用户名: 密码: 验证码:
运用CADD探讨穿心莲内酯衍生物抑制ALPHA-葡萄糖苷酶的构效关系及构建其跨膜转运预测系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穿心莲内酯是中药穿心莲的主要有效成分之一,有关其消炎、抗菌、抗疟疾、抗肿瘤、免疫调节、保肝护肝等多种药理活性早有报道。随着研究的不断深入,穿心莲内酯更多的药理活性正在被人们所认识,相关临床应用也得以不断拓展。近年研究发现,穿心莲内酯具有降低糖尿病大鼠血糖的作用,同时发现穿心莲内酯衍生物通过抑制小肠内α-葡萄糖苷酶的活性,延缓肠道对葡萄糖的吸收,能有效降低餐后高血糖,对于糖尿病的有效防治具有积极的作用。但是,目前尚未有一种穿心莲内酯衍生物来源的α-葡萄糖苷酶抑制剂被推向市场。据此,目前有多个研究小组正在以穿心莲内酯为母核,对其进行结构修饰与改造,以期得到具有活性更强,毒性更低的α-葡萄糖苷酶抑制剂。
     迄今已有众多具有明显α-葡萄糖苷酶抑制活性穿心莲内酯衍生物问世。这为穿心莲内酯衍生物来源的α-葡萄糖苷酶抑制剂的研究与开发奠定了坚实的基础。然而,现行有关穿心莲内酯衍生物来源的α-葡萄糖苷酶抑制剂的研发模式仍主要沿用传统的新药筛选及设计的技术路线。因其周期长、耗资巨大而限制了穿心莲内酯衍生物来源的α-葡萄糖苷酶抑制剂的研发进程。
     随着计算机科学的不断发展以及各种药学类数据库的不断扩充,计算机辅助药物设计凭借其高效、低耗、应用范围广,重新获得了广大药物研发工作者的青睐。利用计算机辅助药物设计(Computer Aided Drug Design, CADD)逐渐成为一种趋势,目前已经有不少借助计算机辅助药物设计的新药推向市场。因此,倘若能够有效地将CADD应用于穿心莲内酯衍生物来源的α-葡萄糖苷酶抑制剂的研发,无疑对其研发进程产生积极地促进作用。
     研究目的:
     了解全面、完整的构效关系信息对于提高穿心莲内酯衍生物来源的α-葡萄糖苷酶抑制剂的研发效率十分必要,但目前这类信息尚不完善。基于此因,本研究拟通过构建穿心莲内酯衍生物抑制α-葡萄糖苷酶的2D、3D定量构效关系模型,探讨穿心莲内酯衍生物结构中与其抑制α-葡萄糖苷酶的活性密切相关的分子碎片及其空间分布;并采用对接方法搜寻α-葡萄糖苷酶与穿心莲内酯衍生物相互作用的活性位点和关键残基,阐明它们之间的相互作用关系。
     表征候选化合物的药物代谢动力学特性,尤其早期考察其小肠吸收能力和跨越血脑屏障等跨膜转运能力是新药筛选与开发的必要环节,影响着新药研发的方向与决策。鉴于化合物的结构及理化性质决定了其跨膜转运能力,为此,本研究拟运用CADD建立穿心莲内酯衍生物跨膜转运能力预测系统,以期从大量的穿心莲内酯衍生物中高效率地获得有研究价值的候选化合物。
     研究方法:
     第一部分穿心莲内酯衍生物抑制α-葡萄糖苷酶的构效关系研究
     1利用HQSAR构建穿心莲内酯衍生物来源的α-葡萄糖苷酶抑制剂2D-QSAR模型,同时利用CoMFA以及CoMSIA构建3D-QSAR模型。进一步利用所构建的QSAR模型预测新型穿心莲内酯衍生物AL-1对α-葡萄糖苷酶的抑制活性,并通过体外实验加以验证。
     2利用Lineweaver方程法初步探讨穿心莲内酯衍生物抑制α-葡萄糖苷酶反应类型。并通过同源模建法预测α-葡萄糖苷酶的三维立体结构。在此基础上,进一步采用对接的方法搜寻α-葡萄糖苷酶与穿心莲内酯衍生物相互作用的活性位点及关键残基。
     第二部分穿心莲内酯衍生物跨膜转运预测系统的构建
     1运用Volsurf构建药物HIA的虚拟模型,以期预测穿心莲内酯衍生物跨小肠膜被吸收的能力。
     2运用Volsurf构建药物跨BBB的虚拟模型,以期预测穿心莲内酯衍生物跨血脑屏障的能力。
     结果:
     第一部分穿心莲内酯衍生物抑制α-葡萄糖苷酶的构效关系研究
     1、由2D-QSAR模型的交叉验证系数(0.730)、测试集预测值与实验值线性回归相关系数(0.945)、斜率(1.01)以及标准差(0.104)均显示该模型具备良好解释构效关系和进行预测的能力;通过3D-QSAR模型的交叉验证系数(0.794)、测试集预测值与实验值线性回归系数(0.941)、斜率(0.933)以及标准差(0.104)等指标也进一步提示本研究所构建的3D-QSAR模型具备良好描述构效关系及进行预测能力。
     2、用同源模建法所构建的α-葡萄糖苷酶三维立体结构与其模板分子1UOK叠合得到它们骨架间差距的均方差(RMSD)仅为1.745A。而在此α-葡萄糖苷酶三维立体结构基础上,利用对接的方法搜寻所得的两个潜在活性位点对强α-葡萄糖苷酶抑制剂的识别准确度(AR)分别达到88.9%和77.8%。
     第二部分穿心莲内酯衍生物跨膜转运机制的研究
     1、虚拟HIA模型的交叉验证系数(0.72),测试集的预测值与实验值的线性回归相关系数(0.932)和斜率(0.938)均显示虚拟HIA模型具备良好的定量描述能力和预测能力。
     2、虚拟BBB模型的交叉验证系数(0.64),测试集的预测准确度(78%)均支持虚拟BBB模型具有良好的定性描述能力和预测能力这一结论。
     结论:
     1、2D-QSAR模型能够通过穿心莲内酯衍生物分子中原子的连接方式描述其抑制α-葡萄糖苷酶的构效关系;3D-QSAR模型能够通过穿心莲内酯衍生物分子周围力场的差异来描述其构效关系。而将2D模型与3D-QSAR模型相结合,能够得到更为全面准确的构效关系结果。
     2、在采用同源模建法构建合理的α-葡萄糖苷酶三维结构基础上,利用对接法搜寻得到两个潜在的活性位点均能很好识别具有α-葡萄糖苷酶强抑制活性的穿心莲内酯衍生物。
     3、利用虚拟HIA模型可为穿心莲内酯衍生物来源的α-葡萄糖苷酶抑制剂的小肠吸收率的评估提供有价值的参考意见。
     4、利用虚拟BBB模型可为穿心莲内酯衍生物来源的α-葡萄糖苷酶抑制剂的跨血脑屏障能力的评估提供有价值的参考意见。
