用户名: 密码: 验证码:
基于霍尔传感器阵列和OpenGL技术的三维恒定磁源定位系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,无创、微创诊疗正是医疗领域重要的发展方向,药丸式无线内窥镜,药丸式施药装置作为最近发展起来的诊疗技术,其无创、快速的优势被采用在临床及药物研发领域当中,这其中有些技术已经得到市场化的检验,比如M2A,重庆金山公司的胶囊内窥镜等等,同时,越来越多的研发人员正不断推动该技术往着低成本,主动式,更加准确等方向发展。
     在药丸式微型诊疗设备的应用过程中,如何对进入人体的设备进行有效的检测,能实时知道进入人体的微型装置到底在什么位置及其运行轨迹,医疗人员或科技工作者才能实现对微型装置有效的控制,因此,对于进入人体的微型装置的定位方法便成为药丸式微型诊疗应用过程中的关键环节。传统上,对于进入人体的诊疗装置的定位方式主要为X-光设备,超声定位,ECT定位,基于Squid对磁标记定位等,X光定位和ECT定位方式存在辐射问题,患者长期处于辐射照射下势必会有害健康,同时X光定位也存在三维信息不明显,定位不直观的缺点。超声定位中温度、湿度、气流以及发射器的尺寸都影响了定位精度。Squid设备由于其昂贵的成本,使普通消费者望而却步。因此,采用一种无创,实时,简便,成本低廉的定位方式成为人们研究重点。
     基于霍尔原理的磁定位方式具有非接触、快速、应用简便的特点,霍尔传感器也被广泛的应用在位置检测、电流等领域当中,本系统采用了基于霍尔原理的磁场检测方法,在微型医疗装置内布置了恒定磁源,检测进入人体后微型装置的磁场信息,为了在空间内有效检测,研发了三维空间磁场检测的传感器模块,该模块采用了背靠背式的传感器布置,并布置了传感器模块阵列,覆盖了人体腹部区域以便准确检查。传感器模块检测空间磁场信息之后,便由USB接口的多通道数据采集卡进行数据采集,数据被采集进入计算机后,进行滤波处理,并采用基于磁偶极子模型的定位算法对磁场信息中包含的位置信息进行计算,并得出结果。为了更加直观的对定位结果进行观测,开发了基于OpenGL技术的三维操作界面,对整个定位过程进行控制,显示并记录结果,该操作软件还提供了中间数据和结果数据的读写功能,以便对定位过程进行回放,便于技术的改进。
     在该技术的实施过程中,地磁场由于与恒定磁源具有相同的磁场性质,对于地磁场的消除我们尝试了独立分量分析(ICA)算法和地磁场标定算法进行分离,从实际检测结果可以看出,地磁场标定算法具有简单,高效,准确滤除地磁场干扰的特点,因此在实际中得到应用。
     对于定位准确性,论文讨论了磁偶极子理想化模型在定位过程中的适用范围,该理想化模型中磁源距离传感器模块较近的情况下便会引起磁偶极子模型的失真,这也是误差产生的重要原因。
     目前,已经开发了基于霍传感器阵列和OpenGL技术实验室样机,并进行了模拟肠道实验和初步的人体试验,通过模拟肠道实验,可以看到该系统能反映微型装置的走向,在定位精度上存在一定误差,在人体试验中,由于人体肠道复杂的分布,实验结果密集程度反映了人体肠道的分布情况,但是如何对人体肠道中的微型装置位置直观有效的表达出来,仍需要进一步的研究。
As a significant trend of the medical diagnosis, the noninvasive technology has been revolutionized by the modern engineering technologies. Recently, a new non-invasive technique, the MEMS Medical Capsule has been developed which shows brilliant potential in the application of disease area observation, local drug release and wireless monitoring of the gastrointestinal parameters. Up to now, many MEMS Medical Capsules are available commercially, such as M2A, ESO-PILL NORIKA3 to name but a few. In clinical use, when the capsule is swallowed, it is critical for the doctor to precisely track the movement and location of the capsule in order to organize an effective diagnosis scheme. Thus how to wirelessly track the capsule inside human body has become an area of interest.
