用户名: 密码: 验证码:
1,3,4-噻二唑类氨肽酶N抑制剂的设计、合成及活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分氨肽酶N研究进展
     氨肽酶N(APN)是一类膜型锌离子依赖性的外肽酶,主要富集在小肠,参与食物的消化,将其分解为氨基酸;在肾中,APN参与肾素.血管紧张素系统,降解血管紧张素Ⅲ,降低Na~+K~+-ATP酶的水平,调节近曲小管对钠的吸收;在脑组织参与内源性镇痛物质脑啡肽、内啡肽在中枢神经系统的代谢
     APN在肿瘤细胞表面高水平表达,通过降解细胞外基质,促进多种生长因子的释放、刺激血管内皮细胞释放肿瘤微血管形成相关因子,促进肿瘤新生血管的形成、加速肿瘤细胞增殖、增强肿瘤细胞粘附性、促进肿瘤细胞侵袭与转移。APN在粒细胞及淋巴细胞表面大量表达,参与T淋巴细胞依赖的炎症反应;在抗原递呈细胞表面大量表达,降解趋化因子(如fMLP)、抗原递呈分子以及多种免疫活性物质(如:IL-8),抑制巨噬细胞和自然杀伤细胞对肿瘤细胞表面抗原的识别和直接杀伤细胞的能力,使机体免疫力下降。APN降解能够使HIV-1辅助受体CCR5脱敏的趋化因子fMLP,降低细胞的天然免疫功能,并使CCR5增敏,促进HIV病毒进入宿主细胞。APN作为人冠状病毒HCoV-229E和传染性胃肠炎病毒(TGEV)表面的受体,在上呼吸道感染(如:SARS)和急性肠炎中扮演重要角色。因此,APN抑制剂有望发展成为一类新型的治疗药物,用于治疗如肿瘤、白血病、风湿性关节炎、糖尿病肾病和阿尔茨海默病。
     APN抑制剂主要用于预防和治疗肿瘤,分为天然产物抑制剂和小分子合成抑制剂,迄今报道的多数抑制剂包含锌离子螯合基。研究较为成熟的抑制剂是从网状橄榄链霉菌培养液中发现的Bestatin,已作为免疫增强剂于1987年在日本上市。
     第二部分基于靶点结构的合理药物设计
     本研究利用基于结构(Structure-Based)的药物设计思想进行全新药物设计,利用计算机辅助药物设计软件的优势,通过深入研究E.Coli APN的三维结构以及酶-抑制剂复合物的结合模式,用柔性对接来模拟目标化合物与靶酶的相互作用。APN水解底物时具有专属性,优先水解的氨基酸残基为丙氨酸,而金属蛋白酶(包括基质金属蛋白酶MMP和氨肽酶N/CD13)的天然作用底物胶原蛋白的主要成分是脯氨酸-甘氨酸残基。因而我们以丙氨酸和甘氨酸为先导化合物,并在分子中引入能与靶酶的疏水性口袋相互作用且具有抗癌活性的1,3,4-噻二唑和肉桂酸骨架,对目标化合物进行了如下修饰:(ⅰ)在分子中引入不同的吸电子基和推电子基,考察不同电性效应对靶酶的作用;(ⅱ)在分子中引入能与靶酶形成氢键的基团,以增强化合物与靶酶的亲和力;(ⅲ)在分子中引入体积不等的取代基,考察不同立体效应对靶酶的作用。
     此外,本文不仅从整体上考虑化合物结构与酶活性中心的匹配性,而且组成化合物的各结构片段均选择了具有抗癌活性的片段或组织相容性较好氨基酸残基。在对结构进行优化设计时预先充分考虑到了药物在体内的ADME等动力学特性,化合物的分子量、脂水分配系数、氢键受体数和氢键供体数均符合Lipinski规则,从而提高化合物的中标率。
     第三部分目标化合物的合成
     在基于靶点结构的合理药物设计的基础上,本着结构多样性的原则,合成了42个结构确定的目标化合物。将不同取代的苯甲酸和氨基硫脲在三氯氧磷中缩合得到5-取代苯基-1,3,4-噻二唑-2-胺;不同取代的肉桂酸和氨基酸用DCC法缩合得到肉桂酰胺:最后将两种中间体用DCC法缩合得到终产物。DCC法的优点是反应条件温和,操作简便。对所合成的化合物,通过红外光谱、核磁共振氢谱、核磁共振碳谱、电喷雾质谱等方法进行结构确证。经查阅文献证实,所合成的目标化合物为新型化合物,未见文献报道。
     第四部分目标化合物的活性评价
     本研究设计合成了3个系列共42个1,3,4-噻二唑类的目标化合物,并对其活性进行了初步筛选。由于APN和MMP都属于锌离子依赖性金属蛋白酶,并且在肿瘤细胞的侵袭与转移过程中发挥重要的作用,体外抑酶筛选时同时针对两种酶进行活性评价,体外细胞测试时采用了特异性表达APN的白血病细胞(HL-60),观察化合物对HL-60细胞的生长抑制作用。初步的测试表明多数化合物都有抑制APN的活性,其中化合物A7、A8、B4、B14、C5和C9显示了较好的APN抑制活性,IC_(50)分别是31.4μM、68.7μM、35.3μM、27.1μM、44.6μM、41.1μM,这些化合物可被用作研究新的APN抑制剂的先导物。研究发现:含丙氨酸残基的化合物对APN的活性优于对MMP的活性,而含甘氨酸残基的化合物对APN和MMP都表现出相应的活性,说明含丙氨酸残基的化合物对APN有较好的选择性。体外白血病细胞生长抑制实验发现对APN抑酶活性较好的6个化合物除A8和B4外,均对HL-60细胞显示了中等程度的抑制作用。所得的部分量化参数(如FlexX对接结果)与体外活性试验具有一定相关性,说明设计思路合理。
     结论:我们设计、合成了一系列结构新颖的1,3,4-噻二唑类衍生物,并对这些化合物进行了初步活性评价,通过体外活性筛选发现了有开发潜力的化合物,为发现活性更好的新型抗肿瘤药物打下坚实的基础。
PartⅠ.Recent Progress in Aminopeptidase N
     Aminopeptidases N,one of membrane-bound zinc-dependent exopeptidase expressed mostly in intestine,is involved in the final hydrolysis of nutrients to amino acid,in the degradation of angiotensinⅢ,in the decrease Na~+-K~+-ATP level,in the regulation absorption sodium in kidney,in the metabolism endogenous enkephalin and endorphin in the the central nervous system.
     APN,over-expressed on the surface of tumor cells,promots the invasion and metastasis of tumor cells via degrading extracellular matrix,promoting the release of most growth factor,stimulating the release of cellular factors associated with the neovascularization by vascular endotheilal cells,promoting the angiogenesis of tumor, speeding up the proliferation of tumor cells,enhancing the adhesiveness of tumor cells.APN is over-expressed on the surface of granulocyte and lymphocyte and participates the T-lymphocyte dependent inflammatory reaction.The enzyme is also over-expressed on the surface of antigen presenting cells,which degrades chemokines, antigen presenting molecule and lots of immunoactive substances,depresses the recognization of macrophage and NK cells to surface antigen on tumor cells and the ability to kill tumor cells directly,impairs the immunological functions.APN play a role in the entry of HIV-1 into host cells by degrading chemokine fMLP associated with the desensitization of the co-receptor CCR5 for HIV-1.APN serves as a receptor for human corona viruses HCoV-229E which causes upper respiratory infections and transmissible gastroenteritis viruses(TGEV) which causes a severe gastroenteritis in newborn pigs.Therefore,APN will be a good target for the design of novel therapeutic agents for the treatment of diseases,such as cancer,leukemia,rheumatoid arthritis,diabetic nephropathy and central nervous system diseases,such as Alzheimer's disease.
     APN inhibitors were designed to prevent and treat tumor,divided into two types, natural inhibitors and synthetic inhibitors.Most APN inhibitors thus far reported contain zinc binding group.Bestatin,firstly isolated from a culture filtrate of Streptomyces olivoreticuli,has been used in clinics as an immunoenhancer in Japan in 1987.
     PartⅡ.Structure-based Rational Target Compounds Design
