用户名: 密码: 验证码:
浅海中声能量分布的不均匀性对潜艇辐射噪声测量的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着声隐身技术的不断发展,低噪声潜艇的辐射噪声源级已接近于海洋环境噪声,这给辐射噪声测量带来了很大的困难,研究和解决符合我国国情的安静型潜艇辐射噪声测量技术,是摆在我们面前艰巨而紧迫的任务。
     我国大陆架较平缓,沿海多为浅海,很难找到具备建设深水试验场的海域,为满足安静型潜艇辐射噪声测量的需求,在浅海近距离测试比较适合我国国情。然而,我国这种特定的辐射噪声测量环境和潜艇复杂的声源结构及其辐射特性,使得测试海域内声场分布不均匀。当影响潜艇辐射噪声测量精度的诸多因素如测量设备,测距,测量方法等已得到很好解决时,测试海域内声场能量分布的不均匀性已成为影响我国潜艇辐射噪声测量精度的一个重要因素。基于此,本文以低噪声测量系统的实际工程项目为研究背景,对水下目标辐射噪声测量距离内的声场特性进行系统、全面的理论和试验研究。
     本文首先根据射线声学理论,推导了典型声源和复杂声源在边界约束条件下的声压场和质点振速场数学表达式,建立了基于虚源法的浅海矢量声场计算模型,并将声场计算模型应用于宽带声源信号矢量声场计算中,对于斜率变化平缓、表面起伏方差不太大的不平整表面,采用微扰法对其声场进行描述,为测试海域内声场特性研究提供理论计算方法。
     本文从潜艇辐射噪声测量的实际工程角度出发,研究了浅海环境下目标辐射声的矢量声场近程传播特性,揭示了测试海域内声场分布的不均匀性与目标声源结构及其辐射特性,声信号的频率、带宽,边界约束,海底声学特性,声源的空间位置,目标声源的航行工况等因素之间的相互关系。为了减小特定测量环境内声能量分布不均匀性对测量的影响,试验时需根据测量环境和测试目标,进行海域的声场空间分布分析,可选取声源与接收器合适的空间位置,在声能量汇聚程度较小的区域进行测量试验,提高测量的精度。
     本文将测试环境下的测量值与球面波扩展规律进行对比,定量分析了声能量分布不均匀引入测量误差的大小。传统的利用球面波扩展规律对辐射噪声测量值进行修正的方法,在远场自由场条件下是可行的,在近距离测量范围内对于无指向性的声源,也是可行的。但是对于有指向性的声源,或者存在边界约束时,利用球面波扩展规律对测量数据进行距离修正是有偏差的,特别是对于声能量抵消的区域,测量值和球面波扩展规律都远大于真值,此时需根据声源的辐射特性和空间位置进行特定修正。
     针对测试环境内声能量分布不均匀的主要影响因素,本文探讨和研究减小测试环境内声场分布不均匀的方法和相关技术,进一步提高测量精度。提出并从理论上证明了采用基于矢量水听器阵列测量模型的技术,能对信道空间传递函数平滑,为如何减小测试海域边界约束引起的声能量分布不均匀对目标辐射噪声测量的影响提供了依据;而利用分频带目标等效声中心估算和距离修正的方法,通过合理选取现实复杂声源的等效声学中心,能减小测量时体积分布源对目标辐射噪声测量结果的影响。
     通过系统地开展水下声传播近程测量试验,完成了矢量水听器的灵敏度校准及外场测试系统的方案设计,验证了水下目标辐射噪声测量距离内的声场能量分布不均匀特性、相关规律以及如何减小声能量分布不均匀对目标辐射声测量影响的方法,为实际工程测量的数据分析和矢量水听器阵列在水下目标辐射噪声测量中的工程应用提供了试验基础。
With the constantly development of acoustic stealth technology, the radiated noise level of low noise submarine has already approached the ocean ambient noise, which brought great difficulty for radiated noise measurement. It is a difficult and urgent task for our country to research radiated noise measurement technology for quiet submarines which is consistent with our national conditions.
