用户名: 密码: 验证码:
按需式无线内窥镜的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线胶囊内窥镜检查法使采用内窥镜图像法检查整个小肠成为可能,并且不会让病人感到疼痛以及任何的不适现象,检查非常方便。但目前还存在一些技术瓶颈,如定位和运动机制、合适的能源,使无线内窥镜的应用受到限制。本论文针对能量传输、干扰等技术问题,分析了无线内窥镜的研究现状,归纳比较了国内外无线内窥镜产品或者原型设计,设计了按需式无线内窥镜,并重点对按需式无线内窥镜中的高效低频电磁感应连接、射频通信中的抗干扰技术和天线进行了深入的研究。本论文的主要研究工作和结论如下:
     1.采用可编程逻辑器件和微控制器协同工作模式,设计了按需式无线内窥镜。该设计已获发明专利授权。按需式无线内窥镜为数字、双向无线内窥镜,其中图像数据采用射频通信传输,以获得高的数据速率;控制指令采用低频电磁感应连接传输,以降低系统的功耗。按需式无线内窥镜中可编程逻辑器件控制图像传感器和射频器件,负责图像数据的采集和发送;微控制器控制低频电磁感应连接,负责接收控制指令、设置相关参数。这样对图像数据的传输处理更加有效、结构更加简洁,同时简化了微控制器的设计,使系统的配置更合理。按需式无线内窥镜增加了胶囊的处理和控制能力,能在体外的控制下即时地、按需地修改相关的参数。
     2.研究无线内窥镜系统中电磁感应三维接收各线圈输出感应电压的特点,设计了一种新的整流合成电路结构——复合整流合成电路。在电磁感应连接三维接收中,每个方向上电压的波形一致,只存在幅值和初相不同,且初相只有同相和反相的差别,仍采用半波或者全波整流,将影响能量传输的效率和控制数据的接收,采用复合整流合成电路有助于提高系统的灵敏度,克服电磁感应连接方向性的限制,消除通信中的盲点,提高了数据传输的可靠性和能量传输的效率,为无线内窥镜系统体外向体内控制指令的发送和能量传输提供了理想的平台。
     3.分析与无线内窥镜相同频段不同应用的信道特征,总结无线内窥镜系统干扰源的特点,为跳频系统和固定频率系统设计了一种新的抗干扰方法。这种方法为解决低功耗便携式无线装置的抗干扰问题提供了新的思路。该方法具有以下的优点:通过差错控制和变更射频通信信道,提高了无线内窥镜系统的抗干扰能力,保证了数据可靠传输;通过低频电磁感应发送控制指令,减少了差错处理时间;当发现有丢失或者错误数据包立即发送请求重传指令,减少了内窥镜胶囊发送不必要的数据,降低了系统功耗;变更信道和差错控制都由体外装置处理,不会增加体内装置的复杂度。
     4.研究了天线设计中的微型化技术,以及影响天线性能的因素,并为无线内窥镜系统设计了微带天线。该天线采用阿基米德螺旋线结构、以及介质基座和短路针技术。它具有以下优点:尺寸小,直径不大于8.3mm;频带宽,在驻波比不大于2时,频率范围为2.3~2.63GHz,中心频率为2.44GHz;天线的发射效率高,最小的回波损耗为-23.7dB;不受周围组织的影响。并且该天线采用双面印制板工艺,一致性好。该天线完全能够集成到无线内窥镜胶囊内。
     本论文从结构、参数控制、电磁感应连接、抗干扰技术和天线方面对按需式无线内窥镜进行了研究,不仅减少了无线内窥镜胶囊的复杂度,降低了系统功耗,增加了参数控制,而且减少了数据传送的误码率,提高了图像的质量,同时还能够扩展无线能量传输功能,为按需式无线内窥镜的进一步研究和实现奠定了理论和实践基础。
Wireless capsule endoscope started the epoch of gastrointestinal inspection. It is possible to inspect the whole small intestine by endoscope image. It is painless and does not make patient feel disconfortable. The inspection is very convenience. However, some tech-necks still exist, such as orientation, moving mechanism and energy sources. These problems limit the application of wireless capsule endoscope. Aiming at the technical problems of energy transmission and anti-interference, this dissertation analyzed the research status of wireless capsule endoscope, concluded and compared wireless endoscope products and prototype designs, and designed the wireless capsule endoscope on-demand. This paper especially paid attention to the reseach of high-efficency and low-frequency electromagnetic induction link, anti-interference technology in radio-frequency communication, and antenna of wireless capsule endoscope. It mainly includes the following distinctive research work and conclusions:
     1. A wireless capsule endoscope on-demand was designed by adopting the mode of cooperation between programmable logic device and micro control unit. This design has been awarded with invention patent. This capsule is digital and double-direction. In order to get high data rate, it transmits image data with radio-frequency. And it transmits control command with low-frequency electromagnetic induction link to reduce the consumption power. The programmable logic device and the radio-frequency transmitter in wireless capule endoscope are to collect and send image data. And the micro control unit is to receive control command and set relative parameters. It is much more effectively and compactly to transmit the image data with this method. At the same time, it can predigest the design of the control device and make the system scheme more rational. The wireless capsule endoscope added managing and controlling ability. It can modify parameters instantly and on-demand by controlling.