     The characteristics of this study are the utilization of structure-based drug design comprehensively.The structure information of the active site of E.Coli APN and enzyme-inhibitor complex was thorough studied with advantages of computer-aided drug design software.Flexsible Docking was used for modeling the interaction between target compounds and enzyme.APN exhibits a broad specificity for peptides with a N-terminal neutral or basic amino acid.The favored substrate of APN is alanine.On the other hand,the major components of ECM are Pro-Gly residues.So the alanine and the glycine were considered as the lead compounds.The 1,3,4-thiadiazole and the cinnamic acid which can interact with hydrophobic site of APN and has the property of anticancer was introduced into the target compounds. This scaffold is optimized with following chemical modification:(ⅰ) Various electron-attracting groups and electron-pushting groups was linked to target compounds so as to investigate the interaction of electric effect with APN;(ⅱ) The group which can form hydrogen bond with the enzyme was introduced to enhace affinity;(ⅲ) The group with various space volume was connected to target compounds to investigate the interaction of stereoscopic effect.
     Additionally,the matching of target compounds with the active site of enzyme is not only considered overall in this study,the fragments used in the target compounds also apply the fragments with anticancer activity and amino acid residual which can be compatible with tissues.The ADME and pharmacokinetics properties of the target compounds have also been considered in advance.Molecular weight, lipid-water partition,the number of hydrogen bond receptor and hydrogen bond donor fit the Lipinski rule and so increasing the hit rate.
     PartⅢ.Synthesis and discussion of targeted compounds
     On the basis of structure-based drug design,we obtained 42 structural confirmed target compounds.The various substituted carboxylic acid was condensed with N-aminothiourea in presence of Phosphorus oxychloride,yielding 5-substituted-1,3,4-thiadiazol-2-amine.The coupling of amino acid with various substituted cinnamic acid led to amide using DCC.Finally,the intermediate 5-substituted-1,3,4-thiadiazol-2-amine and amide were reacted using DCC to give target compounds.The advantage of DCC method is mild reaction conditions and simple operation.All the targeted compounds are novel without any report by now, and the structures of new compounds are identified by IR,~1H-NMR,~(13)C-NMR and ESI-MS.
     PartⅣ.The Biological Evaluation
     We design and synthesis 42 novel 1,3,4-thiadiazole derivatives which were performed the in vitro preliminary activity evaluations.APN and MMP are zinc-dependent metalloproteinase and closely associated with the invasion and metastasis of tumor cells.So the in vitro enzyme inhibitory activity was determined against APN and MMP.The cells assay is performed toward leukemia cells(HL-60) which express APN.The preliminary test results showed that most of compounds have ability to inhibit APN.Six compounds,A7、A8、B4、B14、C5、C9 displayed good ability to inhibit APN with IC_(50) values 31.4μM、68.7μM、35.3μM、27.1μM、44.6μM、41.1μM respectively.These compounds could be used as lead compounds for exploring novel APN inhibitors in the future.The results show that APN inhibition activity of compounds containing alanine acid residues is superior to MMP inhibition activity, while compounds containing glycine acid residues exhibited both APN and MMP inhibition activity.So the compounds containing alanine acid residues displayed selectivity toward APN.In in vitro growth inhibition against leukemia cells,the results indicated that most potent APN inhibitor(A7、B14、C5、C9) displayed good inhibitory effect against the growth of HL-60 cells.It is discovered that there is some relevance between part of the quantitative parameters(such as FlexX Docking score) and the in vitro activity of compounds.It shows that the study idea is rational.
     In conclusion,a series of novel 1,3,4- thiadiazole derivatives have been designed and synthesized.The preliminary inhibitory activities of target compounds were evaluated in this thesis.All of these discoveries provide a beneficial theoretical basis for the optimization of lead structure and lay a solid foundation for the discovery of novel more potent anticancer agents in future.
引文
[1]Antczak C.,De Meester I.,Bauvois B.Ectopeptidases in pathophysiology[J].Bioessays,2001,23(3):251-260.
    [2] Rawlings N.D., Tolle D.p., Barrett A.J. MEROPS: The peptidase database[J]. Nucleic Acids Res., 1999,27(1):325-331.
    
