用户名: 密码: 验证码:
半滑舌鳎(Cynoglossus semilaevis)雌鱼分子细胞遗传学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对半滑舌鳎(Cynoglossus semilaevis)雌鱼进行了分子细胞遗传学分析,主要包括:半滑舌鳎雌鱼基因组结构特征分析、fosmid文库克隆的染色体荧光原位杂交分析、半滑舌鳎W染色体的激光显微切割及扩增、W染色体文库的构建及分析、半滑舌鳎雌鱼特异片段的获得及分析等。同时,要实现半滑舌鳎的全雌育种,有两个技术问题需要解决:(1)、如何区分ZZ和ZW,即如何鉴别雌鱼和雄鱼,从而筛选出性逆转的伪雄鱼;(2)、如何区分ZW和WW,即如何筛选出超雌鱼。本研究建立了双引物PCR法并获得了雌鱼特异性FISH探针,分别解决了这两个难题。主要结果如下:
     1、半滑舌鳎雌鱼基因组结构特征分析
     本研究利用流式细胞术对半滑舌鳎、褐牙鲆(Paralichthys olivaceus)、石鲽(Kareius bicoloratus)和圆斑星鲽(Verasper variegates)的基因组大小进行了测定并进行了比较,检测结果为:半滑舌鳎雄鱼基因组大小为586.80 Mb,雌鱼基因组大小为606.36 Mb。同时我们发现无法利用流式细胞仪通过检测红血细胞的DNA含量的方法来鉴别半滑舌鳎的雄鱼和雌鱼。
     随机挑取1,152个半滑舌鳎雌鱼fosmid文库克隆进行双末端测序,获得2,247条序列。序列总长1,921,341 bp,大约占半滑舌鳎雌鱼基因组的3.17‰。对这些序列进行如下分析:首先利用Tandem Repeats Finder (TRF)软件进行串联重复序列的查找,结果共得到889条重复序列,其中微卫星序列303条,小卫星序列586条,分别占串联重复序列总数的34.09%和65.91%,没有找到卫星序列。从长度上看,所有串联重复序列总长105,307 bp,其中微卫星序列19,363 bp,小卫星序列85,944 bp,分别占串联重复序列总长的18.39%和81.61%,占测序总长的1.01%和4.47%。
     其次,通过在线服务器RepeatMasker查找,共获得38条散布重复序列,总长4,983 bp,占测序总长的0.26%。查找到的散布重复序列共有4种类型:DNA转座子、LTR反转座子、LINE反转座子和SINE反转座子。与散布重复的其它类型相比,DNA转座子在数目和长度上均占有绝对优势。
     2、半滑舌鳎雌鱼fosmid克隆的染色体定位分析
     根据对fosmid克隆两端序列的分析及BLAST比对结果,我们选择了8个克隆进行FISH定位。其中5个克隆含有单拷贝基因,有4个克隆获得了稳定又清晰的单一信号,另外1个克隆的信号出现在了几乎所有的染色体上。余下的3个克隆均含有rRNA基因序列,我们尝试对它们进行染色体定位,结果有2个克隆在W染色体和3对常染色体上出现阳性信号,而另1个克隆只在1对常染色体上出现杂交信号。以上FISH杂交结果将有利于半滑舌鳎细胞遗传学研究,比如基因的染色体定位,性染色体的进化,染色体重排等工作的开展。
     3、半滑舌鳎雌鱼W染色体的显微分离及W染色体文库的构建和分析
     利用Leica LMD激光显微切割系统对半滑舌鳎W染色体的显微切割进行了探索,成功地将W染色体显微分离,进行了DOP-PCR扩增,并将PCR扩增产物定位在了W染色体和Z染色体上。同时利用W染色体的扩增产物构建了半滑舌鳎的W染色体文库,共获得了596个克隆。从中选取288个克隆测序,得到了259条序列。对这些序列进行了串联重复、散布重复及BLAST比对分析,结果发现共有52条串联重复序列,2条散布重复序列。其中串联重复序列中有12条微卫星序列,40条小卫星序列;而2条散布重复序列全部都是DNA转座子类型。值得一提的是,我们发现有9个克隆均含有一段几乎完全相同的近540 bp的序列,从而推断半滑舌鳎的性染色体可能含有大量的多拷贝重复序列。
     4、半滑舌鳎性别相关片段的获得及分析
     对W染色体文库克隆的序列进行引物设计,利用5条雌鱼和5条雄鱼的DNA为模板进行PCR筛选,共获得2对半滑舌鳎雌鱼的特异性引物,加上1对阳性对照引物,我们建立了双引物PCR法,该方法可以非常准确迅速地区分半滑舌鳎的雌鱼和雄鱼。同时利用这2对特异性引物对半滑舌鳎雌鱼fosmid文库的超级池和二级池进行筛选,最终获得了2个雌鱼特有的fosmid克隆。通过FISH定位分析,这2个克隆均定位在了W染色体的中部且序列比对无相似性。利用这2个克隆制成的雌鱼特异性FISH探针进行荧光原位杂交,将有助于我们筛选出半滑舌鳎WW超雌鱼。该成果将有助于推动半滑舌鳎全雌育种的研究实施及推广进程,从而极大地提高半滑舌鳎的养殖效益。
In this study, we did some researches about molecular cytogenetic analysis in female half-smooth tongue sole (Cynoglossus semilaevis), including the character analysis of genome structure in female C. semilaevis, fluorescent in situ hybridization (FISH) on chromosomes with the clones of female C. semilaevis fosmid library, laser microdissection and amplification of chromosome W from C. semilaevis, construction and analysis of chromosome W library, and analysis of female specific fosmid clones. Moreover, to actualize the all female production of C. semilaevis, two technical problems should be solved: one is how to identify ZZ and ZW, viz. how to distinguish the sex reversion ZW female ones; the other is how to identify ZW and WW, viz. how to screen out the WW female ones. In this study, we developed a double primer PCR method and female-specific FISH probes which could solve these two questions, respectively. The major results are as follows:
     1. Analysis of female half-smooth tongue sole genome
     Genome sizes of C. semilaevis, Paralichthys olivaceus, Kareius bicoloratus and Verasper variegates were estimated via flow cytometry method and compared. The male and female C. semilaevis genome sizes were estimated to be 586.80 Mb and 606.36 Mb, respectively. Additionally, we found that we could not distinguish the male and female C. semilaevis fishes via flow cytometry method.