     As continental shelf of China is comparatively gentle and coastal areas are mostly shallow, it is difficult to find appropriate ocean area to build deep-water testing site. To satisfy the requirement of quiet submarine radiated noise measurement, it is more appropriate for China to test within short range shallow water. However, distribution of acoustic fields is quite inhomogeneous because of the short range shallow water environment, submarine's complicated acoustic source structure and its radiated characteristics. Since great improvements have been made on the factors influencing accuracy of submarine radiated noise measurement, such as measurement equipments, ranging, approaches and so on, inhomogeneous distribution of acoustic energy in measuring sea has become an important factor influencing accuracy of submarine radiated noise measurement in China. Based on this, taken the practical engineering program of low noise measurement system as background, this paper does comprehensive theoretical and experimental investigation on underwater acoustic focusing characteristics within radiated noise measuring distance of target.
     Based on Ray Theory, mathematical expressions of sound pressure field and the particle velocity field were deduced for typical acoustic source and complicated acoustic source under the condition of boundary constraint. This paper came up with a calculating model of the vector acoustic field in shallow water using the image source method. The model was established and applied to the vector acoustic field computation when sound sources were broadband signals. Method of Small Perturbation (MSP) was applied to describe the acoustic fields of uneven surface with smooth slop and small fluctuation variance, which provided theoretical calculating methods for acoustic field's characteristics research within testing sea.
     Characteristics of short-range vector propagation of target radiated sound in shallow water have been studied from the aspect of practical engineering in submarine radiated noise measurement, which shows that the inhomogeneous distribution of acoustic fields in testing sea is related to many factors like target sound source structure, radiation directivity, the band width and frequency of the signals, boundary constraint, seabed acoustic properties, the spatial location of sound sources, navigation condition of target acoustic sources and so on. In order to reduce the influence on measurement caused by inhomogeneous distribution of acoustic energy in specific measurement environment, acoustic field's spatial distribution analysis has been conducted according to testing environment and testing targets. Measurement accuracy could be improved by choosing appropriate spatial location of acoustic source and receiver in areas with less acoustic energy convergence.
     The degree of measurement error caused by inhomogeneous distribution of acoustic energy has been quantitatively analyzed by comparing measurement results in measurement environment with spherical wave propagation law. It is feasible to correct radiated noise measurement results by using spherical wave propagation law in the far fields and free fields.It is also feasible for non-directional acoustic source within the short measurement distance. But when it comes to directional acoustic source or when boundary constraint exists, there is deviation in distance correction of measurement results by using spherical wave propagation. Measurement results and spherical wave propagation law are much larger than the true results especially for the acoustic energy offset areas.There needs to be specific correction according to radiated characteristics and spatial location of acoustic source.
     Toward the main influencing factors of acoustic energy inhomogeneous distribution in testing environment, this paper probed into methods and related technology for reducing inhomogeneous distribution of acoustic fields to further improve measurement accuracy. It is put forward and theoretically proved that the measurement model based on vector hydrophone array can effectively smooth the channel space transfer function, which provided a basis for how to reduce acoustic energy inhomogeneous distribution's influence on target radiated noise measurement caused by boundary constraint of the testing sea. By estimating target equivalent acoustic center in different frequency bands and distance correcting, it is feasible to reduce the influence on results of target radiated noise measurement caused by volume distribution source through rationally selecting equivalent acoustic center of the practically complicated acoustic source.
     By systematical experiments on acoustic propagation measurement in short range, we have finished sensitivity calibration of vector hydrophone, out field testing system design, and validated the characteristics of acoustic energy inhomogeneous distribution within underwater target radiated noise measurement distance, related laws and methods on reducing acoustic energy inhomogeneous distribution's influence on radiated noise measurement, which provided experimental basis for data analysis of practical engineering and engineering application of vector hydrophone array in underwater radiated noise measurement.