    [3] Hooper N.M. Families of zinc metalloproteases[J]. FEBS Lett., 1994;354(1):1-6.
    [4] Sjostrom H., Noren O., Olsen J. Structure and function of aminopeptidase N[J]. Adv. Exp. Med. Biol., 2000,477:25-34.
    [5] Pfleiderer G., Celliers P.G. Isolation of an aminopeptidase from kidney particles[J]. Biochem. Z., 1963,339:186-189.
    [6] Look A.T., Ashmun R.A., Shapiro L.H., et al. Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeotidase N[J]. J. Clin. Invest., 1989, 83(4):1299-1307.
    [7] Sato Y. Role of aminopeptidase in angiogenesis[J]. Biol. Pharm. Bull., 2004, 27(6): 772-776.
    
    [8] Saiki I., Fujii H., Yoneda J., et al. Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation[J]. Int. J. Cancer, 1993, 54(1), 137-143.
    
    [9] Menrad A., Speicher D., Wacker J., et al. Biochemical and functional characterization of aminopeptidase N expressed by human melanoma cells[J]. Cancer Res., 1993,53(6): 1450-1455.
    [10] Kanayama N., Kajiwara Y., Goto J., et al. Inactivation of interleukin-8 by aminopeptidase N (CD13) [J]. J. Leukoc. Biol., 1995, 57(1): 129-134.
    [11] Shimizu T., Tani K., Hase K., et al. CD13/aminopeptidase N-induced lymphocyte involvement in inflamed joints of patients with rheumatoid arthritis[J]. Arthritis. Rheum.,2002,46(9), 2330-2338.
    [12] Bedir A.,Ozener I.C., Emerk K.Urinary leucine aminopeptidase is a more sensitive indicator of early renal damage in non-insulin-dependent diabetics than microalbuminuria[J]. Nephron, 1996, 74(1): 110-113.
    [13] Sloane P.D., Zimmerman S., Suchindran C., et al.The public health impact of Alzheimer's disease, 2000-2050: potential implication of treatment advances [J]. Annu. Rev. Public Health, 2002,23:213-231
    [14] Gros C., Giros B., Schwartz J.C. Identification of aminopeptidase M as an enkephalin-inactivating enzyme in rat cerebral membranes[J]. Biochemistry, 1985,24(9): 2179-2185.
    [15] Balog T., Marotti T., SverkoV., et al. Enkephalin degradating enzymes. in pheochromocytoma patients[J]. Oncol. Rep., 2003,10(1): 253-258.
    [16] Mitsui T., Nomura S., Itakura A., et al. Role of aminopeptidases in the blood pressure regulation[J]. Biol. Pharm. Bull, 2004, 27(6): 768-771.
    [17] Shipp M.A., Look A.T. Hematopoietic differentiation antigens that are membrane-associated enzymes: Cutting in the key[J]. Blood, 1993, 82(4): 1052-1070
    [18] Ashmun R.A., Look A.T. Metalloprotease Activity of CD13/Aminopeptidase N on the Surface of Human Myeloid Cells[J]. Blood, 1990, 75(2): 462-469.
    [19] Firla B., Arndt M, Frank K.,et al. Extracellular cysteines define ectopeptidase (APN, CD13) expression and function[J]. Free Radic. Biol. Med. 2002, 32(7): 584-595.
    [20] Vlahovic P., Stefanovic V. Kidney ectopeptidases. Structure, functions and clinical significance[J]. Pathol Biol (Paris), 1998,46(10):779-786.
    [21] Kotlo K., Shukla S., Tawar U., et al. Aminopeptidase N reduces basolateral Na~+ -K~+ -ATPase in proximal tubule cells[J]. Am. J. Physiol. Renal. Physiol., 2007, 293(4): F1047-F1053.
    [22] Waksman G., Bouboutou R., Devin J.,et al. In vitro and in vivo effects of kelatorphan on enkephalin metabolism in rodent brain[J]. Eur. J. Pharmacol. 1985,117(2): 233-243.
    [23] Montiel J.L., Cornille F., Roques B.P.,et al. Nociceptin/orphanin FQ metabolism: role of aminopeptidase and endopeptidase 24.15[J]. J. Neurochem. 1997, 68(1): 354-361.
    
