用户名: 密码: 验证码:
聚丙烯/微、纳米二氧化硅复合材料的分散与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超细二氧化硅(包括微、纳米二氧化硅)由于其良好的光学透明性、生物相容性、物理与化学稳定性及可裁剪的表面性质等优点而被广泛应用。聚丙烯(PP)是用途广泛的通用塑料,与二氧化硅(SiO2)复合可提高其加工、力学、热稳定等性能,有望实现聚丙烯的工程化。如何实现SiO2在聚丙烯基体中的均匀分散及提高两相的界面相容性是制备聚丙烯/SiO2复合材料的关键。本论文分别采用改性SiO2和二氧化硅聚合物复合微球为填料,通过熔融共混和注塑成型的方法制备了PP/微、纳米SiO2复合材料,系统研究了SiO2在PP基体中的分散及复合材料的结构与性能。具体研究内容及主要结果如下:
     (1)采用马来酸酐接枝氢化苯乙烯/乙烯-丁烯/苯乙烯嵌段共聚物(MA-SEBS)作增容剂,通过熔融共混和注塑成型的方法制备了PP/SiO2纳米复合材料。研究了MA-SEBS对复合材料的分散状态、力学性能、结晶形态及结晶及熔融行为的影响。结果表明MA-SEBS起到了界面相容剂的作用,降低了纳米SiO2的团聚,改善了其在PP基体中的分散,显著提高了复合材料的冲击强度;MA-SEBS使SiO2在PP结晶过程中能更好地起到异相成核作用,提高了复合材料中PP相的结晶温度,使PP形成尺寸更小、结构更完整的球晶。
     (2)将甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)通过原位乳液共聚合的方法对纳米SiO2进行接枝改性;将改性SiO2与PP复合制备了PP/纳米SiO2复合材料。研究了接枝改性对SiO2表面性质、SiO2在PP基体中的分散、PP/SiO2复合材料力学性能和结晶、熔融行为的影响。
     结果表明聚甲基丙烯酸甲酯(PMMA)和聚丙烯酸丁酯(PBA)成功地接枝到了纳米SiO2表面,且可通过改变共聚单体的种类和配比调控SiO2表面接枝聚合物的溶度参数和模量;由于接枝在纳米SiO2表面的PMMA加强了SiO2的亲油性和异相成核能力,增强了纳米SiO2在PP基体中的分散性和界面粘合、降低了复合材料中PP的球晶尺寸,从而导致杨氏模量和韧性同时提高;与PP相容性更好的PBA对纳米SiO2的接枝改性进一步改善了SiO2粒子在PP中的分散和界面的粘结,使PP/SiO2复合材料的韧性进一步提高,但使复合材料的模量下降;相比PMMA或PBA的改性,用共聚物P (MMA-co-BA)对纳米SiO2粒子进行接枝改性能使PP/SiO2复合材料呈现出均衡的强度和韧性。
     (3)利用溶胶-凝胶法和原位乳液聚合法,制备了以SiO2为核、P(MMA-co-BA)共聚物为壳的复合微球,将复合微球与PP熔融共混、注塑成型制备了均匀分散的PP/SiO2复合材料。研究了SiO2聚合物复合微球的粒径大小及其壳层厚度的影响因素,复合微球对PP/SiO2复合材料的分散、力学性能、结晶、熔融及非等温结晶动力学行为的影响。
     结果表明通过改变SiO2胶体微球的粒径、MMA和BA的用量可以调控核-壳复合微球的粒径和壳层厚度;由于复合微球壳层的高分子链有效地阻止了无机粒子间的直接接触从而改善了SiO2粒子在PP基体的分散,同时壳层高分子链与基体间良好的相容性增强了PP与SiO2的界面粘结强度,有效地提高了PP/SiO2复合材料的冲击强度;SiO2复合粒子的粒径及壳层厚度对复合材料的力学性能有显著的影响,当复合粒子壳层厚度为15nm时,在不降低复合材料拉伸强度的情况下,使复合材料的冲击强度提高到纯PP的两倍;粒子脱粘、塑性银纹扩张和基体剪切屈服吸收冲击破坏产生的能量是造成复合材料韧性提高的原因;均匀分散的SiO2复合粒子对PP能够起到很好的结晶成核作用、提高复合材料中PP相的结晶温度;并通过Mo法准确地描述了PP/SiO2复合材料的非等温结晶动力学行为。
Ultrafine silica particles, including micro- and nanosized silica, have been employed in a variety of areas because of their optical transparency, electrical insulation, chemical and physical stabilities, biocompatibility and tunable surface properties. Polypropylene (PP) is an important general plastic and PP-silica composites have attracted more and more attention owing to their excellent processability, unique mechanical and thermal stability, etc. However, to enhance the dispersion of nano-fillers is a major challenge due to their strong tendency to agglomerate. In the dissertation, modified nano-silica and silica-polymer hybrid-particles were respectively compounded with polypropylene (PP) by melt mixing to prepare PP/SiO2 composites. The dispersion of SiO2 in PP, as well as structure and properties of PP/SiO2 composites were studied. The main contents and results were drawn as following:
     (1) Maleic anhydride grafted styrene-ethylene-butylene-styrene (MA-SEBS) was used as compatibilizer of PP/SiO2 nanocomposites. The effects of MA-SEBS on dispersion, mechanical properties, crystallization and melting properties were stedied. MA-SEBS enhances the dispersion of silica in PP and improves the interface adhesion between silica and PP matrix, which leads to improving the impact strength of composites.