引文
[1]王之程,陈宗岐,于沨,刘文帅著.舰船噪声测量与分析.国防工业出版社,2004
    [2]杨德森,战国辰,刘星.低噪声水下目标辐射噪声测量的新方法研究.中国声学学会青年学术会议论文集,2001
    [3]胡家雄,伏同先.21世纪常规潜艇声隐身技术发展动态.舰船科学技术,2001,23(4):2-5页
    [4]田战省.最好看的武器百科——舰艇.陕西科学技术出版社,2005
    [5]Miasnikov, V. The Future of Russia's Strategic Nuclear Forces Discussions and Arguments.Moscow,1995
    [6]Daniel LONG, Benoit RAFINE. UDT Conference+Proceedings Part three. 1991:657-661P
    [7]W. Frederick Zimmerman. Ssn-23 Jimmy Carter, U.s.Navy Submarine (seawolf Class).Nimble Books,2008
    [8]田坦,刘国枝,孙大军.声呐技术.哈尔滨工程大学出版社,1999
    [9]GJB 4057-2000舰船噪声测量方法.国防科学技术工业委员会,2000
    [10]高守勇.潜艇辐射噪声测量研究.哈尔滨工程大学硕士学位论文,2006
    [11]郑士杰,袁文俊,缪荣兴,薛耀泉著.水声计量测试技术.哈尔滨工程大学出版社,1995
    [12]Bobber R. J.Underwater Electroacoustic Measurements.NRL, Washington, D.C.,1970
    [13]孙贵青.矢量水听器检测技术研究.哈尔滨工程大学博士学位论文,2001
    [14]Olson H F. System responsive to the energy flow in sound waves.U.S. Patent 1892644,1932
    [15]Gordienko V A, Ilichev V I, Zaharov L N. Vector-phase Methods in Acoustics.Moscow, Nauka,1989
    [16]T. B.Gabrielson, D.L. Gardner and S.L. Garrett. A simple neutrally buoyant sensor for direct measurement of particle velocity and intensity in water. J. Acoust. Soc. Am.,1995,97(3):2227-2237P
    [17]Berliner M J, Lindberg J F. Acoustic particle velocity sensors:design, performance and applications.New York:AIP,1996
    [18]Skrebnev G K. Combined underwater acoustic receivers. Elmor Press,1997
    [19]Kevin J. Bastyr, Gerald C. Lauchle. Development of a velocity gradient underwater acoustic intensity sensor. J. Acoust. Soc.,Am.1999,106(6): 3178-3188P
    [20]B.A. Cray, et al.Directivity factors for linear arrays of velocity sensors. J. Acoust. Soc. Am.,2001,110(1):324-331P
    [21]M. T. Silvia, et al. A theoretical and experimental investigation pf low-frequency acoustic vector sensors.IEEE Oceans 2002 Proceedings, 2003(3):1886-1897P
    [22]K. Kim, T. B.Gabrielson and G. C.Lauchle. Development of an accelerometer based underwater acoustic intensity sensor. J. Acoust. Soc. Am.,2004,116(6):3384-3392P
    [23]D.R. Yntema, W. F. Druyvesteyn and M. Elwenspoek. A four particle velocity sensor device. J. Acoust. Soc. Am.,2006,119(2):943-951P
    [24]D'Spain G L et al. Energetics of the deep oceans infrasonic sound field. J. Acoust. Soc. Am.,1991,89(31):1134-1157P
    [25]Shchurov V A. Coherent and diffusive fields of underwater acoustic ambient noise. J. Acoust. Soc. Am.,1991.V.90(2):991-1001P
    [26]James A. McConnell. Analysis of a compliantly suspended acoustic velocity sensor. J.Acoust. Soc. Am.,2003,113(3):1395-1405P
    [27]Shipps J Cetal.A miniature vector sensor for line array applications.IEEE Oceans 2003 Proceedings,2003(5):2367-2370P
    [28]M. Hawkes, A. Nehorai. Wideband source localization using a distributed acoustic vector-sensor array. IEEE Trans. Signal Processing,2003, 51(6):1479-1491P