Andrographolide is the main active ingredient of Andrographis paniculate. It has been reported that andrographolide has broad pharmacological activities, such as an anti-bacterial, anti-malarial, anti-inflammatory, anti-tumor, immunological regulation and hepatoprotective effects. Further researches about andrographolide reveal more application of this compound. Recent studies exhibited that andrographolide could reduce blood glucose of diabetes rats and andrographolide derivatives might decrease blood glucose level by inhibiting a-glucosidase after meal. Such pharmacological activity of inhibiting a-glucosidase would greatly contribute to the treatment for diabetes. So far, however, there has been little andrographolide derivative coming into the market as a-glucosidase inhibitor at present, while lots of researches have modified the structures of andrographolide derivatives to develop more potent inhibitors of a-glucosidase.
     In this background, more and more andrographolide derivatives with inhibitory activity to a-glucosidase have been synthesized. These preceding works will promote the development of a-glucosidase inhibitors. Nevertheless, the traditional procedure to develop drug would to some extent block the development of andrographolide derivatives due to long research circle, high-cost and poor pharmacokinetics characters.
     Along with the development of computer technique and extension of pharmaceutical databases, computer aided drug design (CADD) has earned re-interesting because of high efficiency, low-cost and extensive application. CADD is frequently utilized to assist the development of drug and there have been lots of drugs designed by CADD in the market. In this context, CADD would significantly contribute to the development of andrographolide derivatives as a-glucosidase inhibitors.
     Objective:
     QSAR information will greatly promote the development of andrographolide derivatives, but there is not enough data about this at present. Hence, this research would build the 2D and 3D-QSAR model of andrographolide derivatives as a-glucosidase inhibitors. These models could be utilized to investigate the important fragments and distribution of different force fields which are closely related to the inhibitory activity. Moreover, the potential active sites and key residues were obtained by homology modeling and docking. Information about the active sites and key residues should greatly contribute to the discovery of new a-glucosidase inhibitors.
     Pharmacokinetic characteristics of candidates, especially the action of crossing human intestinal membrane and blood brain barrier, are the necessary aspect for developing new drug. In the light of the close relationship between compounds' structure and their pharmacokinetic characters, this research built the human intestinal absorption (HIA) prediction system and blood brain barrier (BBB) prediction system to predict the pharmacokinetic features of andrographolide derivatives by using CADD and specific cells'model.