     So far, some methods have been implemented to wirelessly track a MEMS Medical Capsule, such as Magnetic Marker Monitoring (MMM), ECT, Digital X-ray Gastrointestinal Tract. However, the MMM technology is based on the DC-SQUID which is hampered by the high cost of practical use. The harmful radiation exposure is the weakness of both the X-ray imaging and ECT. Moreover, the low trace observability of X-Ray sets anther obstacle for easy application of capsule tracking. To provide a low-cost, harmless and easy-to-operate method, the magnetic tracking technique was early developed by Donald G. Polvani et al (1998), whose patent presented the sketch of magnetic positioning system including the foundation of algorithms on paper. V.Schlageter, et al (2001,2002) described a magnetic sensing technique with the Hall Sensor array. They introduced a real-time sensing hardware, which is, however, not wearable. Based on the research aforementioned, we develop a wearable tracking system based on the Hall Effect and Quiescent Magnetic field. This system is composed of a wearable vest and the software interface. The Hall Effect sensing modules detect the magnetic field signals of a tiny magnet assembled in the capsule, then the signals are collected by a USB data collecting card and transferred to a workstation where data procession and calculation are accomplished, finally the location of the capsule is presented in the three-dimension software interface.To accomplish the real-time data collection and reduce the noise, some effective multi-channel data collecting and processing solutions are implemented. Several trial tests have been performed with relatively accurate expectation to justify the precision of the system. The results of the volunteer experiments compared with the X-ray image of the small intestine demonstrate that this system can effectively trace the motion of the capsule inside the twisted intestine.
     To limit the electromagnetic interference, the classic low passing circuit and a digital signal filter have been developed which restrain the electromagnetic noise effectively. However, the earth itself is a huge magnet with the same distributional characteristic of magnetic filed as our tiny magnet inside the capsule which can not be reduced by the methods implemented for the electromagnetic noise reduction. To eliminate the earth magnetic interference in a low cost and effective way, a method designated by the Magnetic Interference Level Labeling is developed.
     The Ideal Magnetic Dipole Model also leads to the detecting error; we discussed the limitation of the model when the magnetic source locates not far from the detection sensor.
     From the results of the experiments, we can see the trace reported by the system precisely reflects the actual traveling path of the capsule. The relative locating error of the system was approximately around 10%. Thus conclusively, the results of this trial test demonstrate that the system is qualified to locate the trace of the capsule. The volunteer experiments have been tested for clinic use, the results of which indicate that the trace basically represents the distribution of the small intestine even though it highly twists. Meanwhile, the results also reflect this system effectively reduces the interference from the earth magnetic field which eases the practical use considerably.
     To improve the system accuracy and the observation quality, we focus on the efforts to decrease the systematic error, reduce the noise and make the mathematical model more accurate.The mathematical model of the tracking algorithm was simply based on the magnetic dipole when the magnetic source located far from the sensing module. However, in reality the magnetic dipole model is limited when the capsule moves close to the sensing module which leads to the low precision. Therefore the optimization of the mathematical model of the tracking algorithm is the main focus for further study.
引文
[1] J peirs, D Reynaerts et al. A miniature manipulator for integration in a self-propelling endoscope [J]. Sensors and Actuators A,2001, vol.92:343-349.
    [2] J peirs, D reynaerts et al. Design of a shape memory actuated endoscopic tip [J]. Sensors and Actuators A,1998, vol.70:135-140.
    [3] J peirs, D reynaerts et al. Design of miniature papallel manipulators for integration in a self-prepelling endoscope [J], Sensors and actuators A,2000, Vol.85:409-417.
    [4] Geunbae Lim, Kitae Park et al. Future of active catheters [J], Sensor and Actuators A,1996,Vol.56:113-121.
    [5] Yoichi Haga,Tadao Matsunaga et al. Minimally invasive diagnostics and treatment using micro/nano machining [J], Minimally Invasive Therapy and Allied Technologies, 2006,Vol.15:218-225.