     (2) Nano-sized silica particles were modified with methyl methacrylate (MMA) and butyl acrylate (BA) by in situ emulsion copolymerization. These modified nanoparticles were compounded with PP to prepare PP/SiO2 nanocomposites. The effects of modification on dispersion of SiO2 in PP, mechanical properties, crystallization were studied.
     PMMA and PBA are successfully grafted onto nano-SiO2. The solubility parameter and modulus of the copolymer covering on SiO2 surface are controlled by means of changing the copolymer composition. PMMA grafted on nano-silica enhances the dispersion of the nanoparticles in PP and interfacial adhesion between SiO2 and PP, decreases the size of PP spherulites in nanocomposites, which increase the Young's modulus and toughness of PP/SiO2 nanocomposites. PBA grafted on nano-silica further improves the dispersion and the interfacial interaction, decreases the size of PP spherulites in PP/SiO2 nanocomposite, which leads to further toughening the PP/silica nanocomposite. Howerever, its low modulus decreases the modulus of the PP/silica nanocomposite. The nanocomposites containing PP and nano-silica particles modified with P(MMA-co-BA) have balanced stiffness and toughness due to the moderate modulus and solubility parameter of P(MMA-co-BA).
     (3) A series of core-shell silica hybrid-particles with nanometer P(MMA-co-BA) shells were fabricated by the sol-gel process and emulsion copolymerization of methyl methacrylate (MMA) and butyl acrylate (BA), which were subsequently compounded with PP in the molten state to prepare homogeneously dispersed PP/SiO2 composites. The effects of silica hybrid-particles on dispersion of SiO2 in PP, mechanical properties and crystallization behave were studied.
     Upon changing the sizes of silica and the feed silica/co-monomer ratio, the sizes of silica hybrid-particles P(MMA-co-BA) and shell thickness on the silica core were controled. Owing to the existence of the nanometer P(MMA-co-BA) shells, the silica hybrid-particles were almost mono-dispersed in the PP matrix and improve the the interfacial interaction between PP and silica, which leads to improve the impact strength of composites. The sizes of silica hybrid-particles and shell thickness have great effects on mechanical properties.That is, when the polymer shell thickness was 15 nm, compared to pure PP, the impact toughness of the PP/silica composite was more than doubled with little degradation of tensile strength. The homogeneous debonding at the PP/silica interface, plastic void expansion and plastic matrix shearing during impact fracture greatly toughened the PP/silica composites. The incorporation of well-dispersed silica hybrid-particles acts as nucleating agents to increase the Tcp of PP phase in the PP/SiO2. The non-isothermal crystallization kinetics of PP/SiO2 composites is studied using Mo approach.
引文
[1]Mark J. E. Ceramic-reinforced polymers and polymer-modified ceramics[J]. Polymer Engineering & Science,1996,36(24):2905-2920
    [2]Chung Deborah. D. L. Composite Materials:Science and Aplication Functional Materials for Modern Technologies[M]. London:Springer,2003
    [3]Mai Y. W., Yu Z. Z. Polymer Nanocomposites[M]. Woodhead Publishing Limited,2006
    [4]Duchateau R. Incompletely condensed silsesquioxanes:Versatile tools in developing dilica-dupported olefin polymerization catalysts[J]. Chemical Reviews,2002,102 (10): 3525-3542
    [5]Zou H., Wu S., Shen J. Polymer/silica nanocomposites:Preparation, characterization, properties and applications [J]. Chemical Reviews,2008,108 (9):3893-3957
    [6]Yang Y. K., Yang Z. F., Zhao Q., et al. Immobilization of RAFT agents on silica nanoparticles utilizing an alternative functional group and subsequent surface-initiated RAFT polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry,2009, 47 (2):467-484
    [7]Xie X. L., Liu Q. X., Li, R. K. Y., et al. Rheological and mechanical properties of PVC/CaCO3 nanocomposites preparaed by in situ polymerization[J]. Polymer,2004, 45(19):6665-6673
    [8]Xia H. S., Wang Q.. Ultrasonic irradiation:A novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites[J]. Chemistry of Materials,2002, 14 (5):2158-2165
    [9]Ou Y. C., Yang F., Yu Z. Z. New conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization[J]. Journal of Polymer Science Part B:Polymer Physics,1998,36 (5):789-795
    [10]Liu W. T., Tian X. Y., Cui P., et al. Preparation and characterization of PET/silica nanocomposites[J]. Journal of Applied Polymer Science,2004,91(2):1229-1232
    [11]Kashiwagi T., Morgan A. B., Antonucci J. M., et al. Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite[J]. Journal of Applied Polymer Science,2003,89(8):2072-2078