    [29]F. Jacobsen and H.de Bree. A comparison of two different sound intensity measurement principles. J.Acoust. Soc. Am.,2005,118(3):1510-1517P
    [30]时胜国.矢量水听器及其在平台上的应用研究.哈尔滨工程大学博士学位论文,2007
    [31]Gordienko V A. Vector-phase methods in acoustics.Moscow:Nauka Press, 1989
    [32]V A Shchurov. Vector acoustics of the ocean. vladivostok:Dalhauka,2006
    [33]Zakharov L N et al.Phase-gradient measurements in sound fields. Sov. Phys.Acoust.,1974,20(3):241-245P
    [34]V.A.Shchurov et al. The interaction of energy flows of underwater ambient noise and local source. J.Acoust. Soc. Am.,1991,90(2):1002-1004P
    [35]V.A.Shchurov and M.V.Kuyanova. Use of acoustic intensity measurements in underwater acoustics(Modern state and prospects). Chinese Journal of acoustics,1999,18(4):315-326P
    [36]孟洪,周利生,惠俊英.组合矢量水听器及其成阵技术研究.声学与电子工程,2003,(1):15-20页
    [37]Jone C Nickles, Greg Edmonds, Richard Harriss.A vertical array of directional acoustic sensors. IEEE,1992:340-345P
    [38]J.C.shipps, et al.A miniature vector sensor for line array application. IEEE oceans 2003 Proceedings,2003(5):2367-2370P
    [39]孙国仓.浅海矢量声场及其信号处理.哈尔滨工程大学博士学位论文,2008
    [40]孙贵青,杨德森,张林,何元安,张揽月,洪连进.矢量水听器在水下目标低频辐射噪声测量中的应用.哈尔滨工程大学学报,2001,22(5):5-9页
    [41]杨德森.利用声矢量水听器实现对水下目标辐射噪声测量的研究.声学技术,2002年增刊:92-93页
    [42]陈宗岐,于讽,刘文帅.利用矢量传感器测量舰船辐射噪声技术.舰船科学技术,2002,24(1):19-23页
    [43]杜选民,高源,孙德龙,王艳.矢量水听器阵处理技术研究.舰船科学技术,2003,25(6):27-29页
    [44]李正刚.利用目标辐射噪声信息的距离估计.第十届船舶水下噪声学术讨论会论文集,烟台,2005:353-355页
    [45]吴胜权,冯世芳,孙玉兰,王树明,刘振才.同步钟式水下测距技术研究.测量技术学报,1996,10(2,3):153-158页
    [46]张茂有.水下目标噪声测量中的同步钟测距.应用声学,1994,14(1):30-36页
    [47]Shchurov V A. Modern state and prospects for use of underwater acoustic intensity measurements.Pacific Oceanological Institute FEB RAS,1998
    [48]Berliner M J, Linbderg J F. Acoustic particle velocity sensors:Design Performance and Applications,1995
    [49]Ewing, W. M. and Worzel, J. L. Long range sound transmission. Geol.Soc. Am.Mem.,1948,27, part Ⅲ,1-35P
    [50]R. J.Urick. Principles of Underwater Sound 3rd edn. NewYork: McGraw-Hill,1983
    [51]Orlando Camargo Rodriguez. General description of the BELLHOP ray tracing program. Physics Department Signal Processing Laboratory Faculdade de Cienciase Tecnologia Universidade do Algarve, Version 1.0, 2008
    [52]D.A. Sachs, A. Silbiger. Focusing and refraction of harmonic sound and transient pulses in stratified media. J. Acoust. Soc. Am.,1971,49(3): 824-840P
    [53]C.A. Boyles. Acoustic Waveguides.Applications to Oceanic Science. John Wiley & Sons, Inc.,New York,1984
    [54]L. N. Brekhovskikh. Waves in Layered Media. New York:Academic Press, 1960
    [55]J.W.凯鲁泽著,杨祯先,董学明译.海洋声学原理.科学出版社,1983
    [56]A.D.Waite著,王德石等译.实用声纳工程.电子工业出版社,2004