    [6] Y Haga,M Mizushima et al. Medical and welfare applications of shape memory alloy microcoil actuators [J],Smart Materials and Structures,2005,Vol.14:266-272.
    [7] Andrea Moglia Arianna Menciassi et al. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems [J], Biomedical Microdevices,2007,Vol.9:235-243.
    [8] Jun Keun Chang, Seok Chung et al. Intravascular micro active catheter for minimal invasive surgery [C], Microtechnologies in Medicine and Biology, 1st Annual International, Conference,2000.
    [9] SK Lee, SJ Lee,Jun Keun Chang et al. Biomedical applications of electroactive polymers and shape memory alloys [C], Proceedings of SPIE, the International Society for Optical Engineering proceedings series,2002,vol.4695:17-31.
    [10] Guido Costamagna, Saumil K Shah et al. A prospective trial comparing small bowel radiographs and video capsule endoscopy for suspected small bowel disease [J], Gastroenterology, 2002, Vol.123:999-1005.
    [11] Suthat Liangpunsakul, Vidyasree Chadalawada, et al. Wireless capsule endoscopy detects small bowel ulcers in patients with normal results from state of the art enteroclysis [J], The American Journal of Gastroenterology,2003, Vol.98;1295-1298.
    [12] Rupa Banerjee, Prem Bhargav, et al. Safety and efficacy of the M2A patency capsule for diagnosis of critical intestinal patency: Results of a prospective clinical trial [J], Journal of Gastroenterology and Hepatology, 2007, vol.22: 2060–2063.
    [13] Yu, Marcia BSN,et al. M2A(TM) Capsule Endoscopy: A Breakthrough Diagnostic Tool forSmall Intestine Imaging [J], Gastroenterology Nursing, 2002, vol.25:24-27.
    [14] Iddan G,Meron G, et al. Wireless capsule endoscopy [J], Nature,2000,Vol.405:P417.
    [15] http://www.rfnorika.com [Z].
    [16]皮喜田,彭承琳等.消化道微创诊疗系统的最新进展[J],中国医疗器械杂志,2005,(29):79-83.
    [17]张艳辉,黄战华.胶囊内窥镜技术的研究进展[J],现代仪器, 2006,(12):4-7.
    [18] Taft Bhuket, Mimi Takami,et al. The use of wireless capsule endoscopy in clinical diagnostic gastroenterology [J], Expert Review of Medical Devices, 2005, Vol.2:259-266.
    [19] Gleb B.Sukhorukov,Andrey L.Rogach,et al. Nanoengineered Polymer Capsules: Tools for Detection, Controlled Delivery, and Site-Specific Manipulation [J], Small, 2004, Vol.1:194-200.
    [20] N.Rouge, P.Buri,et al. Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery [J],International Journal of Pharmaceutics, 1996, Vol.136:117-139.
    [21] S. S. Davisa, I. R. Wilding. Oral drug absorption studies: the best model for man is man [J], Drug Discovery Today, 2001,Vol.6: 127-130.
    [22] Takashi Ishibashi, Kengo Ikegami,et al. Evaluation of colonic absorbability of drugs in dogs using a novel colon-targeted delivery capsule (CTDC) [J],Journal of Controlled Release,1999,Vol.59:361-376.
    [23] Charles Oo, Paul Snell,et al. Pharmacokinetics and delivery of the anti-influenza prodrug oseltamivir to the small intestine and colon using the site-specific delivery capsules [J],International Journal of Pharmaceutics, Vol.257:297-299.
    [24] Vinod D.Vilivalam,Lisbeth Illum,et al. Starch Capsules:an alternative system for oral drug delivery [J], Pharmaceutical Science & Technology Today, 2000,Vol3:64-69.
    [25] Ian Wilding,Peter Hirst,et al. Development of a new engineering-based capsule for human drug absorption studies [J], Pharmaceutical Science & Technology Today, 2000, Vol3:385-392.
    [26] http://www.innovativedevices.com/ [Z].
    [27] GARDNER D., CASPER R.. Noninvasive methodology for assessing regional drug absorption from the gastrointestinal tract [J],Pharmaceutical technology,1997,Vol.21:82-89.