    [12]Krishnamoorti R., Vaia R. A. Polymer Nanocomposites[M]. Washington:American Chemical Society,2001
    [13]Hsiue G. H., Kuo W. J., Huang Y.P. et al. Microstructural and morphological Characteristics of PS-SiO2 nanocomposites[J]. Polymer,2000,41(8):2813-2825
    [14]Huang S. L., Chin W. K., Yang W. P. Structural characteristics and properties of silica/poly(2-hydroxyethyl methacrylate) (PHEMA) nanocomposites prepared by mixing colloidal silica or tetraethyloxysilane (TEOS) with PHEMA[J]. Polymer,2005, 46(6):1865-1877
    [15]Dewimille L., Bresson B., Bokobza L. Synthesis, structure and morphology of poly(dimethylsiloxane) networks filled with in situ generated silica particles [J]. Polymer,2005,46(12):4135-4143
    [16]Li Y., Fu S. Y., Li Y. Q, et al. Improvements in transmittance, mechanical properties and thermal stability of silica-polyimide composite films by a novel sol-gel route[J]. Composites Science and Technology,2007,67(11-12):2408-2416
    [17]Sengupta R., Bandyopadhyay A., Sabharwal S., et al. Polyamide-6,6/in situ silica hybrid nanocomposites by sol-gel technique:synthesis, characterization and properties[J]. Polymer 2005,46(10):3343-3354
    [18]Ellsworth M. W., Novak B. M., Ellsworth M. W., et al. Mutually interpenetrating inorganic-organic networks. New routes into nonshrinking sol-gel composite materials [J]. Journal of the American Chemical Society,1991,113:2756-2758
    [19]Patel S., Bandyopadhyay A., Vijayabaskar V., et al. Effect of microstructure of acrylic copolymer/terpolymer on the properties of silica based nanocomposites prepared by sol-gel technique[J]. Polymer,2005,46(19):8079-8090
    [20]Li Z. L., Han W., Kozodaev D., et al. Surface properties of poly (dimethylsiloxane)-based inorganic/organic hybrid materials[J]. Polymer,2006,47(4):1150-1158
    [21]Christine J. T. L., Bradley K. C., Michael R. L.,et al. Poly(vinyl acetate)/silica-filled materials:material properties of in situ vs fumed silica particles[J]. Macromolecules, 1993,26(14):3702-3712
    [22]Nunes S. P., Peinemann K. V., Ohlrogge K., et al. Membranes of poly(etherimide) and nanodispersed silica[J]. Journal of Membrane Science,1999,157(2):219-226
    [23]Fua H. P., Hong R. Y., Zhang Y. J., et al. Preparation and properties investigation of PMMA/silica composites derived from silicic acid[J]. Polymers for Advanced Technologies,2009,20(2):84-91
    [24]Chan C. M., Wu J. S., Li J. X., et al. Polypropylene/calcium carbonate nanocomposites[J]. Polymer,2002,43(10):2981-2992
    [25]Rong M. Z., Zhang M. Q., Zheng Y. X., et al. Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites [J]. Polymer, 2001,42(1):167-183
    [26]Bikiaris D. N., Papageorgiou G. Z., Pavlidou E., et al. Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles[J]. Journal of Applied Polymer Science,2006,100(4): 2684-2696
    [27]Bikiaris D. N., Vassiliou A., Pavlidou E., et al. Compatibilization effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing[J]. European Polymer Journal,2005,41(9):1965-1978
    [28]Chen G. D., Zhou S. X., Gu G. G., et al. Modification of colloidal silica on the mechanical properties of acrylic based polyurethane/silica composites [J]. Colloids and Surfaces A:Physicochemical Engineering Aspects,2007,296(1-3):29-36
    [29]Bugnicourt E., Galy J., Gerard J. F., et al. Effect of sub-micron silica fillers on the mechanical performances of epoxy-based composites[J]. Polymer,2007,48(6): 1596-1605
    [30]孙水升,李春忠,张玲,等.纳米二氧化硅颗粒表面设计及其填充聚氯乙烯复合材料的性能[J].高校化学工程学报,2006,20(5):798-804
    [31]Farrah N. A., Mariatti J., Samayamutthirian P., et al. Effect of particle shape of silica mineral on the properties of epoxy composites[J]. Composites Science and Technology, 2008,68(2):346-353
    [32]Kwon S. C., Adachi T., Araki W., et al. Effect of composing particles of two sizes on mechanical properties of spherical silica-particulate-reinforced epoxy composites[J]. Composites Part B:Engineering,2008,39(4):740-746
    [33]Shang X. Y., Zhu Z. K., Yin J., et al. Compatibility of soluble polyimide/silica hybrids induced by a coupling agent[J]. Chemistry of Materials,2002,14(1):71-77
    [34]Kashiwagi T., Morgan A. B., Antonucci J. M., et al. Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite[J]. Journal of Applied Polymer Science,2003,89(8):2072-2078
    [35]Bauer F., Mehnert R. UV curable acrylate nanocomposites:Properties and applications [J]. Journal of Polymer Research,2005,12(6):483-491
    [36]Awaji N, Ohkubo S, Nakanishi T, et al. Thermal oxide growth at chemical vapor deposited SiO2/Si interface during annealing evaluated by difference X-ray refleetivity[J]. Applied Physics Letters,1997,71(14):1954-1956