    [24] Nunez L., Amigo L., Mingrone G., et al. Billiary aminopeptidase N and cholesterol crystallization defect in cholelithiasis [J]. Gut. 1995, 37(3): 422-426.
    [25] Soderberg C., Giugni T.D., Zaia J.A., et al. CD13 (human aminopeptidase N) mediates human cytomegalovirus infection[J]. J. Virol. 1993, 67(11): 6576-6585.
    [26] Mechtersheimer G., Moller P. Expressionof aminopeptidase N (CD13) in mesenchymal tumor[J]. Am. J. Pathol., 1990,137(5): 1215-1222.
    [27] Riemann D., Kehlen A., Langner J. CD13-Not just a marker in leukemia typing[J]. Immunol. Today, 1999, 20(2): 83-88.
    
    [28] Martin DC, Fowlies JL, Babic B, et al. Insulin-like growth factor II signaling in neoplastic proliferation is blocked by transgenic expression of the metalloproteinase inhibitor TIMP-1 [J]. J. Cell Biol, 1999,146: 881-892.
    [29] Fujii H., Nakajima M., Saiki I., et al. Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CD13[J]. Clin. Exp. Metastasis, 1995,13(5): 337-344.
    
    [30] Ishii K., Usui S., Sugimura Y., et al. Aminopeptidase N regulated by zinc in human prostate participates in tumor cell invasion[J]. Int. J. Cancer, 2001, 92(1): 49-54.
    
    [31] Kido A., Krueger S., Haeckel C, et al. Inhibitory effect of antisense aminopeptidase N (APN/CD13) cDNA transfection on the invasive potential of osteosarcoma cells[J]. Clin. Exp. Metastasis, 003, 20(7): 585-592.
    [32] Pasqualini R., Koivunen E., Kain R., et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis[J]. Cancer Res., 2000, 60(3):722-727.
    [33] Bhagwat S.V., Lahdenranta J., Giordano R., et al. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation[J]. Blood, 2001, 97(3): 652-659.
    [34] Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis[J]. Cell, 1996, 86(3):353-364.
    
    [35] Bhagwat S.V., Petrovic N., Okamoto Y., et al. The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis[J]. Blood, 2003,101(5): 1818-1826.
    [36] Aozuka Y, Koizumi K., Saitoh Y, et al. Anti-tumor angiogenesis effect of aminopeptidase inhibitor bestatin against B16-BL6 melanoma cells orthotopically implanted into syngeneic mice[J]. Cancer Lett., 2004, 216(1): 35-42.
    [37] Zetter B.R. Angiogenesis and tumor metastasis[J]. Annu. Rev. Med, 1998, 49: 407-424.
    [38] Scornik O. A., Botbol V.. Bestatin as experimental tool in mammals[J]. Curr. Drug Metab., 2001, 2(1): 67-85.
    [39] Alexander N.S., Juergen Langner, Manfred Herrmann, et al. Aminopeptadase N/CD13 is directly linked to signal transduction pathways in monocytes[J]. Cell. Immunol., 2000,201(1): 22-32.
    [40] Folkman J. Tumor angiogenesis[J]. Adv. Cancer Res. 1985,43: 175-203.
    [41] Pulido-Cejudo G., Conway B., Proulx P., et al. Bestatin-mediated inhibition of leucine aminopeptidase may hinder HIV infection[J]. Antiviral Res., 1997, 36(3): 167-177.
    [42] Christopherson K., Hromas R. Chemokine regulation of normal and pathologic immune responses[J]. Stem Cells, 2001,19(5): 388-396.
    [43] Deng H., Liu R., Ellmeier W., et al. Identification of a major co-receptor for primary isolates of HIV-1[J]. Nature, 1996, 381(6584): 661-666.
    [44] Schiffmann E., Corcoran B.A., Wahl S. N-formylmethionyl peptides as chemoattractants for leukocytes[J]. Proc. Natl. Acad. Sci. U. S. A., 1975, 72(3): 1059-1062.
    [45] Shen W., Li B., Wetzel M.A., et al. Down-regulation of the chemokine receptor CCR5 by activation of chemotactic formyl peptide receptor in human monocytes[J]. Blood, 2000, 96(8): 2887-2894.
    [46] Ali H., Richardson R.M., Haribabu B., et al. Chemoattractant receptor cross-desensitization[J].J. Biol. Chem., 1999, 274(10): 6027-6030.
    [47] Le Y., Murphy P.M., Wang J.M. Formyl-peptide receptors revisited[J]. Trends Immunol, 2002,23(11): 541-548.
    