     2. A new rectifier called the composite rectifier was designed by researching the character of inductive voltage in the three-dimension receiver of the wireless capsule endoscope. The wave of each inductive voltage of the three-dimension receiver is identical. The only difference among the three inductive voltages is magnitude and initial phase. Initial phase only concludes in-phase and out-of-phase. If using the half-wave rectifier and full-wave rectifier for synthesis, it will effect energy transmitting efficency and control data receiving. The composite recitifier is helpful to improve system sensitivity. It can overcome the direction limit of the electromagnetic induction link, eliminate the blind spot and enhance the efficiency of energy transmitting. This design can provide a perfect flat for control command and energy transmitting in wireless capsule endoscope.
     3. A new anti-interference was designed by analyzing the channel characters of different application in same frequency. This way can provide new research thought for solving the interference of the low-power and portable device in wireless transmitting. It involves many merits as follows: By error controlling and changing channel, it can enhance the anti-interference ability of wireless endoscope system and ensure data communication. By sending control command via low-frequency electromagnetic induction link, it can reduce the time of error processing. Once confirming data packet is lost or wrong, it will send request for retransmitting command, and reduced needless data sending and consumption power. Channel changing and error controlling is dealt with out-body device, and would not add the complexity of in-body device.
     4. A new antenna was designed for the wireless capsule endoscope by researching the miniature technology and the factors effecting antenna capability. This kind of antenna is composed of the spiral structure of Archimedes, dielectric substrate and shorting pin. It includes merits as little size, broad-band, high efficiency, and not be effected by tissues around it. The diameter of this antenna is not more than 8.3mm. The center frequency is 2.44GHz. When the voltage standing wave ratio is not more than 2, the range of the frequency is 2.3~2.63GHz. The minimum return loss is -23.7dB. This antenna is made by PCB. The consistency of this antenna is great. So the antenna can be completely integrated into the wireless endoscope capsule.
     This dissertation researched the wireless capsule endoscope in structure, parameter control, electromagnetic induction link, anti-interference and antenna. It not only reduced the complexity of wireless endoscope capsule, decreased consumption power, enhanced parameter control, but also reduced data transmitting error ratio, improved image quality, and enlarged the wireless energy transmitting. It settled the theory and practice foundation for latter research on wireless capsule endoscope.
引文
[1] Gavriel Iddan, Gavriel Meron, Arkady Glukhovsky, Paul Swain. Wireless capsule endoscopy[J]. Nature , 405, 2000, pp417.
    [2] Glukhovsky and Arkady. Wireless capsule endoscopy[J]. Sensor Review, 23(2), 2003, pp128-133.