    [37]张咏春,田明,张立群,等.二氧化硅制备,改性,应用进展[J].现代化工,1998,(4):11-13
    [38]Vassiliou A. A., Papageorgiou G. Z., Achilias D. S., et al. Non-isothermal crystallisation kinetics of in situ prepared poly(ε-caprolactone)/surface-treated SiO2 nanocomposites[J]. Macromolecular Chemistry and Physics,2007,208(4):364-376
    [39]Kim S. H., Ahn S. H., Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly (ethylene 2,6-naphthalate)[J]. Polymer,2003,44(19): 5625-5634
    [40]Stober W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69
    [41]Kim J. W., Kim L. U., Kim C. K. Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites [J]. Biomacromolecules,2007,8(1): 215-222
    [42]Kim H. C., Dubois G. Dekker. Encyclopedia of Nanoscience and Nanotechnology[M]. New York:Taylor & Francis,2005:1-10
    [43]Jana S. C., Jain S. Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids [J]. Polymer,2001,42(16):6897-6905
    [44]Balazs A. C., Todd E., Thomas P. R. Nanoparticle polymer composites:Where two small worlds meet [J]. Science,2006,314(17):1107-1110
    [45]Xie X. L., Tang C. Y., Chan K. Y. Y., et al. Wear performance of ultrahigh molecular weight polyethylene/quartz composites[J]. Biomaterials,2003,24(11):1889-1896
    [46]Verbeek C. J. R. The influence of interfacial adhesion, particle size and size distribution on the predicted mechanical properties of particulate thermoplastic composites[J]. Materials Letters,2003,57:1919-1924
    [47]Somasuundaran K. Adsorption of surfactants and polymers at the solid-liquid interface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1997, 123-124 (1-3):491-513
    [48]Lai Y H., Kuo M. C., Huang J. C., et al. On the PEEK composites reinforced by surface-modified nano-silica[J]. Materials Science and Engineering:A,2007,458(1-2): 158-169
    [49]Tang J. C., Lin G. L., Yang H. C., et al. Polyimide-silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface-modified silica[J]. Journal of Applied Polymer Science,2007,104(6):4096-4105
    [50]Ding X. F., Zhao J. Z, Liu Y. H., et al. Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion polymerization[J]. Materials Letters,2004, 58(25):3126-3130
    [51]Sousa R. A., Reis R. L., Cunha A. M., et al. Coupling of HDPE/hydroxyapatite composites by silane-based methodologies[J]. Journal of Materials Science:Materials in Medicine,2003,14(6):475-487
    [52]Wang M., Deb S., Bonfield W. Chemically coupled hydroxyapatite-polyethylene composites:processing and characterization[J]. Materials Letters,2000,44(2):119-124
    [53]Michael D. K. I., Charles H. H., Juanita V. M., et al. Surface functionalization and imaging using monolayers and surface-grafted polymer layers [J]. Journal of the American Chemical Society,1999,121,3607-3613
    [54]Landry C. J. T., Coltrain B. K., Teegarden D. M. Use of organic copolymers as compatibilizers for organic-inorganic composites [J]. Macromolecules,1996,29 (13): 4712-4721
    [55]Xie X. L., Fung K. L., Li R. K. Y., et al. Structural and mechanical behavior of polypropylene/maleated styrene-(ethylene-co-butylene)-styrene/sisal fiber composites prepared by injection molding[J]. Journal of Polymer Science Part B:Polymer Physics, 2002,40(12):1214-1222
    [56]Bikiaris D. N., Vassiliou A., Pavlidou E., et al. Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing[J]. European Polymer Journal,2005,41(9):1965-1978
    [57]Rong M. Z., Zhang M. Q.; Zheng Y. X., et al. Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism[J]. Polymer,2001, 42(7):3301-3304
    [58]Sertchook H., Avnir D. Submicron silica/polystyrene composite particles prepared by a one-step sol-gel process[J]. Chemistry of Materials,2003,15(8):1690-1694
    [59]Chen E. J. H., Hsia B. S. The effects of transcrystalline interphase in advanced polymer composites[J]. Polymer Engineering and Science,1992,32(4):280-286
    [61]Voronov A., Kohut A., Synytska A., et al. Mechanochemical modification of silica with poly(1-vinyl-2-pyrrolidone) by grinding in a stirred media mill. Journalof Applied Polymer Science,2007,104(6):3708-3714
    [61]Hergeth W. D., Steinau U. J., Bittrich H. J., et al. Polymerization in the presence of seeds. Part IV:Emulsion polymers containing inorganic filler particles[J]. polymer, 1989,30 (2):254-256
    [62]解孝林,周兴平,章卫星,等.无机刚性粒子增强增韧聚合物复合材料的方法[P].中国专利,ZL01114289.8,2002
    [63]Tang C. Y., Xie X. L. Preparing process of in-organic filler reinforced and toughened polymer-matrix composites by in situ copolymerization[P]. US Pat 6602933,2003
    [64]Zhang M. Q., Rong M. Z., Zhang H. B., et al. Mechanical properties of low nano-silica filled high density polyethylene composites[J]. Polymer Engineering and Science,2003, 43 (2):490-500