    [48] Li B.X., Ge J.W., Li Y.J. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus[J]. Virology, 2007, 365(1): 166-172.
    [49] Tresnan D.B., Levis R., Holmes K.V. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I[J]. J. Virol., 1996, 70(12): 8669-8674.
    
    [50] Wentworth D.E., Holmes K.V. Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): influence of N-linked glycosylation[J].J. Virol., 2001,75(20):9741 -9752.
    
    [51] Kasman L.M. CD13/aminopeptidase N and murine cytomegalovirus infection[J]. Virology, 2005, 334(1): 1-9.
    [52] Watt V.M.,Willard H.F. The human aminopeptidase N gene: Isolation, chromosome localization, and DNA polymorphism analysis[J]. Hum. Genet., 1990, 85(6): 651-654.
    
    [53] Rost N.D., Barrett A.J., MEROPS: the peptidase database[J]. Nucl. Acida Res. 2000, 28(1): 323-325.
    [54] Sjostrom H., Noren O., Olsen J. Structure and function of aminopeptidase N[B]. Adv. Exp. Med Biol., 2000,477:25-34.
    
    [55] Onohara Y., Nakajima Y., Ito K., et al. Crystallization and preliminary X-ray characterization of aminopeptidase N from Escherichia coli[J]. Acta. Cryst., 2006, F62(7): 699-701.
    [56] Ito K., Nakajima Y., Onohara Y., et al. Crystal structure of aminopeptidase N (proteobacteria alanyl aminopeptidase) from Escherichia coli and conformational change of methionine 260 involved in substrate recognition [J]. J. Biol. Chem., 2006,281(44):33664-33676.
    [57] Addlagatta A., Gay L., Matthews B.W. Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site[J]. Proc. Natl. Acad Sci. U. S. A., 2006, 103(36): 13339-13344.
    [58] Nocek B., Mulligan R., Bargassa M., et al. Crystal structure of aminopeptidase N from human pathogen Neisseria meningitides[J]. Proteins, 2007, 70(1):273-279.
    
    [59] Hooper, N. M. Families of zine metallproteases[J].FEBS Lett,1994,354(1):1-6.
    [60] Jiang W., Bond J.S.,Families of metalloendopeptidases and their relationships [J]. FEBS Lett., 1992, 312(2-3):110-114.
    [61] Rudberg P. C., Tholander F., Thunnissen M. M., et al. Leukotriene A4 hydrolase/aminopeptidase. Glutamate 271 is a catalytic residue with specific roles in two distinct enzyme mechanisms [J]. J. Biol. Chem., 2002, 277(2):1398-1404.
    [62] Hangauer D. G., Monzingo A. F., Matthews B. W. An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides[J]. Biochemistry. 1984,23(24): 5730-5741.
    [63] Holmes M. A., Matthews B. W. Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis[J]. Biochemistry. 1981, 20(24): 6912-6920.
    
    [64] Umezawa H., Aoyagi T., Suda H., et al. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes[J]. J. Antibiot., 1976, 29, 97-99.
    
    [65] Pulido-Cejudo G., Conway B., Proulx P., et al. Bestatin-mediated inhibition of leucine aminopeptidase may hinder HIV infection[J]. Antiviral Res., 1997, 36(3):167-177.
    
    [66] Mathe G. Bestatin, an aminopeptidase inhibitor with a multi-pharmacological function[J]. Biomed Pharmacother., 1991,45(2-3):49-54.
    
    [67] Urabe A., Mutoh Y., Mizoguchi H., et al. Immunotherapy with bestatin for acute nonlympgocytic leukemia in adults[J]. Ann Hematol., 1993, 67: 63-66.
    
    [68] Ezawa K, Minato K, Dobashi K. Induction of apoptosis by ubenimex (Bestatin) in human non-small-cell lung cancer cell lines[J]. Biomed Pharmacother., 1996, 50(6-7):283-289.
    
    [69] Ino K., Bierman P.J., Varney M.L., et al. Monocyte activation by an oral immunomodulator (bestatin) in lymphoma patients following autologous bone marrow transplantation[J]. Cancer Immunol Immunother., 1996,43(4):206-212.
    
    [70] Ichinose Y., Genka K., Koike T., et al. Randomized double-blind placebo-controlled trial of bestatin in patients with resected stage I squamous-cell lung carcinoma[J]. J Natl Cancer Inst., 2003, 95(8):605-610.
    
    [71] Hensbergen Y, Broxterman H.J., Peters E., et al. Aminopeptidase inhibitor bestatin stimulates microvascular endothelial cell invasion in a fibrin matrix[J]. Thromb Haemost. 2003; 90(5): 921-929.
    [72] Ota K.,Kurita S. Immunotherapy with bestatin for acute non-Lymphocytic Leukemia(ANLL)in adults[J]. Jpn. J. Cancer Chemother., 1984,11(2): 2442-2750.
    