    [3] M. Mylonaki, A. Fritscher-Ravens, and P. Swain. Wireless capsule endoscopy: a comparison with push enteroscopy in patients with gastroscopy and colonoscopy negative gastrointestinal bleeding[J]. Gut, 52(8), 2003, pp1122-1126.
    [4] Ian D.R.Arnott and Simon K.Lo. The Clinical Utility of Wireless Capsule Endoscopy[J]. Digestive Diseases and Sciences, 49, 2004, pp 893-901.
    [5] Max Q. H. Meng, et al. Wireless Robotic Capsule Endoscopy: State-of-the-Art and Challenges[C]. 5th World Congress on Intelligent Control and Automation, Hangzhou, China, Jun 15-19, 2004, pp5561-5565.
    [6] H. Yamamoto and H. Kita. Enteroscopy[J]. Journal of Gastroenterology, 40(6), 2005, pp555-562.
    [7]吉温成象有限公司.一个供体内成像的设备和系统[P].中国, ZL01807801.X, 2001.3.8.
    [8]吉温成像.一个供体内成像的设备和系统[P].中国, CN200710005312.1, 2001.3.8.
    [9] http://www.givenimaging.com
    [10] http://www.rfamerica.com/index.html
    [11] http://www.olympus-global.com/en/global
    [12]奥拉巴斯株式会社.胶囊型内窥镜装置[P].中国, CN200580002334.1, 2005.1.14.
    [13]奥拉巴斯株式会社.胶囊型内窥镜用电源起动器[P].中国, CN200680004967.0, 2006.1.19.
    [14] Masahiko Sendoh, Kazushi Ishiyama, and Ken Ichi Arai. Direction and Individual Control of Magnetic Micromachine[J]. IEEE Transactions on Magnetics. 38(5), 2002, pp3356-3358.
    [15] A. Chiba, et al. Magnetic Actuator for Capsule Endoscope Navigation System[C]. Digests of the IEEE International Magnetics Conference, Nagoya, Japan, Apr 4-8 2005, pp626.
    [16] M. Sendoh, K. Ishiyama, and K. I. Arai. Fabrication of magnetic actuator for use in a capsule endoscope[J]. IEEE Transactions on Magnetics, 39(5), 2003, pp3232-3234.
    [17]奥拉巴斯株式会社.医疗装置、医疗装置引导系统、胶囊型医疗装置及胶囊型医疗装置引导装置[P].中国, CN200480021888.1, 2004.8.6.
    [18]奥拉巴斯株式会社.胶囊型医疗装置位置姿势检测系统[P].中国, CN200580007142.X, 2005.3.7.
    [19]奥拉巴斯株式会社.胶囊型医疗装置[P].中国, CN200480031761.8, 2004.10.26
    [20] http://www.microsystem.re.kr/main_eng/default.asp
    [21]韩国科学技术研究院.胶囊式内窥镜控制系统[P].中国, CN200580027391.5, 2005.6.21.
    [22] Lee Seon Woo, et al. Design of Two-Dimensional Coils for Wireless Power Transmission to in Vivo Robotic Capsule[C]. 27th IEEE-EMBS, Shanghai, China, Sep 1-4 2005, pp6631-6634.
    [23] Kong Kyoung-chul , et al. A Rotational Micro Biopsy Device for the Capsule Endoscope[C]. 2005 IEEE/RSJ, Edmonton, Canada, Aug 2-6 2005, pp1839-1843.
    [24] Sang Jun Moon, Yo Han Choi, and Seung S. Lee. A Micromachined Biopsy Tool for a Capsule Type Endoscope[C]. 13th International Conference on Solid-State Sensors and Actuators and Microsystems, Seoul, South Korea, Jun 5-9 2005, pp1371-1374.
    [25] Kim Byungkyu, et al. An Earthworm-Like Locomotive Mechanism for Capsule Endoscopes[J]. 2005 IEEE/RSJ, Edmonton, Canada, Aug 2-6 2005, pp2997-3002.
    [26] Mustafa Emre Karagozler, et al. Miniature Endoscopie Capsule Robot Using Biomimetic Micro-Patterned Adhesives[C]. 1st IEEE/RAS-EMBS, Pisa, Italy, Feb 20-22 2006, pp105-111.