    [65]钱翼清,赵平,王卫华.烷基化纳米SiO2/MMA乳液聚合物的表征及对PC的改性效果[J].复合材料学报,2003,20(2):79-84
    [66]Xie X. L., Tang C. Y., Zhou X. P., et al. Enhansed interfacial adhesion between PPO and glass beads in composites by surface modification of glass beads via in situ polymerization and copolymerization[J]. Chemistry of Materials,2004,16(1):133-138
    [67]Sondi I., Fedynyshyn T. H., Sinta R., et al. Encapsulation of Nanosized Silica by in Situ Polymerization of tert-Butyl Acrylate Monomer[J].Langmuir,2000,16(23):9031-9034
    [68]Xu N., Zhou W, Shi W. F. Preparation and enhanced properties of poly (propylene)/silica-grafted-hyperbranched polyester nanocomposites[J]. Polymers for Advanced Technologies,2004,15(11):654-661
    [69]周彤辉,阮文红,王跃林,等.复合材料学报,2006,23(2):71-76
    [70]Zhou T. H., Ruan W. H., Mai Y. L., et al. Performance improvement of nano-silica/polypropylene composites through in-situ cross-linking approach[J]. Composites Science and Technology,2008,68(14):2858-2863
    [71]Michiel L.C.M O., Arjen S., Arend J. S. Anionic grafting of polystyrene and poly(styrene-block-isoprene) onto microparticulate silica and glass slides[J]. polymer,1992,33(20):4394-4400
    [72]Zhao H. Y., Kang X.I., Liu L. Comb-coil polymer brushes on the surface of silica nanoparticles[J]. Macromolecules,2005,38(26):10619-10622
    [73]Mori H., Seng D. C., Zhang M. F., et al. Hybrid nanoparticles with hyperbranched Polymer shells via self-condensing Atom Transfer Radical polymerization from silica surfaces[J]. Langmuir,2002,18(9):3682-3693
    [74]Rogach A. L., Nagesha D., Ostrander J. W., et al. "Raisin bun"-type composite spheres of silica and semiconductor nanocrystals[J]. Chemistry of Materials,2000,12(9): 2676-2685
    [75]Bourgeat-Lami E., Espiard P., Guyot A. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica:1. Functionalization and dispersion of silica[J]. Polymer,1995, 36(23):4385-4389
    [76]Bourgeat-Lami E., Lang J. Silica-polystyrene composite particles[J]. Macromolecular Symposia,2000,151(1):377-385
    [77]Espiard P., Guyot A. Poly (ethyl acrylate) latexes encapsulating nanoparticles of silica:2. Grafting process onto silica[J]. Poylmer,1995,36(23):4391-4395
    [78]Zeng Z., Yu J., Guo Z. X. Preparation of carboxyl-functionalized polystyrene/silica composite nanoparticles[J]. Macromolecular Chemistry and Physics,2004,205(16): 2197-2204
    [79]Nagai K., Satake H., Nishishita O., et al.7th Polymer microspheres symposium,1992, 155-158 (JaPan)
    [80]Percy M. J., Barthet C., Lobb J. C., et al. Synthesis and characterization of vinyl polymer-silica colloidal nanocomposites[J]. Langmuir,2000,16 (17):6913-6920
    [81]Amalvy J. I., Percy M. J., Armes S. P. Synthesis and characterization of novel film-forming vinyl polymer/silica colloidal nanocomposites[J]. Langmuir,2001,17 (16):4770-4778
    [82]张洪涛.乳液聚合新技术及应用[M].第1版.北京:化学工业出版社,2007
    [83]Luiz J., Xavier L., Guyot A., et al. Preparation of nano-sized silica/poly(methyl methacrylate) composite latexes by heterocoagulation:comparison of three synthetic routes[J]. Polymer International,2004,53(5):609-617
    [84]Zhang K., Chen H. T., Chen X., et al. Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization[J]. Macromolecular Materials and Engineering,2003,288(4):380-385
    [85]Cheng X. J., Chen M., Zhou S. X., et al. Preparation of SiO2/PMMA Composite Particles Via Conventional Emulsion Polymerization[J]. Journal of Polymer Science: Part A:Polymer Chemistry,2006,44:3807-3816
    [86]Luna-Xavier J. L., Guyot A., Bourgeat-Lami1 E. Synthesis and characterization of silica/poly (methyl methacrylate) nanocomposite latex particles through emulsion polymerization using a cationic azo initiator[J]. Journal of Colloid and Interface Science,2002,250(1):82-92
    [87]王群,府寿宽.乳液聚合的最新进展(上)[J].高分子通报,1996,(3):141-151
    [88]Tang P. L., Sudol E. D., Silebi C. A., et al. Miniemulsion polymerization-a comparative study of preparative variables[J]. Journal of Applied Polymer Science,1991,43(6): 1059-1066
    [89]Tiarks F., Landfeste K., Antonietti M. Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization[J]. Langmuir,2001,17(19):5775-5780
    [90]Zhang S. W., Zhou S. X., Weng Y. M., et al. Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization[J]. Langmuir,2005,21(6): 2124-2128
    [91]Dong M. Q., Bao Y. Z., Weng Z. X., et al. Preparation of acrylate polymer/silica nanocomposite particles with high silica encapsulation efficiency via miniemulsion polymerization[J]. Polymer,2006,47(13):4622-4629
    [92]Zhou J., Zhang S. W., Qiao X. G., et al. Synthesis of SiO2/poly(styrene-co-butyl acrylate) nanocomposite nicrospheres via miniemulsion polymerizationJ]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(10):3202-3209