    [28] Jerome J.Schentag,Eggertsville,David T.D Andrea et al. Telemetry Capsule And Process [P],Uniten States Patent 5279607,1994, Jan.18th.
    [29] Ki-Won YOON,Sang-Hyo WOO. Telemetry Capsule for Pressure Monitoring in the Gastrointestinal Tract [C],Special Section on Papers Selected from 2005 International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC2005), Vol. E89-A:1699-1700.
    [30] Rajesh Krishna. Applications of Pharmacokinetic Priciples in Drug Development [M], Kluwer Academic Plenum Publishers, 2004, Chapter3:182.
    [31] Nicola J. Clear,Ashley Milton,et al. Evaluation of the Intelisite capsule to deliver theophylline and frusemide tablets to the small intestine and colon [J], European Journal of Pharmaceutical Sciences, 2001, Vol.13:375-384.
    [32] H. Bode,E. Brendel,et al. Investigation of nifedipine absorption in different regions of the human gastrointestinal (GI) tract after simultaneous administration of 13C- and 12C-nifedipine [J], European Journal of Clinical Pharmacology,1996,Vol.50:195-201.
    [33] Michael J.Rathbone,Jonathan Hadgraft,et al. Modified Release Drug Delivery Technology [M], Marcel Dekker Inc.,2003, Chapter 23:276.
    [34]皮喜田,彭乘琳等.一种消化道定点药物释放工程药丸系统的研制[J],中国医疗器械杂志, 2004 (5):P319-321.
    [35]皮喜田,郑小林等.消化道微型诊疗机器人研究进展[J],机器人技术与应用,2003(4):P36-40.
    [36]皮喜田,彭承琳等.用于人体药物吸收研究的定点释放药丸系统研制[J],中国生物医学工程学报, 2004(6):579-582.
    [37] Sunkil Park, Ahra Lee, et al. A disposable MEMS Based Micro-biopsy catheter for the minimally invasive tissue sampling [J], Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference: P2768-2773.
    [38] J E Pandolfino,Q Zhang,et al. Acid reflux event detection using the Bravo wireless versus the Slimline catheter pH systems: why are the numbers so different [J], Gut.,2005, Vol.52:1687-1692.
    [39] Ikuo Hirano,Qing Zhang,et al. Four-Day Bravo pH Capsule Monitoring With and Without Proton Pump Inhibitor Therapy [J],Clinical Gastroenterology and Hepatology,2005, Vol.3:1083-1088.
    [40] http://www.medtronic.com/physician/gastro/e_bravo.html [Z].
    [41] Lin,Liangming, Gao, Liming Yan, Guozheng Rong, Rong . Study on the endoscope system driven by squirmy robot [C]. Proceedings of the IEEE International Conference on Intelligent Processing Systems, ICIPS v 1 Oct 28-31: 75-81.
    [42] Yan Guozheng,Lu Qiuhong et al. The prototype of a piezoelectric medical microrobot [C], Micromechatronics and Human Science, 2002, Proceedings of 2002 International Symposium:73- 77.
    [43]马官营颜国正王坤东.一种人体消化道微小蠕动机器人设计[J],机械设计,2007,24(7)17-19.
    [44]颜国正,林良明.新型机器人驱动内窥镜系统的研究[J],高技术通讯, 2000,(10):60-62.
    [45] Louis Phee, Dino Accoto,et al. Analysis and Development of Locomotion Devices for the Gastrointestinal Tract [J], IEEE Transactions on Biomedical Engineering, 2002,Vol. 49:613-616.
    [46]高立明,颜国正,戎荣.新型自动植入式医用内窥镜的研究[J].高技术通讯. 1998. 10. 57-60.
    [47] Ayai Tomisawa. A Capsule Camera to Save Stomachs: The Norika3 Endoscope is Tiny and Painless and Can See Your Insides [R]. Japan Inc Magazine.
    [48] Davey R. Deal, Louis Lambiase et al. M2A Capsule Endoscopy [J], Jacksonville Medicine, 2002: 6-7. 135-137.