    [27] Eugene Cheung, et al. A New Endoscopic Microcapsule Robot Using Beetle Inspired Microfibrillar Adhesives[C]. 2005 IEEE/ASME, Monterey, USA, Jul 24-28 2005, pp551-557.
    [28] Kim Byungkyu, et al. Inchworm-Like Microrobot for Capsule Endoscope[C]. 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, Aug 22-26 2004, pp458-463.
    [29] Kim Byungkyu, et al. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs)[J]. IEEE/ASME Transactions on Mechatronics, 10(1), 2005, pp77-86.
    [30] Park Sukho et al. Capsular Locomotive Microrobot for Gastrointestinal Tract[C]. 28th IEEE EMBS, New York, USA, Aug 30 - Sept 3 2006, pp2211-2214
    [31] Sukho Park, et al.. Multi-Functional Capsule Endoscope for Gastro-Intestinal Tract. SICE-ICASE 2006, Bexco, Korea, Oct 18-21, 2006, pp2091-2094.
    [32] A. Menciassi, et al. Legged Locomotion in the Gastrointestinal Tract Problem Analysis and Preliminary Technological Activity[C]. 2004 IEEE/RSJ, Sendai, Japan, Sep 28-Oct 2 2004, pp937-942.
    [33] A. Menciassi, et al. Locomotion of a Legged Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results[C]. 26th IEEE EMBS, San Francisco, USA, Sep 1-5 2004, pp2767-2770.
    [34] S.Gorini, et al. A Novel SMA-Based Actuator for a Legged Endoscopic Capsule[C]. 1st IEEE/RAS-EMBS, Pisa, Italy, Feb 20-22 2006, pp443-449.
    [35] A. Menciassi, et al. Clamping Tools of a Capsule for Monitoring the Gastrointestinal Tract Problem Analysis and Preliminary Technological Activity[C]. 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, Apr 18-22 2005, pp1309-1314.
    [36]韩国科学技术研究院.具有主动移位系统的远程操作内窥镜囊舱装置[P].中国, CN200580011606.4, 2005.2.17.
    [37] http://www.cqjs.net/index.asp
    [38]重庆金山.医用无线电胶囊式内窥系统[P].中国, ZL200410021933.5, 2004.2.28
    [39]重庆金山.双工多通道智能胶囊无线内窥镜系统[P].中国, CN200510020338.4, 2005.2.3.
    [40]重庆金山.双工多通道智能胶囊消化道内窥镜的控制方法[P].中国, CN200510020381.0, 2005.2.8.
    [41] A. Arena, et al. Intracorporeal videoprobe (IVP)[J]. Medical and Care Compunetics 2, 114, 2005, pp.167-174.
    [42] Lenaerts, Bert and Robert Puers. An Omnidirectional Transcutaneous Power Link for Capsule Endoscopy[C]. 2006 International Workshop on Wearable and Implantable Body Sensor Networks, Cambridge, United States Apr 3-5 2006, pp46-49.
    [43] G.Vandevoorde, and R. Puers. Wireless energy transfer for stand-alone systems: a comparison between low and high power applicability[J]. Sensors and Actuators A: Physical 92, 2001, pp305-311.
    [44] B. Lenaerts, and R. Puers. Inductive powering of a freely moving system[J]. Sensors and Actuators A: Physical 123-124, 2005, pp522-530.
    [45] Bert Lenaerts, and Robert Puers. An inductive power link for a wireless endoscope[J]. Biosensors and Bioelectronics, 22(7), 2007, pp1390-1395.
    [46] V. S. Kodogiannis. Computer-Aided Diagnosis in Clinical Endoscopy Using Neuro-Fuzzy Systems[C]. 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, Jul 25-29 2004, pp1425-1429.
    [47] E. Wadge, M. Boulougoura, and V. S. Kodogiannis. Computer-Assisted Diagnosis of Wireless-Capsule Endoscopic Images Using Neural Network Based Techniques[C]. 2005 IEEE CIMSA, Giardini, Italy, Jul 20-22 2005, pp328-333.