     1,152 individual clones were sequenced, resulting in 2,247 sequences. A total of 1,921,341 bp of genomic sequences was generated, representing approximately 3.17‰of the female C. semilaevis genome. Using Tandem Repeats Finder (TRF) software to analyze the sequences, a total of 889 tandem repeats were found, including 303 microsatellites, 586 minisatellites, accounting for 34.09% and 65.91% of all tandem repeats, respectively. No satellites were found. The total length of tandem repeats was 105,307 bp, in which the length of microsatellites and minisatellites was 19,363 bp and 85,944 bp, accounting for 18.39% and 81.61% of the total length of tandem repeats, and 1.01% and 4.47% of the total length, respectively.
     RepeatMasker analysis showed that a total of 38 interspersed repetitive sequences were found, which account for 0.26% of the total length. There are 4 types in these sequences: DNA transposons, LTR retrotransposons, LINE retrotransposons and SINE retrotransposons. Among them, the type of DNA transposons is the most frequent and length abundant.
     2. Chromosome assignment of fosmid clones in C. semilaevis
     Based on the analysis of end sequences, we selected 8 clones for FISH. Of the 5 clones which were likely to be low or single copy sequences, 4 clones represent single locus and the other one showed signals on almost all chromosomes. Hybridization with 3 clones contained rRNA gene sequences, 2 showed signals on chromosome W and other 3 couples of euchromosomes and 1 showed signals only on one couple of euchromosomes. These results will undoubtedly be useful for many aspects of cytogenetic research in C. semilaevis including chromosomal assignment of genes, sex chromosome evolutions, and chromosomal rearrangements.
     3. Laser microdissection, amplification and chromosome library construction of C. semilaevis chromosome W
     Laser microdissection was performed on the chromosome W of female C. semilaevis using Leica LMD system. The isolated chromosomes were successfully amplified and reverse painted on the sex chromosomes of C. semilaevis. Chromosome W library was constructed and 288 clones were sequenced and analyzed for tandem repeats, interspersed repetitive sequences and BLAST. As a result, we found 52 tandem repeats containing 12 microsatellites and 40 minisatellites, and only 2 interspersed repetitive sequences. Additionally, we found that 9 clones contained almost the same 540 bp fragments, which indicated that the sex chromosomes of C. semilaevis might be enriched for repetitive DNA elements and high or moderate in copy number.
     4. The obtainment and analysis of sex-specific fragment in C. semilaevis
     Primers were designed from chromosome W library sequences and 2 female-specific primers were selected using 5 female and 5 male individuals as PCR templates. After appended another positive primer, we developed a double primer PCR method which could distinguish the male and female C. semilaevis fishes truly and rapidly. After library screening from fosmid library, we got 2 female-specific fosmid clones. These clones were both mapped on the middle region of chromosome W without any sequence comparability. The female-specific FISH probes prepared by these two clones will help us screen out the WW female ones. These results would be great promotion for the all-female production and the culture benefits of C. semilaevis.