    [49] C. H. Malbert, C. Mathis, E. Bobillier. Measurement of Gastric Emptying by Intragastric Gamma Scintigraphy [J], Neurogastroenterology and Motility, 1997. 9(3):157-165.
    [50] W. Weitschies, Michael Karaus, Dino Cordini. Magnetic Marker Monitoring of Disintegrating Capsules [J], European Journal of Pharmaceutical Science, 2001,Vol.13:411–416.
    [51] W. Weitschies, J. Wedemeyer, R. Stehr. Magnetic Markers as a Noninvasive Tool to Monitor Gastrointestinal Transit [J], IEEE Trans. Biomed. Eng. 1994, Vol.42:192-195.
    [52]刘洁,高上凯,李铮.三维Freehand超声血流测量系统中单平面定标方法[J],北京生物医学工程, 2001,(20) :161-163,174.
    [53]林东,陈新.三维空间磁场结构数学模型及磁场方式三维定位装置[J],福州大学学报, 2003,31(2):151-154.
    [54] http://www.ndigital.com/aurora.php [Z].
    [55] Yoshiaki Yamada;An Application of Magnet and Magnetic Sensor: Measurement System for Tooth;IEEE Transactions On Biomedical Engineering;Vol.37;1990;P919-923.
    [56] Polvani, Donald G. Medical magnetic positioning system and method for determining the position of a magnetic probe [P], United States Patent 5762064,1998.
    [57] V.Schlageter,P.Drljaca,et al. A Magnetic Tracking System based on Highly Sensitive Integrated Hall Sensors [C], Conference Mipro,Opatija,Croatia,p20-24.
    [58] V.Schlageter,P.A.Besse,et al. Tracking system with five degrees of freedom using a 2D-array of Hall sensors and a permanent magnet [J], Sensors and Actuators A Physical,2001, Vol.92:P37-42.
    [59] Max Qinghu Meng,Chao Hu, et al. The Software Implementation of Magnetic Localization and Orientation Detection for Capsule Endoscope [C], 2007 IEEE/ICME International Conference on Complex Medical Engineering: P35-38.
    [60] Chao Hu,Max Qinghu Meng;et al.The Calibration of 3-Axis Magnetic Sensor Array Systemfor Tracking Wireless Capsule Endoscope [C], Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006,Beijing:162-167.
    [61]田民波.磁性材料[M].北京,清华大学出版社, 2000: 34-40.
    [62]夏平畴.永磁结构[M].北京,北京工业大学出版社, 2000.12:16-30.
    [63] Chao Hu, Max Q.-H. Meng, Mrinal Mandal. Efficient Linear Algorithm for Magnetic Localization and Orientation in Capsule Endoscopy [C], 27th Annual International Conference of the IEEE EMBC’05: 4.6.1-4.
    [64] V.Schlageter, P.-A Besse, R.S.Popvic, P.Kucera. Tracking system with five degrees of freedom using a 2D-array of Hall sensors and a permanent magnetic [J], Sensors and Actuators A , 2001(92):37-42.
    [65]王金根,刘胜道,沈光.磁性目标定位问题探讨[J],电子学报, 2001(4): 8-12.
    [66]唐劲飞,龚沈光,王金根.基于磁偶极子模型的目标定位和参数估计[J],电子学报, 2002,30 (4): 614-618.
    [67] Brauer,John R. Magnetic Actuators and Sensors [M], 2006, A JOHN WlLEY & SONS, INC.PUBLICATION, Chapter 10: 145.
    [68] Ramsden, Edward. Hall-Effect Sensors- Theory and Application(2nd Edition) [M],2006, ELSEVIER, Chapter 9:177-185.
    [69] Brauer,John R. Magnetic Actuators and Sensors [M], 2006,A JOHN WlLEY & SONS, INC.PUBLICATION, Chapter 10,:152,157,161.
    [70] Ramsden, Edward. Hall-Effect Sensors- Theory and Application(2nd Edition) [M], 2006, ELSEVIER, Chapter7: p131-150.