    [93]Zeng Z., Yu J., Guo Z. X. Preparation of polymer/silica composite nanoparticles bearing carboxyl groups on the surface via emulsifier-free emulsion Copolymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry,2005,43:2826-2835
    [94]Ishizu K. Synthesis and structural ordering of core-shell polymer microspheres[J]. Progress in Polymer Science,1998,23 (8):1383-1408
    [95]Stejskal J., Kratochvil P., Armes S. P., et al. Polyaniline dispersions.6. Stabilization by colloidal silica particles[J]. Macromolecules,1996,29(21):6814-6819
    [98]Corcos F., Bourgeat-Lami E., Novat C., et al. Poly (styrene-b-ethylene oxide) copolymers as stabilizers for the synthesis of silica-polystyrene core-shell particles [J]. Colloid Polymer Science,1999,277(12):1142-1151
    [97]Percy M. J., Michailidou V., Armes S. P. Synthesis of vinyl polymer-silica colloidal nanocomposites via aqueous dispersion polymerization[J]. Langmuir,2003,19(2): 2072-2079
    [98]Bourgeat-Lami E., Lang J. Encapsulation of inorganic particles by dispersion polymerization in polar media 1. Silica nanoparticles encapsulated by polystyrene. Journal of Colloid and Interface Science,1998,197(2):293-308
    [99]Bourgeat-Lami E., Lang J. Encapsulation of inorganic particles by dispersion polymerization in polar media 2. Effect of silica size and concentration on the morphology of silica-polystyrene composite particles [J]. Journal of Colloid and Interface Science,1999,210(2):281-289
    [100]Liu G. Y., Ji H. F., Yang X. L., et al. Synthesis of ellipsoidal hematite/silica/polymer hybrid materials and the corresponding hollow polymer ellipsoids[J]. Langmuir,2008, 24 (10):5485-5491
    [101]Liu G. Y., Ji H. F., Yang X. L., et al. Synthesis of silica/poly (N, N-methylenebisacrylamide) core-shell composite materials by distillation-precipitation polymerization[J]. Polymer,2007,48 (15):4385-4392
    [102]Liu G. Y., Zhang H., Yang X. L., et al. Facile synthesis of monodisperse silica/ polymer hybrid microspheres and hollow polymer microspheres[J]. Polymer,2007, 48(20):5896-5904
    [103]马光辉,苏志国.高分子微球材料(M),北京:化学工业出版社,2003
    [104]Ohno K., Morinaga T., Koh K., et al. Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization[J]. Macromolecules,2005,38(6):2137-2142
    [105]Morinaga T., Ohkura M., Ohno K., et al. Monodisperse silica particles grafted with concentrated oxetane-carrying polymer brushes:Their synthesis by surface-initiated atom transfer radical polymerization and use for fabrication of hollow spheres[J]. Macromolecules,2007,40(4):1159-1164
    [106]Zhao Y. L., Perrier S. B. Synthesis of well-defined homopolymer and diblock copolymer grafted onto silica particles by Z-supported RAFT polymerization[J]. Macromolecules,2006,39(25):8603-8608
    [107]Hua D. B., Tang J., Jiang J. L., et al. Controlled grafting modification of silica gel via RAFT polymerization under ultrasonic irradiation[J]. Materials Chemistry and Physics, 2009,114:402-406
    [108]Fususawa K., Anzai C. Preparation of composite fine particles by heterocoagulation[J]. Colloid and Polymer Science,1987,265(10):882-888
    [109]Fususawa K., Nagashima K., Anzai C. Preparation of composite particles with multilayers by heterocoagulation and encapsulation polymerization[J]. Journal of Colloid and Interface Science,1993,50:337-342
    [110]Caurso F., Caurso R.A., Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science,1998,282:1111-1115
    [111]Ciprari D., Jacob K., Tannenbaum R. Characterization of polymer nanocomposite: interphase and its impact on mechanical properties[J]. macromolecules,2006,39 (19): 6565-6573
    [112]Rong M. Z., Zhang M. Q., Pan S. L., et al. Interfacial effects in polypropylene-silica nanocomposites[J]. Journal of Applied Polymer Science,2004,92(3):1771-1781
    [113]Thio Y.S., Argon A.S., Cohen R.E. Role of interfacial adhesion strength on toughening polypropylene with rigid particles[J]. Polymer,2004,45(10):3139-3147
    [114]Turcsanyi B., Pukanszky B., Tudos F. Journal of Materials Science Letters,1988,7 (2): 160-162
    [115]Lach R., Kim G. M., Michler G. H., et al. Indentation fracture mechanics for toughness assessment of PMMA/SiO2 nanocomposites[J]. Macromolecular Materials and Engineering,2006,2919(3):263-271
    [116]Bucknall C. B. Toughened Plastics[M]. London:Applied Science Publishers,1979
    [117]Ramsteiner F., Heckmann W. Mode of deformation in rubber-modified polyamide[J]. Polymer Communation,1985,26:199-200
    [118]Wu S. H. A generalized criterion for rubber toughening:The critical matrix ligament thickness[J]. Journal of Applied Polymer Science,1988,35(2):549-561