    [73] Ota K.,Kurita S. Results of investigation into prognosis immunotherapy with bestatin for acute nonlymphocytic Leukemia in adults[J]. Jpn.J.Cancer Chemother.,1986,13(1):1017-1025
    
    [74] Ota K., Ogawa N. Randomized controlled study of chemoimmunotherapy with bestatin of acute nonlymphocytic leukemia in adults[J]. Biomed. Pharmacother., 1990,44(2): 93-101.
    [75] Aoyagi T., Yoshida S., Nakamura Y., et al. Probestin, a new inhibitor of aminopeptidase M, produced by Streptomyces azureus MH663-2F6. I. Taxonomy, production, isolation, physico-chemical properties and biological activities[J]. J. Antibiot., 1990,43(2): 143-148.
    [76] Repic Lampret B., Kidric J., Kralj B., et al. Lapstatin, a new aminopeptidase inhibitor produced by Streptomyces rimosus, inhibits autogenous aminopeptidases[J]. Arch. Microbiol., 1999, 171(6): 397-404.
    [77] Nagai M., Kojima F., Naganawa H., et al. Phebestin, a new inhibitor of aminopeptidase N, produced by Streptomyces sp. MJ716-m3[J]. J. Antibiot., 1997, 50(1): 82-84
    [78] Aoyagi T., Tobe H., Kojima F., et al. Amastatin, an inhibitor of aminopeptidase A, produced by actinomycetes[J]. J. Antibiot., 1978,31(6): 636-638.
    [79] Rich D.H., Moon B.J., Harbeson S. Inhibition of aminopeptidases by amastatin and bestatin derivatives. Effect of inhibitor structure on slow-binding processes[J]. J. Med. Chem., 1984,27(4): 417-422.
    [80] Luoh H.F., Chan S.H. Participation of AT1 and AT2 receptor subtypes in the tonic inhibitory modulation of baroreceptor reflex response by endogenous angiotensins at the nucleus tractus solitarii in the rat[J]. Brain Res., 1998, 782(1-2): 73-82.
    [81] Umezawa H., Aoyagi T., Tanaka T., et al. Production of actinonin, an inhibitor of aminopeptidase M, by actinomycetes[J]. J. Antibiot., 1985, 38(11): 1629-1630.
    [82] Lee M.D., Antczak C., Li Y.M., et al. A new human peptide deformylase inhibitable by actinonin[J]. Biochem. Biophys. Res. Commun., 2003, 312(2): 309-315.
    [83] Hachisu M., Hiranuma T., Murata S., et al. Analgesic effect of actinonin, a new potent inhibitor of multiple enkephalin degrading enzymes[J]. Life Sci., 1987, 41(2): 235-240.
    [84] Sui Z., Salto R., Li J., et al. Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes [J]. Bioorg. Med. Chem., 1993, 1(6): 415-420.
    [85] Shim J.S., Kim J.H., Cho H.Y., et al. Irreversible inhibition of APN/aminopeptidase N by the antiangiogenic agent curcumin[J]. Chem.Biol., 2003,10(8): 695-704.
    [86] Egan M.E., Pearson M., Weiner S.A., et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects[J]. Science, 2004, 304(5670): 600-602.
    [87] Shin J.S., Lee H.S., Shin J., et al. Psammaplin A, a marine natural product, inhibits aminopeptidase N and suppresses angiogenesis in vitro [J]. Cancer. Lett., 2004, 203(2): 163-169.
    [88] Melzig M.F., Bormann H. Betulinic acid inhibits aminopeptidase N activity[J]. Planta Med., 1998, 64(7): 655-657.
    [89] Aiken C., Chen C.H. Betulinic acid derivatives as HIV-1 antivirals[J]. Trends Mol. Med, 2005,11(1): 31-36.
    [90] Aoyagi T., Yoshida S., Matsuda N., et al. Leuhistin, a new inhibitor of aminopeptidase M, produced by Bacillus laterosporus BMI156-14F1. I. Taxonomy, production, isolation, physico-chemical properties and biological activities[J]. J. Antibiot., 1991,44(6): 573-578.
    [91] Chung M.C., Lee H.J., Chun H.K., et al. Bestatin analogue from Streptomyces neyagawaensis SL-387 [J]. Biosci. Biotechnol. Biochem., 1996, 60(5): 898-900.
    [92] Huang K., Takahara S., Kinouchi T., et al. Alanyl aminopeptidase from human seminal plasma: purification, characterization, and immunohistochemical localization in the male genital tract [J]. J. Biochem., 1997,122(4): 779-787.
    [93] Yamamoto Y., Li Y.H., Ushiyama I., et al. Puromycin-sensitive alanyl aminopeptidase from human liver cytosol: purification and characterization [J]. Forensic. Sci. Int., 2000, 113(1-3): 143.
    [94] Sedo A., Vlasicova K., Bartak P., et al. Quaternary benzo[c]phenanthridine alkaloids as inhibitors of aminopeptidase N and dipeptidyl peptidase IV [J]. Phytoter. Res., 2002,16(1): 84-87.
    [95] Andersson L., Isley T.C., Wolfenden R. Alpha-aminoaldehydes: transition state analogue inhibitors of leucine aminopeptidase [J]. Biochemistry, 1982, 21(17): 4177-4180.
    [96] Giannousis P.P., Bartlett P.A. Phosphorus amino acid analogues as inhibitors of leucine aminopeptidase [J]. J. Med. Chem., 1987,30(9): 1603-1609.
    [97] Chen H., Noble F., Coric P., et al. Aminophosphinic inhibitors as transition state analogues of enkephalin-degrading enzymes: a class of central analgesics [J]. Proc. Natl. Acad Sci. U.S.A., 1998, 95(20): 12028-12033.
    [98] Lejczak B., Kafarski P., Zygmunt J. Inhibition of aminopeptidases by aminophosphonates [J]. Biochemistry, 1989,28(8): 3549-3555.
    [99] Grembecka J., Mucha A., Cierpicki T., et al. The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity [J]. J. Med. Chem., 2003,46(13): 2641-2655.
    