    [48] D.Turgis and R. Puers. Image compression in video radio transmission for capsule endoscopy[J]. Sensors and Actuators A: Physical, 123-124, 2005, pp129-136.
    [49] V. S. Kodogiannis, et al. A neuro-fuzzy-based system for detecting abnormal patterns in wireless-capsule endoscopic images[J]. Neurocomputing, 70, 2007, pp704-717.
    [50] Xiaona Wang, M. Q. H. Meng and Hu Chao. A Localization Method Using 3-Axis Magnetoresistive Sensors for Tracking of Capsule Endoscope[C]. 28th IEEE EMBS, New York,USA, Aug 30 - Sept 3, 2006, pp2522-2525
    [51] Xiaona Wang and M. Q. H. Meng. Dipole Modeling of Magnetic Marker for Capsule Endoscope Localization[C]. 6th World Congress on Intelligent Control and Automation, Dalian, China, June 21-23, 2006, pp5382-5386.
    [52] Chao Hu, M. Q. H. Meng, and Mrinal Mandal. The Calibration of 3-Axis Magnetic Sensor Array System for Tracking Wireless Capsule Endoscope[C]. 2006 IEEE/RSJ, Beijing, China, Oct 9-15, 2006, pp162-167
    [53] Chao Hu, M. Q. H. Meng, and Mrinal Mandal. Efficient Linear Algorithm for Magnetic Localization and Orientation in Capsule Endoscopy[C]. 27th IEEE EMBS, Shanghai, China, Sep 1-4 2005, pp7143-7146.
    [54] Chao Hu, M. Q. H. Meng, and Mrinal Mandal. Efficient Magnetic Localization and Orientation Technique for Capsule Endoscopy[C]. 2005 IEEE/RSJ, Alta, Canada, Aug 2-6 2005, pp628-633.
    [55] Xiaona Wang, M. Q. H. Meng, and Chan Yawen. A Low-Cost Tracking Method Based on Magnetic Marker for Capsule Endoscope[C]. International Conference on Information Acquisition, Hefei, China, Jun 21-25 2004, pp524-526.
    [56] Xiaona WANG and Max Q.-H.MENG. An Inchworm-Like Locomotion Mechanism Based on Magnetic Actuator for Active Capsule Endoscope[C]. 2006 IEEE/RSJ, Beijing, China, Oct 9-15 2006, pp1267-1272.
    [57] Hu Chao, et al. Image Distortion Correction for Wireless Capsule Endoscope[C]. 2004 IEEE International Conference on Robotics and Automation, New Orleans, USA. Apr 26-May 1 2004, pp 4718-4723.
    [58] Yawen Chan, et al. Experimental Study of Radiation Efficiency From an Ingested Source Inside a Human Body Model[C]. 7th IEEE-EMBS, Shanghai, China, Sep 1-4 2005, pp7754-7757.
    [59] Chan Yawen, Max Q. H. Meng, and Xiaona Wang. A Prototype Design of Wireless Capsule Endoscope[C]. 2005IEEE ICMA, Niagara Falls, Canada, Jul 29-Aug 1 2005, pp400-403.
    [60]上海交通大学.全消化道无创介入探测胶囊体外超声定位系统[P].中国, ZL02137174.1, 2002.9.26.
    [61]上海交通大学.基于磁标记物的吞服式电子遥测胶囊连续跟踪定位系统[P].中国, CN200510111030.0, 2005.12.1.
    [62]上海交通大学.全消化道吞服式遥测胶囊体外电磁励磁式定位系统[P].中国, ZL200410093139.1, 2004.12.16.
    [63]上海交通大学.面向人体介入式运动器件的电磁能量无线传输装置[P].中国,CN200710041981.4, 2007.6.14.
    [64]上海交通大学.微型多关节电磁蠕动机器人系统[P].中国, ZL99127201.3, 1999.12.30.