    [57]R.J.尤立克著,洪申译.水声原理.哈尔滨船舶工程学院出版社,1990
    [58]Urick, R. J.Sound Propagation in the Sea. US Government Printing Office, Washington, DC,1972
    [59]刘伯胜,雷家煜.水声学原理.哈尔滨船舶工程学院出版社,1993
    [60]R. J.Urick. Sound Propagation in the Sea. Peninsula Publishing, Los Altos, California, USA,1982
    [61]S.A. Chin-Bing, J.A. Davis and R. B.Evans. Nature of the lateral wave effect on bottom loss measurements.J. Acoust. Soc. Am.,1982,71(6): 1433-1437P
    [62]E.K. Westwood. Complex ray methods for acoustic interaction at a fluid-fluid interface. J.Acoust. Soc. Am.,1989,85(5):1872-1884P
    [63]Л.М.布列霍夫斯基著,山东海洋学院海洋物理系、中国科学院声学研究所水声研究室译.海洋声学.科学出版社,1983
    [64]王先华,彭朝晖,李整林.海面波浪起伏对声传播的影响.声学技术,2007,26(4):551-556页
    [65]J.A. Scrimger. Signal Amplitude and Phase Fluctuations Induced by Surface Waves in Ducted Sound Propagation. J. Acoust. Soc. Am.,1961, 33(2):239-247P
    [66]K. V. Mackenzie. Effect of Sound-Speed Equations on Critical Depths in the Oceans. J.Acoust. Soc. Am.,62(S1),1977
    [67]BROWN M G, VIECHNICKI J.Stochastic ray theory for long-range sound propagation in deep ocean environments.J.Acoust. Soc. Am.,1998,104(4): 2090-2104P
    [68]SKARSOULIS E K, KALOGERAKIS M A. Ray-theoretic localization of an impulsive source in a stratified ocean using two hydrophones. J.Acoust. Soc. Am.,2005,118(5):2934-2943P
    [69]F. R. DiNapoli, R. L. Deavenport. Theoretical and numerical Green's function field solution in a plane multilayered medium. J.Acoust. Soc. Am., 1980,67(1):92-105P
    [70]Henrik Schmidt, Finn B.Jensen. A full wave solution for propagation in multilayered viscoelastic media with application to Gaussian beam reflection at fluid-solid interfaces.J. Acoust. Soc. Am.,1985,77(3): 813-825P
    [71]G.L. Pekeris. Theory of propagation of explosive sound in shallow water. Geol.Soc. Am.Mem.,27,1948
    [72]LEVINSON S J, WESTWOOD E K, KOCH R A. An efficient and robust method for underwater acoustic normal-mode computations. J.Acoust. Soc. Am.,1995,97(3):1576-1585P
    [73]PORTER M B.The Kraken normal mode program. SACLANT Underwater Centre,2001
    [74]Tappert F D.The parabolic approximation method, in:Wave Propagation in Underwater Acoustics. New York:Springer-Verlag,1977
    [75]D.Lee, S.T. McDaniel. Ocean Acoustic Propagation by Finite Difference Methods.New York:Pergamon,1988
    [76]Tindle, F. D.Improved Ray Calculation in Shallow Water. J. Acoust. Soc. Am.,1981,70(3):813-819P
    [77]Tindle, C.T. Ray Calculations with bean displacement. J.Acoust. Soc. Am., 1983,73(5):1581-1586P
    [78]Cerveny V.,Psencik I. Gaussion Beams in Elastic 2-D Laterally varying Layered structures. Geophys. J. R. Astr. Soc.,1984,18(3):240-252P
    [79]Lawrence M. W. Ray Theory Modeling Applied to Low-Frequency Acoustic Interaction with Horizontally Stratified Ocean Bottoms. J. Acoust. Soc. Am.,1985,78(2):125-133P