    [100] Chen H., Noble R, Roques B.P., et al. Long lasting antinociceptive properties of enkephalin degrading enzyme (NEP and APN) inhibitor prodrugs [J]. J. Med. Chem., 2001,44(21): 3523-3530.
    [101]Vassiliou S.,Xeilari M.,Yiotakis A.,et al.A synthetic method for diversification of the P10 substituent in phosphinic dipeptides as a tool for exploration of the specificity of the S10 binding pockets of leucine aminopeptidases[J].Bioorg.Med.Chem.Lett.,2007,15(9):3187-3200
    [102]Drag M.,Grzywa R.,Oleksyszyn J.Novel hydroxamic acid-related phosphinates:Inhibition of neutral aminopeptidase N(APN)[J].Bioorg.Med.Chem.Lett.,2007,17(6):1516-1519.
    [103]Fournie-Zaluski M.,Coric P.,Turcaud S.,et al.Potent and systemically active aminopeptidase N inhibitors designed from active-site investigation[J].J Meal Chem.,1992,35(7):1259-1266.
    [104]Bergin J.D.,Clapp C.H.Inhibition of aminopeptidase M by alkyl D-cysteinates [J].J.Enzym.Inhib.,1989,3(2):127-131.
    [105]马涛,徐文方,王俊丽,等.AHPA衍生物的设计、合成及抗癌活性研究[J].中国药物化学杂志,2003,13(2):70-75.
    [106]Wang,J.,Xu,W.The preparation of novel L-iso-glutamine derivativesas potential antitumor agents[J],d.Chem.Res.Synop.,2003,12,789-791.
    [107]Shenvi A.B.Alpha-Aminoboronic acid derivatives:effective inhibitors of aminopeptidases[J].Biochemistry,1986,25(6):1286-1291.
    [108]Lindsay C.K.,Gomez D.E.,Thorgeirsson U.P.Effect of flavone acetic acid on endothelial cell proliferation:evidence for antiangiogenic properties[J].Anticancer Res.,1996,16(1):425-431.
    [109]Bibby M.C.,Double J.A.Flavone acetic acid--from laboratory to clinic and back[J].AntiCancer Drugs,1993,4(1),3-17.
    [110]Bauvois B.,Puiffe M.,Bongui J.,et al.Synthesis and biological evaluation of novel flavone-8-acetic acid derivatives as reversible inhibitors of aminopeptidase N/APN[J].J.Med.Chem.,2003,46(18):3900-3913.
    [111]Schalk C.,d'Orchymont H.,Jauch M.F.,et al.3-Amino-2-tetralone derivatives:novel potent and selective inhibitors of aminopeptidase-M(EC 3.4.11.2)[J].Arch Biochem Biophys,1994,311(1):42-46.
    [112]Albrecht S.,Defoin A.,Salomon E.,et al.Synthesis and structure activity relationships of novel non-peptidic metallo-aminopeptidase inhibitors[J].Bioorg.Med.Chem.,2006,14(21):7241-7257.
    [113]Ocain T.D.,Rich D.H.Alpha-Keto amide inhibitors of aminopeptidases[J].or. Med.Chem.,1992,35(3):451-456.
    [114]Ocain T.D.,Rich D.H.Synthesis of sulfur-containing analogues of bestatin.Inhibition of aminopeptidases by alpha-thiolbestatin analogues[J].J Med.Chem.,1988,31(11):2193-2199.
    [115]Miyachi H.,Kato M.,Kato F.,et al.Novel potent nonpeptide aminopeptidase N inhibitors with a cyclic imide skeleton[J].J..Med.Chem.,1998,41(3):263-265.
    [116]Takahashi H.,Komoda M.,Kakuta H.,et al.Preparation of novel specific aminopeptidase inhibitors with a cyclic imide skeleton[J].Yakugaku Zasshi,2000,120(10):909-921.
    [117]Lee J.,Shim J.S.,Jung S.A.,et al.N-Hydroxy-2-(naphthalene -2-ylsulfanyl)-acetamide,a novel hydroxamic acid-based inhibitor of aminopeptidase N and its anti-angiogenic activity[J].Bioorg.Med Chem.Lett.,2005,15(1):181-183.
    [1]Onohara Y.,Nakajima Y.,Ito K.,et al.Crystallization and preliminary X-ray characterization of aminopeptidase N from Escherichia coli[J].Acta.Cryst.,2006,F62(7):699-701.
    [2]Ito K.,Nakajima Y.,Onohara Y.,et al.Crystal structure of aminopeptidase N (proteobacteria alanyl aminopeptidase) from Eschedchia coli and conformational change of methionine 260 involved in substrate recognition[J].J.Biol.Chem.,2006,281(44):33664-33676.