    [71]格雷戈里T.A.科瓦奇著张文栋译.微传感器与微执行器全书[M],中国科技出版社,第七章,第2节:447-449.
    [72] Ramsden, Edward. Hall-Effect Sensors Theory and Application(2nd Edition) [M],2006, ELSEVIER Chapter1,p1-6.
    [73] Gregory T.A., Kovacs. Micromachined Transducers Sourcebook [M], Chapter 7: 615.
    [74] Ramsden, Edward. Hall-Effect Sensors- Theory and Application(2nd Edition) [M],2006, ELSEVIER Chaper4: 74-82.
    [75] Brauer,John R. Magnetic Actuators and Sensors [M],2006,A JOHN WlLEY & SONS, INC.PUBLICATION, Chapter 10:157.
    [76] Honeywell. Hall Effect Sensing and Application [Z] Honeywell.Inc,2000, Chapter5:42.
    [77] Ramsden, Edward. Hall-Effect Sensors- Theory and Application(2nd Edition) [M],2006, ELSEVIER Chapter4:62-65.
    [78] Joe Gilbert,Ray Dewey. Linear Hall-Effect Applications Information[Z], AllegroMicroSystems, Inc;1998:1-2.
    [79] Ramsden, Edward. Hall-Effect Sensors- Theory and Application(2nd Edition) [M], 2006, ELSEVIER, Chapter7:131-150.
    [80] Joe Gilbert,Ray Dewey. Linear Hall-Effect Applications Information [Z], Allegro MicroSystems, Inc,1998, p3.
    [81] Honeywell. Hall Effect Sensing and Application [Z], Honeywell.Inc,2000, Chapter3,p16.
    [82] Joe Gilbert,Ray Dewey. Linear Hall-Effect Applications Information [Z], Allegro MicroSystems, Inc, 1998:5.
    [83] Allegro Microsystem Inc. A1321 DataSheet [S], www.allegromicro.com .
    [84] Ralph Skomski, J M D Coey. Permanent Magnetism [M], Institute of Physics Publishing Bristol and Philadelphia, 1999, Chapter 1:2.
    [85] Daniel C. Mattis. The Theory of Magnetism Made Simple [M],World Scientific,2006,Chapter 2.
    [86] Kenichi Yam56azaki, Tadashi Kawamoto,et al. Equivalent Dipole Moment Method to Characterize Magnetic Fields Generated by Electric Appliances:Extension to Intermediate Frequencies ofUp to 100 kHz [J],IEEE Transactions on Electromagnetic Compatibility, Vol.46:115-120.
    [87]唐劲飞,龚沈光等.基于磁偶极子模型的目标定位和参数估计[J],2002,(4):614-616.
    [88] V.Schlageter, P.-A Besse, R.S.Popvic, P.Kucera. Tracking system with five degrees of freedom using a 2D-array of Hall sensors and a permanent magnetic [J], Sensors and Actuators A 92(2001):37-42.
    [89] Wu Xudong, Peng Chenglin et al. A new method of medical robotic device locating and tracking techniques [C],IEEE-EMBS 2005, 2005, p 4674-4677.
    [90] Kenichi Yamazaki,Tadashi Kawamoto, Hideo Fujinami,et al. Equivalent Dipole Moment Method to Characterize Magnetic Fields Generated by Electric Appliances: Extension to Intermediate Frequencies of Up to 100 kHz [J], IEEE Transanctions on electromagnetic compatibility,Vol 46: 115.
    [91]吴旭东,侯文生等.磁偶极子的定位模型及实验验证[J],仪器仪表学报,2008(29):326-329.
    [92] Hou Wensheng, Zheng Xiaolin,et al. Study of simpfied magnetic-location model for micro medical device inside human body [J], Chinese Journal of Scientific Instrument V26,n9 2005 : 895-897+901.
    [93] Xudong Wu, Chenglin Peng, et al. 3-D Magnetic Sensor Module for Locating and Tracking MEMS Swallowable Capsule based on Scalar Form of Magnetic Dipole Model [J], CHINESE JOURNAL OF BIOMEDICAL ENGINEERING(English Edition),2007,Vol.16: 79-86.