    [80]Westwood E. K.,Vidmar P. J.,Eigenray Finding and Time Series Simulation in a Layered-Bottom Ocean. J.Acoust. Soc. Am.,1987,81(4): 912-914P
    [81]Siegmann W. L.,Jacobson M. J.,Law L. D.Effects of bottom attenuation on acoustic propagation with a modified ray theory. J. Acoust. Soc. Am., 1987,81(6):1741-1751P
    [82]Westwood E. K.,Tindle C.T. Shallow water time-series simulation using ray theory. J.Acoust. Soc. Am.,1987,81(6):1752-1761P
    [83]Jensen F. B.,Schmidt H.Subcritical penetration of narrow Gaussian beams into sediments. J.Acoust. Soc. Am.,1987,82(2):574-579P
    [84]Porter M. B.,Bucker H. P. Gaussian Beam Tracing for Computing Ocean Acoustic Fields.J. Acoust. Soc. Am.,1987,82(4):1349-1359P
    [85]Foreman T. L. An Exact Ray Thoretical Formulation of the Helmoholtz Equation. J. Acoust. Soc. Am.,1989,86(1):234-246P
    [86]Westwood E. K. Ray Model Solutions to the Benchmark Wedge Problems. J.Acoust. Soc. Am.,1990,87(4):1539-1545P
    [87]Westwood E.K. Broadband Modeling of the three-dimensional Penetrable Wedge. J. Acoust. Soc. Am.,1992,92(4):2212-2222P
    [88]Ziomek L. J.Sound-Pressure Level Calculations Using the RRA Algorithm for Dimensional Speeds of Sound. IEEE JOE,1993,18(1):25-30P
    [89]彭汉书.浅海矢量声场特性及应用研究.中国科学院声学研究所博士学位论文,2007
    [90]Л.М.布列霍夫斯基著,杨训仁译.分层介质中的波.科学出版社,1960
    [91]L. M. Brekhovskikh, Yu. P. Lysanov. Fundamentals of Ocean Acoustics 3rd edn. New York:Springer-Verlag,2003
    [92]Л.М.布列霍夫斯基、雷桑诺夫著,朱柏贤、金国亮译.海洋声学基础.海洋出版社,1985
    [93]何祚镛,赵玉芳著.声学理论基础.国防工业出版社,1981
    [94]R. H.Lang, J.Shmoys.Lateral Waves on Diffuse Interfaces of Finite Thickness. J.Acoust. Soc. Am.,1970,48(1):242-252P
    [95]D.C.Stickler. Reflected and lateral waves for the Sommerfeld model. J. Acoust. Soc. Am.,1976,60(5):1061-1070P
    [96]L. M. Brekhovskikh, O. A. Godin. Acoustics of layered media Ⅱ:Point Soureces and Bounded Beams.Berlin:Springer,1999
    [97]L. B.Felsen, N. Marcuvitz.Radiation and Scattering of Waves. Prentice-Hall, Engl-ewood, Cliffs,1973
    [98]L. M. Brekhovskikh, O.A. Godin. Acoustics of Layered Media 1:Plane and Quasi-Plane Waves. Springer,1998
    [99]Jensen F. B.,Kuperman W. A.,Porter M. B.Computational ocean acoustics. New York:Springer,2000
    [101]汪德昭,尚尔昌著.水声学.科学出版社,1981
    [102]陶春辉,王东,金翔龙等著.海底沉积物声学特性和原位测试技术.海洋出版社,2006
    [103]吴国清,王美刚,陈守虎,马力.用垂直阵和单水听器测量水下目标辐射噪声的误差分析及修正方法.声学学报,2007,32(5):398-403页
    [104]H.L. Van Trees.Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, Inc.,New York, 2002
    [105]T. D.Abhayapala, R. A. Kennedy, R. C.Williamson, D.B.Ward.Nearfield Broadband Adaptive Beamforming. Fifth International Symposium on Signal Processing and its Application,1999
    [106]张保嵩,马远良.宽带恒定束宽波束形成器的设计与实现.应用声学,1999,18(5):29-33页
