Tracking Systems. in Virtual Environments. 2000.
    [137] Volodymyr V. Kindratenko, A survey of electromagnetic position tracker calibration techniques. Virtual Reality: Research, Development, and Applications, 2000. 5(3): pp. 169-182.
    [138] M. Ikits,J.D. Brederson,C. Hansen,J. Hollerbach, An Improved Calibration Framework for Electromagnetic Tracking Devices, in IEEE Virtual Reality. 2001: Yokohama, Japan.
    [139] G.Zachmann, Distirtion Correction of Magnetic Fields for Position Tracking, in Computer Graphics International (CGI97). 1997: Belgium.
    [140]闻心, MATLAB神经网络应用设计.北京:科学出版社, 2000.
    [141]高隽,人工神经网络原理及仿真实例.北京:机械工业出版社, 2003.
    [142]丛爽,面向MATLAB工具箱的神经网络理论与应用.合肥:中国科学技术大学出版社, 2003.
    [143] http://wenda.tianya.cn/wenda/thread?tid=24256d12bb7ac721.
    [144]马官营,人体肠道诊查微型机器人系统及其无线供能技术研究.上海:上海交通大学, 2008.
    [145] S Gabriely,R W Lau,C Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol, 1996. 41(11): pp. 2271-2293.
    [146] Gabriel C.,Gabriel S.,Corthout E., The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol, 1996. 41(11): pp. 2231-2249.
    [147] Gabriel S.,Lau R. W,Gabriel C, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol, 1996. 41(11): pp. 2251-2269.
    [148]杨新村,李毅,吕斌(译),制定以健康为基础的电磁场标准框架.北京:中国电力出版社, 2008.
    [149] International Commission on Non-Ionizing Radiation Protection, Guidelines for Limiting Exposure to Time-varying Electric Magnetic, and Electromagnetic Fields (Up to 300 GHz). 1998.
    [150] IEEE, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1999.
    [151]曹毅,童建,电磁辐射生物效应研究综述.环境与职业医学, 2007. 24(4): pp. 222-226.
    [152]王长清,祝西里,电磁场计算中的时域有限差分法.北京:北京大学出版社, 1994.
    [153] Weiland T, A discretization method for the solution of Maxwell's equations for six component fields. Electronics and Communication, 1977. 31(3): pp. 116-120.
    [154] M. Clemens,T. Weiland, DISCRETE ELECTROMAGNETISM WITH THE FINITE INTEGRATION TECHNIQUE,. Journal of Electromagnetic Waves and Applications, 2001. 15(1): pp. 79-80.
    [155]张敏, CST微波工作室用户全书.西安:西安电子科技大学出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700