     Method:
     1 QSAR studies on andrographolide derivatives as a-glucosidase inhibitors
     (1) HQSAR was used to build the 2D-QSAR of andrographolide derivatives as a-glucosidase inhibitors and 3D-QSAR models were constructed by both CoMFA and CoMSIA methods. The best QSAR model was used to predict the inhibitory activity of Al-1 which was a new andrographolide derivative.
     (2) Lineweaver-Burk method was utilized to judge the enzyme reaction style of andrographolide derivatives inhibiting a-glucosidase. And then, the potential active sites and key residues were explored by homology modeling and docking method.
     2 The establishment of systems to predict andrographolide derivatives' action of crossing human intestinal membrane and blood brain barrier.
     (1) Volsurf was employed to construct virtual HIA model, which was applied to predict the HIA values of andrographolide derivatives.
     (2) Volsurf was used to establish virtual BBB model, which was applied to predict the andrographolide derivatives' possibillities to across the BBB.
     Results:
     1 QSAR studies on andrographolide derivatives as a-glucosidase inhibitors
     (1) The 2D-QSAR model was successfully built and the result was supported by cross-validation coefficient (0.730), correlation coefficient (0.945), standard error (0.104) and slope (1.01); the best 3D-QSAR model was validated by cross-validation coefficient (0.794), correlation coefficient (0.941), slope (0.933) and standard error (0.104).
     (2) The homology model of a-glucosidase was validated by RMSD (1.745 A) of structural alignment. The predicted strong inhibitors'ARs of the two potential active sites were 88.9% and 77.8% respectively.
     2 The establishment of systems to predict andrographolide derivatives' action of crossing human intestinal membrane and blood brain barrier.
     (1) The virtual HIA model was verified by cross-validation coefficient (0.72), correlation coefficient (0.932) and slope (0.938).
     (2) The virtual BBB model was confirmed by cross-validation coefficient (0.64), accuracy rate of test set (78%).
     Conclusion:
     (1) The 2D-QSAR model exhibited the important fragments of andrographolide derivatives, which were closely related to bio-activity; the 3D-QSAR model could exhibit the distribution of different force fields, which is closely related to bio-activity. Combining 2D and 3D-QSAR model, the information from QSAR models would be more comprehensive and precise.
     (2) The homology model ofα-glucosidase could be used to explore the potential active sites and key residues. And the two potential active sites had great recognition to andrographolide derivatives with strong inhibitory activities toα-glucosidase.
     (3) The virtual HIA model would contribute to the prediction of the pharmacokinetic characteristics of andrographolide derivatives asα-glucosidase inhibitors.
     (4) The virtual BBB model would contribute to the prediction of the pharmacokinetic characteristics of andrographolide derivatives as a-glucosidase inhibitors.
引文
[1]阮国虎,菅凌燕,李玉灵.糖尿病治疗药物的研究进展.实用药物与临床[J],2007,10(1):56~57.
    [2]国家药典委员会.中华人民共和国药典临床用药须知化学药和生物制品卷[M].2005年版.北京:人民卫生出版社,421~437.
    [3]宋光明,申竹芳.新型糖尿病治疗药物exendin-4的研究进展[J].中国临床药理学杂志,2008,24(2):156~160.
    [4]张新毅,高乌恩.治疗2型糖尿病的新药-二肽基肽酶-Ⅳ抑制剂[J].中国药学杂志,2007,42(16):1204~1207.
    [5]付方明,李利平,董砚虎.胰淀素研究新进展.国外医学(内科学分册)[J],2004,31(5):191~193,197.
    [6]韩莹,屠树滋,王秋娟.治疗糖尿病药物的研究进展[J].中国新药杂志,2000,9(7):442~448.
    [7]崔秀玲,张爱荣.糖尿病药物治疗新进展[J].糖尿病新世界,2007,714~15.
    [8]白霞,马玉东,穆洪,等.穿琥宁对致热大鼠下丘脑组织中PGE2和cAMP含量的影响[J_].中国临床药理学与治疗学,2005,10(1):75~78.
    [9]邓文龙.脱水穿心莲内酯琥珀酸半酯药理作用研究Ⅰ抗炎作用[J].药学学报,1980,15(10):590.
    [10]张霞,吴迪,王家泰,等.穿心莲破坏内毒素作用的体外实验研究[J].中国中西医结合急救杂志,2000,7(4):212~214.
    [11]Hidalgo M.A., Romero A., Figueroa J., et al., Andrographolide interfers with binding of nuclear factor-kappa B to DNA in HL-60 derived neutrophilic cell [J]. Br. J Pharmacol,2005,144 (5):680-686.