    [3]Addlagatta A.,Gay L.,Matthews B.W.Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized,gated active site[J].Proc.Natl.Acad.Sci.U.S.A.,2006,103(36):13339-13344.
    [4]Mina-Osorio P.The moonlighting enzyme CD13:old and new functions to target[J].Trends Mol.Med.2008,14(8):361-71.
    [5]Kramer R.Z.,Bella J.,Mayville P.,et al.Sequence dependent conformational variations of collagen triple-helical structure[J].Nat.Struc.t Biol.1999,6(5):454-7.
    [6]Rzeski W.,Matysiak J.,Kandefer-Szerszen M.Anticancer,neuroprotective activities and computational studies of 2-amino-1,3,4-thiadiazole based compound[J].Bioorg.Med.Chem.2007,15(9):3201-7.
    [7]张春乐,宋康康,陈祥仁,等。肉桂酸及其衍生物的抑菌活性研究[J]。厦门大学学报(自然科学皈),2006,45,16-19
    [8]金戈,张婷,王涛,杨丽萍.α-干扰素与肉桂酸对人肺癌细胞增殖的抑制作用[J].癌症,2002,21(8),860-862.
    [9]Akao Y.,Maruyama H.,Matsumoto K.et al.Cell growth inhibitory effect of cinnamic acid derivatives from propolis on human tumor cell lines[J].Biol Pharm Bull.2003,26(7):1057-9.
    [10]Moriguchi I.,Hirono S.,Liu Q.et al.Simple Method of Calculating Octanol/Water Partition Coefficient[J].Chem.Pharm.Bull.,1992,40(1):127-130.
    [11]杨二冰,李正名。药物分子设计中的Lipinski规则[J]。化学通报,2006,69(1),16-19.
    [12]Kubinyi H.Drug research:myths,hype and reality[J].Nature Reviews Drug Dicovery,2003,2(8):665-668.
    [13]Lipinski C.A.Chris Lipinski discusses life and chemistry after the Rule of Five[J].Drug Discovery Today,2003,8(1):12-16.
    [1]帅翔,孙霞,邵瑞琪,等。2-芳基-5-苯磺酰基-1,3,4-噻二唑化合物的合成[J]。山东大学学报(医学版),2002,40(2),182-183.
    [2]Foroumadi,A.;Daneshtalab,M.;Shafiee,A.Synthesis and in vitro antifungal activity of 2-aryl-5-phenylsulfonyl-1,3,4-thiadiazole derivatives[J].Arzneimittel-Forschung.,1999,49,1035-8.
    [3]Shafiee A.,Foroumadi.Syntheses of arylsulfonyl-1,3,4-thiadiazoles[1][J].J.Heterocyclic.Chem.,1996,33,1611-4.
    [4]Foroumadi A.,Asadipour A.,Mirzaei M.et al.Antituberculosis agents.V.Synthesis,evaluation of in vitro antituberculosis activity and cytotoxicity of some 2-(5-nitro-2-furyl)-1,3,4- thiadiazole derivatives[J].Il.Farmaco.,2002,57,765- 9.
    [5]Levy,M.;Palmer,A.H.the benzoylation and resolution of alanine[J].J.Biol.Chem.,1942,146(2),493-5.
    [6]Song,K.S.;Ishikawa,Y.;Kobayashi,S.;et al.N-acylamino acids from Ephedra distachya cultures[J].Phytochemistry,1992,31(3),823-6.
    [7]Bruker(2004).APEX2 and SAINT.Bruker AXS Inc.,Madison,Wisconsin,USA.
    [8]Sheldrick,G.M.A short history of SHELX,Acta Cryst.2008,A64(1),112-122.
    [9]Fun,H.K.,Chantrapromma,S.,Patil,P.S.,et al.(E)-3-(2-Chlorophenyl)-1-(2,4-dichlorophenyl)prop-2-en-1-one[J].Acta Cryst.2008,E64(6),o956-o957.
    [10]Gowda,B.T.,Tokarcik M.,Kozisek J.,et al.N-(2,4-Dichlorophenyl)benzamide[J]. Acta Cryst.2008,E64(6),0950.
    [11]Thiruvalluvar,A.,Subramanyam,M.,Butcher,R.J.,et al.(E)-1-[4-(Methylsulfanyl)phenyl]-3-phenylprop-2-en-1-one[J].Acta Cryst.2008,E64,ol263.
    [1]Drag M.,Grembecka J.,Pawelczak M.,et al.α-Aminoalkylphosphonates as a tool in experimental optimisation of P1 side chain shape of potential inhibitors in S1pocket of leucineand neutral aminopeptidases[J].Eur.J.Med.Chem.,2005,40(8):764-771.
    [2]Baragi V.M.,Shaw B.I.,Renkiewicz R.R.,et al:A versatile assay for gelatinases using succinylated gelatin[J].Matrix Biol,2000,19:267-273.
    [3]何静松,林茂芳,麦文渊,等.乌苯美司对人白血病细胞生长抑制及其机制探讨[J].浙江大学学报(医学版),2002,31(4):259-264.
    [4]Sehine K.,Fujii H.,Abe F.Induction of apoptosis by Bestatin(ubenimex) in human leukemic cell lines[J].Leukemia,1999,13(5):729-734.
    [5]Ezawa K.,Minato K.,Dobashi K.Induction of apoptosis by ubenimex (Bestatin) in human non-small-cell lung cancer cell lines[J].Biomed Pharmaco.Ther.,1996,50(6-7):283-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700