    [119]Kambour R. P., Holik A. S. Electron microscopy of crazes in glassy polymers:Use of reinforcing impregnants during microtomy[J]. Journal of Polymer Science part A: Polymer Chemistry,19697(9):1393-1403
    [120]Bucknall C. B., Smith R. R. Stress whitening in high-impact polystyrenes[J]. Polymer, 1965,6(8):437-446
    [121]Kambour R. P. A review of crazing and fracture in thermoplastics[J]. Journal of Polymer Science:Macromolecular Reviews,1973,7(1):1-154
    [122]Hasegawa N., Okamoto H., Kato M., et al. Preparation and mechanical properties of polypropylene-clay hybrids based on modified polypropylene and organophilic clay[J]. Journal of Applied Polymer Science,2000,78(11):1918-1922
    [123]Bazhenov S. The effect of particles on failure modes of filled polymers[J]. Polymer Engineering and Science,1995,35(11):813-819
    [124]Bartczak Z., Argon A. S., Cohen R. E., et al. The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates[J]. Polymer,1999,40(9):2367-2380
    [125]欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构[J].高分子材料科学与工程,1998,14(2):12-15
    [126]Kang S., Hong S. I., Choe C. R., et al. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process[J]. Polymer,2001,42(3):879-887
    [127]Shang X. Y., Zhu Z. K., Yin J., et al. Compatibility of soluble polyimide/silica hybrids induced by a coupling agent[J]. Chemistry Material,2002,14(1):71-77
    [128]Ash B. J., Sehadler L. S., siegel R. W. Thermal and mechanical properties of alumin/ polymethylmethaerylate(PMMA) nanocomposites:Effeets of strong and weak interfaces[J]. Journal of the American Chemical Society,2001,222:305-310
    [129]Jain S., Goossens H., van Duin M., et al. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene [J]. Polymer,2005,46(20): 8805-8818
    [130]Rosso P., Ye L., Friedrich K., et al. A toughened epoxy resin by silica nanoparticle reinforcement[J]. Journal of Applied Polymer Science,2006,100(3):1849-1855
    [131]Zhang Q. X., Yu Z. Z., Xie X. L., et al. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier[J]. Polymer,2004, 45(17):5985-5994
    [132]容敏智,章明秋,潘顺龙,等.表面接枝改性纳米二氧化硅填充聚丙烯的结晶行为[J].高分子学报,2004,(2):184-190
    [133]Shieh Y. T., Liu G. L., Hwang K. C. Crystallization, melting and morphology of PEO in PEO/MWNT-g-PMMA blends[J]. Polymer,2005,46(24):10945-10951
    [134]Jain S., Goossens H., Duin M. V., et al. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene [J]. Polymer,2005,46(20): 8805-8818
    [135]George Z. P., Dimitris S. A., Dimitris N. B., et al. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites[J]. Thermochimica Acta,2005,427(1-2):117-128
    [136]Cho K., Kim D., Yoon S. Effect of substrate surface energy on transcrystalline growth and its effect on interfacial adhesion of semicrystalline polymers [J]. Macromolecules, 2003,36(20):7652-7660
    [137]Argon A.S., Cohen R. E. Toughenability of polymers [J]. Polymer,2003,44(19): 6013-6032
    [138]Bartczak Z., Argon A. S., Cohen R. E., et al. Toughness mechanism in semi-crystalline polymer blends:Ⅱ. High-density polyethylene toughened with calcium carbonate filler particles[J]. Polymer,1999,40(9):2347-2365
    [139]Habsuda J., Simon G. P., Cheng Y. B., et al. Sol-gel derived composites from poly (silicic acid) and 2-hydroxyethylmethacrylate:thermal, physical and morphological properties[J]. Polymer,2002,43 (17):4627-4638
    [140]Wu C. L., Zhang M. Q., Rong M. Z., et al. Tensile performance improvement of low nanoparticles filled-polypropylene composites [J]. Composites Science and Technology,2002,62(10-11):1327-1340
    [141]Xie X. L., Yu Z. Z., Zhang Q. X., et al. Synergistic effect of SEBS-g-MA and epoxy on toughening of polyamide 6/glass fiber composites [J]. Journal of Polymer Science Part B:Polymer Physics,2007,45(12):1448-1458
    [142]Lagaly G. Principles of flow of kaolin and bentonite dispersions [J]. Applied Clay Science,1989,4(2):105-123
    [143]Luckham P.F., Rossi S. The colloidal and rheological properties of bentonite suspensions[J]. Advances in Colloid and Interface Science,1999,82(1-3):43-92
    [144]Xie X. L., Li R. K. Y., Liu Q. X., et al. Structure-property relationships of in-situ PMMA modified nano-sized antimony trioxide filled poly(vinyl chloride) nanocomposites[J]. Polymer,2004,45(8):2793-2802
    [145]Cotterell B., Chia J. Y. H., Hbaieb K. Fracture mechanisms and fracture toughness in semicrystalline polymer nanocomposites[J].Engineering Fracture Mechanics,2007, 74(7):1054-1078
    [146]Tjong S. C. Structural and mechanical properties of polymer nanocomposites[J]. Materials Science and Engineering:R:Reports,2006,53(3-4):73-197