    [12]Calabrese C., Berman S.H., Babish,J.G., et al. A phase I trial of andrographo-lide in HIV positive patients and normal volunteers [J]. Phytother Res,2000, 14(5):333-338.
    [13]左建平,赵维民,杨以阜,等.穿心莲内酯及衍生物的医学用途[P].中国专利,03129127.9,2003.11.
    [14]何恩其,赵烽.穿心莲的药理作用及研究进展[J].中医药导报,2007,13(5):107~108.
    [15]亓翠玲,王丽京,周鑫磊.穿心莲内酯抗肿瘤作用机制的研究进展[J].中国中药杂志,2007,32(20):2095~2097.
    [16]陈牧,孙振华,徐立春.穿心莲内酯与rIL2促进LAK细胞生长及细胞表型变化的研究[J].深圳中西医结合杂志,2001,11(1):8-10.
    [17]彭光勇,周峰,丁如宁,等.莲必治注射液(穿心莲内酯)对免疫功能的调节作用[J].中国中药杂志,2002,27(2):147~150.
    [18]Zhang X.F., Tan B.K. Antihyperglycaemic and anti-oxidant properties of Andrographis paniculata in normal and diabetic rats [J]. Clin. Exp. Pharmacol. Physiol.,2000,27(5-6):358-363.
    [19]Yu B.C., Hung C.R., Chen W.C., et al.. Antihyperglycemic effect of andro-grapholide in streptozotocin-induced diabetic rats. Planta [J]. Med.,2003, 69(12):1075-1079.
    [20]杨苹,韦昊,秦慧勤.穿心莲对正常小鼠和高血糖小鼠血糖影响的实验研究[J].时珍国医国药,2007,18(1):87~88.
    [21]Xu H.W, Dai G.F, Liu G.Z., et al. Synthesis of andrographolide derivatives:A new family of a-glucosidase inhibitors [J]. Bioorg. Med. Chem.,2007,15: 4247-4255.
    [22]薛亚平,陈小龙,.郑裕国.α-葡萄糖苷酶抑制剂类药物的研究与开发[J].中国现代应用药学杂志,2005,22(8):706~709.
    [23]岳振峰,陈小霞,彭志英.α-葡萄糖苷酶研究现状及进展[J].食品与发酵工业,26(3):63~68.
    [24]陈海敏,严小军,林伟.α-葡萄糖苷酶抑制剂的构效关系[J].中国生物化学与分子生物学报,2003,19(6):780~784.
    [25]顾天爵.生物化学[M].第四版.北京:人民卫生出版社,71-72.
    [26]http://en.wikipedia.org/wiki/Alpha-glucosidase_inhibitor
    [27]李洪梅.α-葡萄糖苷酶抑制剂的临床应用[J].中国医刊,2007,42(10):19~21.
    [28]Gao H, Kawabata,J.2-Aminoresorcinol is a potent a-glucosidase inhibitor [J]. Bioorg. Med. Chem. Lett.,2008,18:812-815.
    [29]Park H., Hwang K.Y., Oh K.H., et al., Discovery of novel a-glucosidase inhibitors based on the virtual screening with the homology-modeled protein structure [J]. Bioorg. Med. Chem.,2008,16:284-292.
    [30]W. Graham Richards. Computer-aided drug design [J]. Pure & Appl. Chem., 1994,66(8):1589-1596.
    [31]叶德泳.计算机辅助药物设计导论[M].第一版.北京:化学工业出版社.
    [32]Tripos[M]. Concord Manual.2006.
    [33]Lewis RA, Dean PM. Automated site-directed drug design:the concept of spacer skeletons for primary structure generation [J]. Proceedings of the royal society of London series B-biological sciences,1989,236 (1283):125-140.
    [34]Nishibata Y, Itai A. Confirmation of usefulness of a structure construction program based on three-dimensional receptor structure for rational lead generation [J]. Journal of medicinal chemistry,1993,36(20):2921-2928.
    [35]Moon JB, HOWE WJ. Computer design of bioactive molecules:a method for receptor-based de novo ligand design [J]. Proteins-structure function and genetics,1991,11(4):314-328.
    [36]Olejniczak ET, Zhou MM, Fesik SW. Changes in the NMR-derived motional parameters of the insulin receptor substrate 1 phosphotyrosine binding domain upon binding to an interleukin 4 receptor phosphopeptide [J]. Biochemistry, 1997,36(14):4118-4124.
    [37]Wichapong Kanin, Pianwanit Somsak, Sippl Wolfgang, et al. Homology modeling and molecular dynamics simulations of Dengue virus NS2B/NS3 protease:insight into molecular interaction [J]. J Mol Recognit,2010,23(3): 283-300.
    [38]Doweyko A M. The hypothetical active site lattice. An approach to modelling active sites from data on inhibitor molecules [J]. J Med Chem.1988,31(7): 1396-1406.