    [94] Myke Predko. PC Interfacing Pocket Reference [M], McGraw-Hill,Inc.,Chapter 10:143-144.
    [95] John Hyde. USB Design by Example [M], A JOHN WlLEY & SONS, INC.PUBLICATION, Chapter1,P6-13.
    [96] John Hyde.USB Design by Example [M], A JOHN WlLEY & SONS, INC.PUBLICATION, Chapter2,P23.
    [97] Myke Predko.PC Interfacing Pocket Reference[M],McGraw-Hill,Inc.,Chapter 10,P143.
    [98] John Hyde. USB Design by Example[M], A JOHN WlLEY & SONS, INC.PUBLICATION, Chapter1,P9.
    [99] USB7310产品说明书[Z],北京中泰硕研科技有限公司, http://www.ztic.com.cn/product_info.asp?id=112&class=001 .
    [100] Rangaraj M.Rangayyan. Biomedical Signal Analysis [M], John Wiley & Sons, Inc., 2002, Chapter3:95.
    [101] Kayvan Najarian,Bobert Splinter. Biomedical Signal and Image Processing [M], Taylor & Francis Group, 2006, Chapter 3:52.
    [102] Eugene N.Bruce. Biomedical Processing and Signal Modeling [M], John Wiley & Sons, Inc.,2001, Chapter 9:354.
    [103] ROLF MEISSNER. THE LITTLE BOOK of planet earth [M], 2002 Springer-Verlag New York,Inc., Chapter 6:47-57.
    [104] Jutten C.,Herault J. Blind Separation of Sources,Part1:an adaptive algorithm based on neuromimetic architecture [J], Signal Process, 1991, Vol.24:1-10.
    [105] Comon P.,Jutten C.,Hearult J. Blind separation of sources, part2:problems statement;Signal Process [J], 1991,Vol.24:11-20.
    [106] Yu Hen Hu,Jenq neng Hwang. Handbook of Neural Network signal processing [M], CRC Press LLC, 2002, Chapter 7,P7-1.
    [107] Yu Hen Hu,Jenq neng Hwang. Handbook of Neural Network signal processing [M], CRC Press LLC, 2002,Chapter 8,P8-34.
    [108]李小军,朱孝龙等.盲信号分离研究分类与展望[J],西安电子科技大学学报(自然科学版), 2004, Vol.31:399-404.
    [109] Mark Girolami(ed.). Advances in Independent Component Analysis [M], Springer-Verlag London, 2000, Chapter1:6.
    [110]郭明,王树清等.基于独立分量分析的系统性能监控方法研究[J],浙江大学学报(工学版),2004, Vol38:p665-669.
    [111] William W Hines, Douglas C.Montgomery. Probability and statistics in Engineering and Management Science [M], John Wiley & Sons, Inc., 1990.
    [112]杨福生,洪波等.独立分量分析及在生物医学工程中的应用[J],国外医学生物医学工程分册, 2000, Vol.23:129-134,186.
    [113]张军英,刘利平.基于部分独立分量分析的盲源分离[J],西安电子科技大学学报(自然科学版),2004,Vol.31: 334-337,361.
    [114]胥永刚,张发启.等独立分量分析及其子故障诊断中的应用[J],振动与冲击,2004,vol.23:104-107.
    [115]吴旭东,侯文生等.体内微型装置计算机辅助定位系统中简易3D人体模型的实现[J],医疗卫生装备,2004年第4期:P5-7.
    [116] Dave Astle,Kevin Hawkins. Beginning OpenGL Game Programming [M], Thomson Course Technology, 2004, Chapter 1,P3.
    [117] Chris Seddon.OpenGL Game Development[M], Wordware Publishing,Inc.,2004,Chapter 2,P43.
    [118] Chris Seddon.OpenGL Game Development [M];Wordware Publishing,Inc.,2004,Chapter 2,P46.
    [119] Dave Astle,Kevin Hawkins. Beginning OpenGL Game Programming [M];Thomson Course Technology, 2004,Chapter 1,P8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700