    [65]上海交通大学.微型多节电磁和压电蠕动机器人系统[P].中国, CN200310108735.8, 2003.11.20.
    [66]上海交通大学.主动式肠道内窥镜机器人系统[P].中国, ZL200410054206.9, 2004.9.2.
    [67]卢秋红,等.压电型惯性微驱动器研究[J].压电与声光, 26(2), 2004, pp112-115.
    [68]左建勇,等.压电直线驱动器[J].压电与声光, 27(3), 2005, pp232-235.
    [69]上海交通大学.微小型微步距角压电型旋转驱动器[P].中国, CN02137172.5, 2002.9.26.
    [70]上海交通大学.微型压电型直线驱动器.中国, ZL02137173.3, 2002.9.26.
    [71] Yan Guozheng and Jianyong Zuo. A Self-Propelling Endoscope System by Squirmy Robot[C]. MHS2003, Nagoya, Japan, Oct 19-22 2003, pp159-163.
    [72]上海交通大学.微型六足仿生机器人[P].中国, ZL01126965.0, 2001.10.8.
    [73]上海交通大学.管道内蠕动行走机构[P].中国, CN200710042310.X, 2007.6.21.
    [74]上海交通大学.电磁式胃肠动力功能无创诊查系统[P].中国, CN200710044901.0, 2007.8.16.
    [75]上海交通大学.永磁定位式胃肠道ph值24小时无创监测系统[P].中国, CN200710045448.5, 2007.8.30.
    [76]上海交通大学.胃肠道出血无创监测系统[P].中国, CN200710045625.X, 2007.9.6.
    [77]上海交通大学.人体消化道微型智能介入式诊查系统[P].中国, ZL01131917.8, 2001.10.16.
    [78]上海交通大学.全消化道微型胶囊体状无创介入诊查系统[P].中国, ZL02137054.0, 2002.9.19.
    [79] Xie Xiang, et al. A Novel Low Power IC Design for Bi-Directional Digital Wireless Endoscopy Capsule System[C]. 2004 IEEE International Workshop on Biomedical Circuits and Systems, Singapore, Singapore, Dec 1-3 2004, pp1-8.
    [80] Xie Xiang, et al. A low-power digital IC design inside the wireless endoscopic capsule[J]. IEEE Journal of Solid-State Circuits, 41(11), 2006, pp2390-400.
    [81] Xie Xiang, et al. Micro-System Design for Wireless Endoscopy System[C]. 27th IEEE-EMBS, Shanghai, China, Sep 1-4 2005, pp7135-7138.
    [82]谢翔等.一种双向、数字式微型无线内窥镜系统设计[J].固体电子学研究与发展, 27(1), 2007, pp123-129.
    [83]谢翔等.一种数字式微型无线内窥镜系统[J].电子技术与应用, 6, 2005, pp26-28.
    [84]清华大学.双向数字式无线内窥镜系统及其工作方式[P].中国, ZL03109810.X, 2003.4.11.
    [85]谢翔等.双向数字化的微型无线内窥镜胶囊内数模混合电路设计[J],清华大学学报(自然科学版), 45(10), 2005, pp1368-1372.
    [86]清华大学.双向数字式无线内窥镜胶囊用的集成电路系统[P].中国, CN00610012011.7, 2006.5.26.
    [87]付国强等.微型机器人外场驱动技术的研究现状与发展[J].光学精密工程, 11(4), 2003, pp333-337.
    [88]简小云,梅涛,汪小华.胶囊内窥镜机器人的外磁场驱动方法[J].机器人, 27(4), 2005, pp367-372
    [89]中科院合肥智能机械研究所.一种体内微机器人的外磁场驱动系统[P].中国, CN 200510038836.1, 2005.4.7.
    [90]中科院合肥智能机械研究所.体内探测器外磁场驱动装置及方法[P].中国, CN 200510040887.8, 2005.6.29.
    [91]中科院合肥智能机械研究所.一种多传感器机器人手爪[P].中国, ZL00119081.4, 2000.10.24.