    [39]Malhotra D, Hopfinger A J. Conformational flexibility of dinucleoside dimers during unwinding from the B-form to an intercalation structure [J]. Nucleic Acids Res.1980,8(22):5289-5304.
    [40]Nakata Y, Hopfinger A J. Predicted mode of intercalation of doxorubicin with dinucleotide dimmers [J]. Biochem Biophys Res Commun,1980,95(2):583-588
    [41]Cramer R D 3rd, Patterson D E, Bunce J D. Recent advances in comparative molecular field analysis (CoMFA) [J]. Prog Clin Biol Res,1989,291:161-165.
    [42]Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity [J]. J Med Chem,1994,37(24):4130-4146.
    [43]Mashall D P, Struthers G A. Commercial surgical embryo transfer in cattle [J]. N Z Vet J,1978,26(11):287-288.
    [44]Crippen G M. A statistical approach to the calculation of conformation of proteins.1. Theory. Macromolecules [J].1977,10(1):21-25.
    [45]俞庆森,邹建卫,胡艾希等.药物设计[M].北京,化学工业出版社.
    [46]Zhang C.Y., Tan, B.K. Effects of 14-deoxyandrographolide and 14-deoxy-11, 12-didehydroandrographolide on nitric oxide production in cultured human endothelial cells [J]. Phytother. Res.1999,13,157-159.
    [47]Sabu K.K, Padmesh P, Seeni S.J. Intraspecific variation in active principle content and isozymes of Andrographis paniculata (kalmegh):A traditional hepatoprotective medicinal herb of India [J]. Med. Aromat. Plant Sci,2001,23: 637-647.
    [48]Bernacki R.J, Niedbala M.J, Korytnyk W. Glycosidases in cancer and inva-sion [J]. Cancer Metastasis Rev.1985,4:81-101.
    [49]Pili R, Chang J, Partis R.A, et al. The alpha-glucosidase Iinhibitor castano-spermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth [J]. Cancer Res,1995,55:2920-2926.
    [50]Humphries M.J, Matsumoto K, White S.L, et al. Inhibition of experimental metastasis by castanospermine in mice:Blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors [J]. Cancer Res. 1986,46:5215-5222.
    [51]Papandreou M. J, Barbouche R, Guieu R, et al. The alpha-glucosidase inhibitor 1-deoxynojirimycin blocks human immunodeficiency virus envelope glycoproteinmediated membrane fusion at the CXCR4 binding step [J]. Mol. Pharmacol,2002,61:186-193.
    [52]Ouzounov S, Mehta A, Dwek R.A, et al. The combination of interferon alpha-2b and n-butyl deoxynojirimycin has a greater than additive antiviral effect upon production of infectious bovine viral diarrhea virus (BVDV) in vitro:Implications for hepatitis C virus (HCV) therapy [J]. Antiviral Res,2002, 55:425-435.
    [53]Schmidt D, Frommer W, Junge B, Mulle L, et al. Alpha-Glucosidase inhibitors [J]. New complex oligosaccharides of microbial origin,1977,64: 535-536.
    [54]Kameda Y, Asano N, Yoshikawa M, et al. Valiolamine, a new alpha-glucosidase inhibiting aminocyclitol produced by Streptomyces hygroscopicus [J]. J. Antibiot,1984,37:1301-1307.
    [55]Robinson K.M, Begovic M.E, Rhinehart B.L, et al. New potent alpha-glucohydrolase inhibitor MDL 73945 with long duration of action in rats [J]. Diabetes,1991,40:825-830.
    [56]Fujisawa T, Ikegami H, Inoue K, et al. Effect of two alpha-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdominal symptoms [J]. Metabolism,2005,54:387-390.
    [57]van den Broek L.A.G.M, Kat-van den Nieuwenhof M.W, Butters T.D, et al. Synthesis of alpha-glucosidase I inhibitors showing antiviral (HIV-1) and immunosuppressive activity [J]. J. Pharm. Pharmacol,1996,48:172-178.
    [58]Dai G.F, Xu H.W, Wang J.F, et al. Studies on the novel alpha-glucosidase inhibitory activity and structure-activity relationships for andrographolide analogues [J]. Bioorgan. Med. Chem,2006,16:2710-2713.
    [59]Xu H.W, Dai G.F, Liu G.Z, et al. Synthesis of andrographolide derivatives:A new family of alpha-glucosidase inhibitors [J]. Bioorgan. Med. Chem,2007, 15:4247-4255.
    [60]Truscheit E, Frommer W, Junge B, et al. Chemistry and biochemistry of microbial alpha-glucosidase inhibitors [J]. Angew. Chem,1981,93:738-755.