    [147]Gong X. H., Xie X. L., Tang C. Y., et al. Enhanced mechanical and wear performance of PS and HIPS composites by surface modification of hydroxyapatite via in situ polymerization and copolymerization[J]. Composite Interfaces,2007,14(4):335-350
    [148]Van Krevelen D. W., Te Nijenhuis K. Properties of Polymers[B].3rd ed. New York: Elsevier Science Press,1990
    [149]马德柱.高聚物的结构与性能[M].第二版.北京:科学出版社,1995
    [150]Leng P.B., Hazizan M. A., Lin O. H. Thermal properties of microsilica and nanosilica filled polypropylene composite with epoxy as dispersing aid[J]. Journal of Reinforced Plastics and Composites,2007,26(8):761-770
    [151]Dimitrios N. B., Alexandos V., Eleni P. et al. Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing[J]. European Polymer Journal,2005,41(9):1965-1978
    [152]赫丽华,刘平桂,丁鹤雁.聚己内酯/环氧树脂/SiO2杂化材料的制备及性能[J].复合材料学报,2006,23:71-76
    [161]Schottner G. Hybrid sol-gel-derived polymers:Applications of multifunctional materials[J]. Chemistry of Materials,2001,13(10):3422-3435
    [154]Matejka L., Dukh O., Kolarik J. Reinforcement of crosslinked rubbery epoxies by in-situ formed silica[J]. Polymer,2000,41(4):1449-1459
    [155]Li S. X., Shah A., Hsieh A. J., et al. Characterization of poly(2-hydroxyethyl methacrylate-silica) hybrid materials with different silica contents[J]. Polymer,2007, 48(14):3982-3989
    [156]Sun D. H., Zhang R., Liu Z. M., et al. Polypropylene/silica nanocomposites prepared by in-situ sol-gel reaction with the aid of CO2[J]. Macromolecules,2005,38(13): 5617-5624
    [157]Bansal A., Yong H., Li C. Z, et al. Quantitative equivalence between polymer nanocomposites and thin polymer films[J]. Nature Materials,2005,4:693-698
    [158]Johnsen B. B., Kinloch A. J., Mohammed R. D., et al. Toughening mechanisms of nanoparticle-modified epoxy polymers[J]. Polymer,2007,48(2):530-541
    [159]Bicerano J. Prediction of Polymer Properties[M]. NewYork:Marcel Dekker Inc,1993, 234-250
    [160]Kisselb W. J., Han J. H., Meyer J. A. Handbook of Polypropylene and Polypropylene Composites[M]. New York:Marcel Dekker Inc.1999,15-30
    [161]Perkins W. G. Polymer toughness and impact resistance [J]. Polymer Engineering & Science,1999,39(12):2445-2462
    [162]Xu W. B., Ge M. L., He P. S. Intercalation and exfoliation behavior of epoxy resin/curingagent/montmorillonite nanocomposite[J]. Journal of Applied Polymer Science,2002,84(4):842-849
    [163]Xu W. B., Guo D. L., He P. S. Poly(propylene)-poly(propylene)-grafted maleic anhydride-organicmontmorillonite (PP-PP-g-MAH-Org-MMT) nanocomposites. II. Nonisothermal crystallization kinetics [J]. Journal of Applied Polymer Science,2003, 88(14):3093-3099
    [164]Avrami J. A., Bennett J. E. Calculation of the Avrami parameters for heterogeneous solids states reactions using a modification of the Kissinger method[J]. Journal of Thermal Analysis and Calorimetry,1978,13:283-287
    [165]Ozawa T. Kinetics of non-isothermal crystallization[J]. Polymer,1971,12(3):150-156
    [166]Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC[J]. Polymer,1978,19(10): 1142-1144
    [167]Liu T. X., Mo Z. S.,Wang S. E., et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) [J]. Polymer Engineering & Science, 1997,37(3):568-575
    [168]Ziabicki A. Theoretical analysis of oriented and non-isothermal crystallization Ⅱ. Extension of the kolmogorotf-Avrami-Evans theory onto processes with variable rates and mechanisms[J]. Colloid and Polymer Science,1974,252(6):433-447
    [169]Mandelkern L. Crystallization of Polymers[M].2nd Edition. New York:Cambridge University Press,1964,254-257
    [170]Jain S., Goossens H., Duin M. V., et al. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene[J]. Polymer,2005,46(20): 8805-8818
    [171]Binsbergen F. L. Heterogeneous nucleation in the crystallization of polyolefins. Ⅲ. Theory and mechanism[J]. Journal of Polymer Science part B:Polymer Physics,1973, 11:117-135
    [172]Ebengou R. H., Hachisuka H., Kito H., et al. O2 and N2 gas permselectivity of alternating copoly(vinylidene cyanide-vinyl acetate[J]. Journal of Applied Polymer Science,1997,35:1333-1340
    [173]Landfeste K., Tiarks F., Hentze H. P, et al. Polyaddition in miniemulsions:A new route to polymer dispersions[J]. Macromolecular Chemistry and Physics,2000,201(1):1-5
    [174]刘雪宁,胡南,张洪涛,等.改性高岭土对PP/高岭土纳米复合材料结晶性能的影响[J].中国科学B辑化学,2005,35(1):51-57
    [175]任敏巧,张志英,莫志深,等.高聚物结晶后期动力学过程的研究进展[J].高分子学报,2003,(3):15-22
    [176]George Z. P., Dimitris S. A., Dimitris N. B. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites[J]. Thermochimica Acta,2005,427(1-2):117-128
    [177]Jain S., Goossens H., Duin M. V., et al. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene[J]. Polymer,2005,46(20): 8805-8818

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700