    [92]中科院合肥智能机械研究所.一种用于机器人的软磁橡胶执行器制备方法[P].中国, ZL01127166.3, 2001.9.1.
    [93]重庆大学.一种用于微型药丸定位和电源开关控制的磁控装置[P].中国, ZL 200310110955.4, 2003.11.13.
    [94]重庆大学.一种向体内微型装置传输能量的系统[P].中国, CN03117229.6, 2003.1.24.
    [95]重庆大学.一种磁能驱动的微型泵[P].中国, ZL02128109.2, 2002.12.24.
    [96]重庆大学.一种消化道药物定点释放装置[P].中国, ZL200410040809.3, 2004.9.29.
    [97]重庆大学.吸入式微型采样装置[P].中国, ZL03117269.5, 2003.1.28.
    [98]重庆大学.胶囊式消化道药物释放及采样装置[P].中国, CN200610054064.5, 2006.1.28.
    [99]张思杰.基于MEMS的消化道无线内窥镜的研究[D].重庆,重庆大学, 2005.
    [100]张思杰等.基于电池的无线内窥镜中微型能量管理单元的研制[J].仪器仪表学报, 27(12), 2006, pp1587-1590.
    [101] Tae Song Kim, et al. Fusion of Biomedical Microcapsule Endoscope and Microsystem Technology[C]. 13th International Conference on Solid-State Sensors and Actuators and Microsystems, Seoul, South Kore, Jun 5-9, 2005, pp9-14.
    [102] S. Heinisuo, and J. Vanhala. Wireless Platform for Multi-Channel Analog Measurements[C]. 2006 IEEE EMBS, New York, USA, Aug 30 - Sept 3, 2006, pp5909-5511.
    [103] Wang, G. X., et al. Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants[J]. IEEE Transactions on Circuits and Systems, 52(10), 2005, pp2109-2117.
    [104] Rizwan Bashirullah, et al. A Smart Bi-Directional Telemetry Unit for Retinal ProstheticDevice[C]. 2003 IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, May 25-28 2003, pp5-8.
    [105] G. A. Kendir, et al. An optimal design methodology for inductive power link with class-E amplifier[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 52(5), 2005, pp857-866.
    [106] P. R. Troyk, and M. Edgington. Inductive Links and Drivers for Remotely-Powered Telemetry Systems[C]. IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium, Salt Lake City, USA, July 16-21 2000, pp60-62.
    [107] P. R. Troyk, and G. A. DeMichele. Inductively-Coupled Power and Data Link for Neural Prostheses Using a Class-E Oscillator and FSK Modulation[C]. 25th IEEE EMBS, Cancun, Mexico, Sept 17-21 2003, pp3376-3379.
    [108] N. M. Neihart, and R. R. Harrison. Micropower circuits for bidirectional wireless telemetry in neural recording applications[J]. IEEE Transactions on Biomedical Engineering, 52(11), 2005, pp1950-1959.
    [109] Hu Yamu, J. F. Gervais, and M. Sawan. High Power Efficiency Inductive Link With Full-Duplex Data Communication[C]. 9th IEEE ICECS, Dubrovnik, Croatia, Sept 15-18. 2002, pp359-362.
    [110] C. Sauer, et al. Power harvesting and telemetry in CMOS for implanted devices[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 52(12 ), 2005, pp2605-2613.
    [111] Wu, J., S. Dubhashi, and G. H. Bernstein. Inductive Generation of Arbitrary Waveforms for Electrical Stimulation Using Implantable Microcoils[J]. Journal of Micromechanics and Microengineering, 14(7), 2004, pp1012-1021.
    [112] J. Wu, V. Quinn, and G. H. Bernstein. Powering Efficiency of Inductive Links with Inlaid Electroplated Microcoils[J]. Journal of Micromechanics and Microengineering, 14(4), 2004, pp576-86.
    [113] M. P.Theodoridis, and S. V. Mollov. Distant energy transfer for artificial human implants[J]. IEEE Transactions on Biomedical Engineering, 52(11), 2005, pp1931-1938.