    [61]Madariaga H, Lee P.C, Heitlinger L.A, et al. Effects of graded alpha-glucosidase inhibition on sugar absorption in vivo [J]. Dig. Dis. Sci,1988,33: 1020-1024.
    [62]Lee D.-S, Lee S.-H. Genistein, a soy isoflavone, is a potent alpha-glucosidase inhibitor [J]. FEBS Lett,2001,501:84-86.
    [63]McCulloch D.K, Kurtz A.B, Tattersall R.B. A new approach to the treatment of nocturnal hypoglycemia using alpha-glucosidase inhibition [J]. Diabetes Care,1983,6:483-487.
    [64]Sou S, Takahashi H, Yamasaki R, et al. Alpha-glucosidase inhibitors with a 4, 5,6,7-tetrachlorophthalimide skeleton pendanted with a cycloalkyl or dicer-bacloso-dodecaborane group [J]. Chem. Pharm. Bull,2001,49:791-793.
    [65]Node K. Alpha-glucosidase inhibitors:New therapeutic agents for chronic heart failure [J]. Hypertens. Res,2006,29:741-42.
    [66]Hansch C, Mahoney P.P, Fujita T, et al. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients [J]. Nature,1962,194:178-180.
    [67]Itzstein V.M, Wu W.Y, Kok G.B. Rational design of potent sialidase-based inhibitors of influenza virus replication [J]. Nature,1993,363:418-423.
    [68]Melnick M, Reich S.H, Lewis K.K. Bis tertiary amide inhibitors of the HIV-1 protease generated via protein structure-based iterative design [J]. J. Med. Chem,1996,39:2795-2811.
    [69]Ring C.S, Sun E, McKerrow J.H. Structure-based inhibitor design by using protein models for the development of antiparasitic agents [J]. Proc. Natl. Acad. Sci,1993,90:3583-3587.
    [70]Hibert M.F, Hoffmann R, Miller R.C. Conformation-activity relationship study of 5-HT3 receptor antagonists and a definition of a model for this re-ceptor site [J]. J. Med. Chem,1990,33:1594-1600.
    [71]Motoc I, Sit S.Y, Harte W.E.3-Hydroxy-3-methylglutaryl-coenzyme. A reductase:Molecular modeling, three-dimensional structure-activity relation-ships, inhibitor design [J]. Quant. Struct-Act. Relat,1991,10:30-35.
    [72]Xiong B, Gui C.S, Xu X.Y. Acta. A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening [J]. Pharmacol. Sin,2003,24: 497-504.
    [73]Pastor M, Cruciani G. A novel strategy for improving ligand selectivity in receptor-based drug design [J]. J. Med. Chem,1995,38:4637-4647.
    [74]Anand K, Ziebuhr J, Wadhwani P, et al. Coronavirus main proteinase (3CLpro) Structure:Basis for design of anti-SARS drugs [J]. Science (Sciencexpress), 2003,300:1763-1767.
    [75]Carlton A.T, Vinicius B.D.S, Carlos H.T.D. Current topics in computer-aided drug design [J]. J. Pharm. Sci,2008,97:1089-1098.
    [76]Xu S. The 3D-QSAR Studies on Andrographolide Derivatives Inhibiting a-Glucosidase [D]. Ph.D. Dissertation. Zhengzhou University:Zhengzhou, China,2006.
    [77]Wolfgang H, Leopold S. Applied Multivariate Statistical Analysis,2nd ed.; Springer Press:Berlin, Heidelberg, Germany,2007; pp.233-272.
    [78]Ash S, Cline M.A, Homer, R.W, et al. SYBYL line notation (SLN):A ver-satile language for chemical structure representation [J]. J. Chem. Inf. Comput. Sci,1997.37:71-79.
    [79]Timothy, E.L. VAX Architecture Reference Manual; Digital Press, Newton, MA, USA,1987; pp.288-326.
    [80]Frank I.E, Feikama J, Constantine N, et al. Prediction of Product Quality from Spectral Data Using the Partial Least-Squares Method [J]. J. Chem. Inf. Comput. Sci,1984,24:20-24.
    [81]Golbraikh A, Tropsha A. Beware of q2! [J]. J. Mol. Graph. Model,2002,20, 269-276.
    [82]Cramer R.D, Patterson D.E, Bunce J.D. Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins [J]. J.
    Am. Chem. Soc,1988,110:5959-5967.
    [83]Klebe G, Abraham U. Comparative Molecular Similarity Index Analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries [J]. J. Comput. Aided Mol. Design,1999,13:1-10.
    [84]H. van de Waterbeemd. Chemometric Methods in Molecular Design (Methods and Principles in Medicinal Chemistry); Wiley-VCH Press:Weinheim, Germany,1995; pp.309-318.