    [107]王惠刚,张保嵩,马远良.恒定束宽波束形成器的设计和仿真研究.电子科学学刊,2000,22(1):42-47页
    [108]智婉君.水下宽带阵列信号处理的高分辨技术研究.西北工业大学博士学位论文,1998
    [109]杨益新,孙超.任意结构阵列宽带恒定束宽波束形成新方法.声学学报,2001,26(1):55-58页
    [110]R. Monzingo, T. Miller. Introduce to adaptive arrays. New York:Wiley, 1980
    [111]Hudson J.E.Adaptive array principles. Stevenage, U. K.:Peregrinus,1981
    [112]D.B.Ward, R. A. Kennedy, R. C.Williamson. Theory and design of broadband sensor arrays with frequency invariant far-field beam pattern. J. Acoust. Soc. Am.,1995,97(2):1023-1034P
    [113]Rodney A. Kennedy, Thushara D.Abhayapala, Darren B.Ward, Robert C. Williamson. Nearfield broadband frequency invariant beamforming. IEEE, 1996,905-908P
    [114]Rodney A. Kennedy, Thushara D.Abhayapala, Darren B.Ward.Broadband nearfield beamforming using a radial beampattern transformation. IEEE transactions on signal processing,1998,46(8):2147-2156P
    [115]Rodney A. Kennedy, Darren B.Ward, Thushara D.Abhayapala. Nearfield Beamforming using radial reciprocity. IEEE transactions on signal processing,1999,47(1):33-40P
    [116]李伟洲.波束形成技术在声频弱信号测量系统中研究.哈尔滨工程大学硕士学位论文,2005
    [117]Lardies J, Guilhot J P. A very wide bandwidth constant beamwidth acoustical end-fire line array without side lobes.Journal of Sound and Vibration.1988,120(3):557-566P
    [118]吴国清,童伟峰,方华.线列阵多倍频程宽频带恒定束宽的实现.声学技术,2004,23(增刊):185-187页
    [119]M. M. Goodwin, G. W. Elko.Constant beamwidth beamforming. Proc. ICASSP, Minneapolis, Minnesota,1993,vol.1:169-172P
    [120]T. Chou. Frequency-independent beamformer with low response error. Proc. ICASSP, Detroit, Michigan,1995,vol.5:2995-2998P
    [121]Harry L. Van Trees著,汤俊等译.最优阵列处理技术.清华大学出版社,2008
    [122]郭元曦.水声阵列信号处理的并行实现研究.哈尔滨工程大学博士学位论文,2008
    [123]G. P. Eatwell, C.M. Dorling. Practical techniques for noise path identification. Underwater Defence Technology Proceeding 02-90-UDT-718,1990.
    [124]杨德森.水下航行器噪声分析及主要噪声源识别.哈尔滨工程大学博士学位论文,1998
    [125]章林柯,何琳,朱石坚.潜艇主要噪声源识别及贡献比计算方法综述.第十届船舶水下噪声学术讨论会论文集,2005
    [126]Ross D.Mechanics of underwater noise. Peninsula publishing, Los Altos, 1987
    [127]J.R. Cox. Physical limitations on free-field microphone calibration. Massachusetts Institute of Technology, Ph.D.thesis,1954
    [128]K. Rasmussen. Acoustic centre of condenser microphones.The Acoustics Laboratory, Technical University of Denmark, Report No.5,1973
    [129]W. James Trott. Effective acoustic center redefined. J.Acoust. Soc. Am., 1977,62(2):468-469P
    [130]Finn Jacobsen, Salvador Barrera Figueroa, Knud Rasmussen. A note on the concept of acoustic center. J. Acoust. Soc. Am.,2004,115(4):1468-1473P
    [131]M. Vorlander, H. Bietz. Novel broad-band reciprocity technique for simultaneous free-field and diffuse-field microphone calibration. Acoustica, 1994,80(4):365-377P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700