    [114] P. Basset, et al. Complete System for Wireless Powering and Remote Control of Electrostatic Actuators by Inductive Coupling[J]. IEEE/ASME Transactions on Mechatronics, 12(1), 2007, pp23-31.
    [115] Y. M. Hu, and M. Sawan. A fully integrated low-power BPSK demodulator for implantable medical devices[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 52(12), 2005, pp2552-2562.
    [116] Yong Up Lee, et al. In vivo robotic capsules: determination of the number of turns of its powerreceiving coil[J]. Med Bio Eng Comput, 2006.
    [117] L. C. Chirwa, et al. Electromagnetic Radiation From Ingested Sources in the Human Intestine[C]. 2nd IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Madison, USA, May 2-4 2002, pp309-313.
    [118] L. C. Chirwa, et al. Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz[J]. IEEE Transactions on Biomedical Engineering, 50(4) 2003, pp484-492.
    [119] L. C. Chirwa, et al. Radiation from ingested wireless devices in biomedical telemetry bands[J]. Electronics Letters, 39(2 ), 2003, pp178-179.
    [120] I. K. Sang, C. Kihun, and J. Y. Yoon. The Helical Antenna for the Capsule Endoscope, 2005 IEEE Antennas and Propagation Society International Symposium and USNC/URSI Meeting, Washington, USA, Jul 3-8 2005, pp804-807.
    [121] S. I. Kwak, K. Chang, and Y. J. Yoon. Small spiral antenna for wideband capsule endoscope system[J], Electronics Letters, 23(42), 2006, pp1328-1329.
    [122] I. K. Sang, C. Kihun, and J. Y. Yoon. Ultra-wide band spiral shaped small antenna for the biomedical telemetry[C]. APMC 2005,Suzhou, China, Dec 4-7 2005
    [123] B. Huang, G. Z. Yan, and P. Zan. Design of ingested small microstrip antenna for radiotelemetry capsules[J]. Electronics Letters, 43(22), 2007, pp1178-1179.
    [124]清华大学.无线内窥镜胶囊微带天线装置[P].中国, CN200610012010.2, 2006.5.26.
    [125]重庆大学.基于JPEG2000的按需式无线内窥镜胶囊[P].中国, ZL200610054320.0, 2006.5.23.
    [126] Israel, State. In vivo video camera system[P], USA, US5604531, Jan 17 1995.
    [127] W. G. Scanlon, B. Burns, and N. E. Evans. Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz[J]. IEEE Transactions on Biomedical Engineering, 47(4), 2000, pp527-534.
    [128] W. G.Scanlon and N. E. Evans. Numerical analysis of bodyworn UHF antenna systems[J]. Electronics and Communication Engineering Journal, 13(2), 2001, pp53-64.
    [129]赵德春,彭承琳.无线内窥镜中高效电磁感应连接,清华大学学报(自然科学版), 9,2008(已录用待发表)
    [130] Jaideva C. Goswami, Albert E. Hoefel, and Horst Schwetlick. On subsurface wireless data acquisition system[J]. IEEE Transactions on Geoscience and Remote Sensing, 43(10), 2005, pp2332-2338.
    [131] Xie, X., G. Li, and Z. Wang. ARQ scheme with adaptive block size for bidirectional wireless endoscopy system[J]. IEE Proceedings: Communications, 153(5), 2006, pp611-618.
    [132] Xie, Xiang, et al. An Efficient Control Strategy of Adaptive Packet Length, for ARQ in Wireless Endoscopy System[J]. 2005 IEEE ISCIT, Beijing, China, Oct 12-14 2005, pp1084-1086.
    [133]谢翔等,双向无线内窥镜系统的ARQ动态自适应包长确定方法[J],高技术通讯, 16(3), 2006, pp221-226.
    [134] Dechun Zhao, Chenglin Peng. small low-power reliable communication module in a wireless monitoring system[C], 2007 1st International Conference on Bioinformatics and Biomedical Engineering, ICBBE, Jul 6-8 2007, pp.1194-1197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700