    [85]Dixit A, Kashaw S.K, Gaur S, et al. Development of CoMFA, advance CoMFA and CoMSIA models in pyrroloquinazolines as thrombin receptor antagonist [J]. Bioorgan. Med. Chem,2004,12:3591-3598.
    [86]Narayanan R, Gunturi S.B. In silico ADME modelling:Prediction models for blood-brain barrier permeation using a systematic variable selection method [J]. Bioorgan. Med. Chem,2005,13:3017-3028.
    [87]Gunturi S.B, Narayanan R, Khandelwal A. In silico ADME modelling: Computational models to predict human serum albumin binding affinity using ant colony systems [J]. Bioorgan. Med. Chem,2006,14:4118-4129.
    [88]Gunturi S.B, Narayanan R. In silico ADME modeling 3:Computational models to predict human intestinal absorption using sphere exclusion and kNN QSAR methods [J]. QSAR Comb. Sci,2007,26:653-668.
    [89]Leonor Michaelis, Maud Menten. Die Kinetik der Invertinwirkung, Biochem. Z.1913,49:333-369.
    [90]Lineweaver H, Burk, D. The Determination of Enzyme Dissociation Constants [J]. Journal of the American Chemical Society,1934.56:658-666.
    [91]Shi J, Blundell T. L, Mizuguchi K. FUGUE:Sequence-structure Homology Recognition Using Environment-specific Substitution Tables and Structure-dependent Gap Penalties [J]. J. Mol. Biol,2001,310:243-257.
    [92]Mizuguchi K, Deane C, Blundell T, et al. HOMSTRAD:A Database of Pro-tein Structure Alignments For Homologous Families. Protein. Sci,1998,7: 2469-2471.
    [93]Michael A. D, Matthias K, David S. B. Comparison of Composer and ORCHESTRAR [J]. Protein-Structure Function and Bioinformatics,2008,72 (4):1243-1258.
    [94]Brenk R, Naerum L, Gradler U, et al. Virtual screening for submicromolar leads of tRNA-guanine transglycosylase based on new unexpected binding model detected by crystal structure analysis [J]. J. Med. Chem,2003,46: 1133.
    [95]Costi M.P, Tondi D, Rinald M, et al. Structure-based studies on specifies-specific inhibition of thymidylate synthase [J]. BBA-Mol. Basis. Dis,2002, 1587:206.
    [96]Grunberg S, Stubbs M, Klebe G. Successful virtual screening for novel inhibitors of human carbonic anhydrase:strategy and experimental confor-mation [J]. J. Med. Chem,2002,45:3588.
    [97]llon M, Furugori T, Mori T, et al. Rational design of new lead compounds: structures for selective βARK1 inhibitors [J]. J. Med. Chem,2002,45:2150.
    [98]Power R. A, Morandi F, Shoichet B. K. Structure-based discovery of a novel nonvalent inhibitor of AmpC β-lactamase [J]. Structure,2002,10:1013.
    [99]Rastelli G, Ferrari A. M, Costantino L, et al. Discovery of new inhibitors of aldose reductase from molecular modeling and database searching [J]. Bio-organ. Med. Chem,2002,10:1437.
    [100]Scott LPB, Chahine J, Ruggiero JR. Predicting peptides structure with solvation potential and rotamer library dependent of the backbone [J]. Applied mathematics and computation,2008,199(1):155-161.
    [101]SitelD Manual [M]. Tripos,2006.
    [102]Goldberg D, Dillon M, Slatopolsky E, et al. Effect of RenaGel(?), a non-absorbed, calcium-and aluminium-free phosphate binder, on serum phosphorus, calcium, and intact parathyroid hormone in end-stage renal disease patients", Nephrol. Dial. Transplant,1997,12(8):1640-1644.
    [103]Jain AN. Surflex-Dock 2.1:Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search [J]. Journal of computer-aided molecular design,2007,21(5):281-306.
    [104]FUGUE manual [M]. Tripos.2006
    [105]http://blast.ncbi.nlm.nih.gov/Blast.cgi
    [106]http://www.ncbi.nlm.nih.gov/
    [107]徐文方.药物设计学[M].第一版,北京,人民卫生出版社,2007.
    [108]http://math.fullerton.edu/mathews/n2003/PowellMethodMod.html
    [109]Zhao YH, Le J, Abraham MH, et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors [J]. Journal of pharmaceutical sciences,2001,90(6):749-784.
    [110]Cruciani C, Crivori P, Carrupt PA, et al. Molecular fields in quantitative structure-permeation relationships:the VolSurf approach [J]. Journal of molecular strucuture-theochem,2000,503(S1):17-30.
    [111]Volsurf manual [M]. Tripos.2006.
    [112]http://baike.baidu.com/view/933004.htm
    [113]Hilgers AR, Conradi R.A, Burton P.S. CaCo-2 cell monolayers as a model for drug transport across the intestinal-mucosa [J]. Pharmceutical research, 1990,7(9):902-910
    [114]Gerald A. Grant, N. Understanding the Physiology of the Blood-Brain Barrier:In Vitro Models [J]. News in Physiological Sciences,1998,16(3): 287-293.
    [115]王卫东,黄虹,邹浩元,等.体外血脑屏障模型的建立[J].医学理论与实践,2008,21(1):5-8.
    [116]Ge S, Pachter J. Isolation and culture ofmicrovascular en-dothelial cells from murine sp inal cord [J]. J Neuroimmu-nol,2006,177(1):209-214.
    [117]Wu Z, Hofman FM, Zlokovic BV. A simp le method for isolation and cha-racterization of mouse brain microvascular endothelial cells [J]. J Neurosci Methods,2003,130(1):53-63.
    [118]Parkinson FE, Hacking C. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells [J]. Brain Res,2005, 1049(1):8-14.
    [119]McCarthy K D, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue [J]. J Cell Biol.1980, 85(3):890-902
    [120]Gaillard PJ, Voorwinden LH, Nielsen JL, et al. Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes [J]. Eur J Pharm Sci,2001,12:215-222.
    [121]Kimberly R, Lowell H.H. Modeling Blood-Brain Barrier Partitioning Using the Electrotopological State [J]. J. Chem. Inf. Comput. Sci.2002,42,651-666.
    [122]Miguel A.C, Marival B, Maykel P. TOPS-MODE Approach for the Pre-diction of Blood-Brain Barrier Permeation [J]. Journal of pharmaceutical sciences,2004,93(4):1701-1717
    [123]Govindan S, Douglas B.K. Computational models to predict blood-brain barrier permeation and CNS activity [J]. Journal of Computer-Aided Mole-cular Design.2003,17:643-664.
    [124]Juan M.L. Prediction of the Brain-Blood Distribution of a Large Set of Drugs from Structurally Derived Descriptors Using Partial Least-Squares (PLS) Modeling [J]. J. Chem. Inf. Comput. Sci,1999,39:396-404
    [125]Angela G, Juan A.P, Nuria E. C. Artificial Neural Networks in ADMET Modeling:Prediction of Blood-Brain Barrier Permeation [J]. QSAR Comb. Sci,2008,27(5):586-594
    [126]Michael C.H. Prediction of blood-brain barrier permeation using quantum chemically derived information [J]. Journal of Computer-Aided Molecular Design,2003,17:415-433.
    [127]Dahua P, Manisha Iyer, Jianzhong Liu. Constructing Optimum Blood Brain Barrier QSAR Models Using a Combination of 4D-Molecular Similarity Measures and Cluster Analysis [J]. J. Chem. Inf. Comput. Sci.2004,44: 2083-2098.
    [128]Ulf N, Per S, Thomas O. Theoretical Calculation and Prediction of Brain-
    Blood Partitioning of Organic Solutes Using MolSurf Parametrization and PLS Statistics [J]. Journal of Pharmaceutical Sciences,1998,87(8):952-959.
    [129]Jan K, Peter D.J.G, Denis M.B. Polar Molecular Surface as a Dominating Determinant for Oral Absorption and Brain Penetration of Drugs [J]. Pharmaceutical Research,1999,16(10):1514-1519.
    [130]Rodney C.Y, Robert C.M, Thomas H.B. Development of a New Physico-chemical Model for Brain Penetration and Its Application to the Design of Centrally Acting H2 Receptor Histamine Antagonists [J]. Journal of Medicinal Chemistry,1988,31(3):656-671.
    [131]T.J Hou, X.J. Xu. ADME Evaluation in Drug Discovery.3. Modeling Blood-Brain Barrier Partitioning Using Simple Molecular Descriptors [J]. J. Chem. Inf. Comput. Sci,2003,43:2137-2152.
    [132]James A.P, Michael H.A, Yuan H.Z. Correlation and prediction of a large blood-brain distribution data set-an LFER study [J]. Eur. J. Med. Chem,2001, 36:719-730.
    [133]Yiannis N.K, Mark E.S, John B. Prediction of blood-brain partitioning using Monte Carlo simulations of molecules in water [J]. Journal of Computer-Aided Molecular Design,2001,15:697-708.
    [134]http://www.chinairr.org/view/V11/200911/09-32547.html
    [135]张海龙,高东红.酶促反应动力学中抑制剂类型的判断方法.数学的实践与认识.2004,34(4):90-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700