引文
[1]陈京华,赵波.半滑舌鳎的生物学特性及养殖技术.水产科技情报, 2005, 32(3): 105–109
    [2]邓汉湘,何小轩,李麓云等.人类高分辨染色体显微切割、体外扩增与微克隆技术.中华医学杂志, 1991, 71(2): 84–86
    [3]戈文龙,张全启,齐洁等.异源精子诱导牙鲆雌核发育二倍体.中国海洋大学学报, 2005, 35(6): 1011–1016
    [4]高焕,孔杰.串联重复序列的物种差异及其生物功能.动物学研究, 2005, 26: 555–564
    [5]高焕.中国对虾基因组串联重复序列分析及其分子标记的开发与应用.青岛:中国科学院海洋研究所, 2006
    [6]郭歌,陈成彬,李秀兰等.黑麦B染色体端粒相关序列的克隆.植物学报, 1998, 40(12): 1123–1128
    [7]何平.真核生物中的微卫星及其应用.遗传, 1998, 20: 42–47
    [8]胡赞民,崔丽华,王兰岚等.王百合单条染色体和染色体片段的分离.遗传学报, 1997, 24(3): 278–281
    [9]黄浩杰,崔英霞.应用G显带染色体荧光原位杂交(FISH)技术研究复杂的染色体易位.遗传学报, 1996, 23(5): 338–342
    [10]黄琳,易梅生,戢福云等.鹌鹑Z染色体特异DNA文库的构建及其同源性检测.遗传学报, 2002, 29(3): 226–229
    [11]戢福云,余其兴,刘江东.显微分离黄鳝单条染色体用于基因定位.科学通报, 2001, 46(22): 1894–1898
    [12]江赐忠,宋文芹,李秀兰等.黑麦1R染色体的微切割克隆研究.植物学报, 1998, 40(11): 988–993
    [13]姜言伟,万瑞景.渤海半滑舌鳎的生殖习性及产卵生态的研究.海洋水产研究, 1988, 9: 185–192
    [14]姜运良.卫星、小卫星和微卫星DNA-真核生物基因组的串状重复序列.生命的化学, 1998, 18: 29–31
    [15]景志忠,才学鹏.模式生物基因组研究进展.生物医学工程学杂志, 2004, 21: 506–511
    [16]柳学周,庄志猛,马爱军,陈四清,孙中之,梁友,徐永江.半滑舌鳎繁殖生物学及繁育技术研究.海洋水产研究, 2005, 26(5): 7–14
    [17]罗文永,胡骏,李晓方.微卫星序列及其应用.遗传, 2003, 25: 615–619
    [18]马爱军,柳学周,徐永江,梁友,庄志猛,翟介明,李波.半滑舌鳎早期发育阶段的摄食特性及生长研究.海洋与湖沼, 2005, 36(2): 130–137
    [19]马学坤,柳学周,温海深,徐永江,张立敬.半滑舌鳎性腺分化的组织学观察.海洋水产研究, 2006, 24(2): 55–61
    [20]权洁霞,戴继勋.荧光原位杂交技术(FISH)鱼类遗传学研究中的应用及前景.动物学研究, 1999, 20(3): 225–229
    [21]沙珍霞,陈松林,田永胜.圆斑星鲽染色体核型分析.中国水产科学, 2007, 14 (3): 478–481
    [22]宋文芹,崔香芹,许文胜等.蚕豆大M染色体长臂端部的显微切割与PCR扩增.科学通报, 1996, 41(4): 361–363
    [23]覃瑞,魏文辉,金危危,何光存,宁顺斌,余舜武,宋运淳.与Gm-6和Pi-5 (t)连锁的栽培稻BAC克隆在药用野生稻中的FISH定位.科学通报, 2000, 45: 2427–2430
    [24]夏家辉,杜娟,戴和平等.人类7号染色体专特性探针池的构建及应用.实验生物学报, 1994, 27(3): 321–325
    [25]夏家辉,杨毅,戴和平等. 14个染色体区带特异性探针池的构建.遗传学报, 1994, 21(4): 253–256
    [26]鄢慧民,宋运淳,李立家,李霞,付彬英.水稻Xa21基因在水稻和玉米中的比较物理定位.植物学报, 1999, 41: 249–253
    [27]易梅生,余其兴,黄晓等.人类性染色体特异DNA对三种鱼类染色体的描绘.遗传学报, 2001, 28(1): 1–6
    [28]喻子牛,孔晓瑜,谢宗墉等.山东近海21种经济鱼类的核型研究.中国水产科学, 1995, 2(2): 1–6
    [29]张方东,郑用琏,曹志刚.玉米S组CMS线粒体基因组细菌人工染色体文库的构建.科学通报, 2000, 45: 729–735
    [30]张悦,单祥年,鲁晓萱等.染色体显微切割与DOP-PCR结合对赤麂Sry基因克隆、测序及初步定位.遗传学报, 2001, 28(4): 322–326
    [31]庄志猛,韩志强,马爱军,柳学周,高天翔.黄、渤海半滑舌鳎种群遗传结构的同工酶分析.海洋水产研究, 2006, 27(2): 10–16
    [32]钟筱波, Fransz PF, De Jong JH.用荧光原位杂交技术构建高分辨的DNA物理图谱.遗传, 1997, 19(3): 44–48
    [33]周丽青,杨爱国,柳学周,杜伟,庄志猛.半滑舌鳎染色体核型分析.水产学报, 2005, 29(3): 417–419
    [34] Abadon M, Grenier E, Laumond C, Abad P. A species-specific satellite DNA from the entomopathogenic nematode Heterorhabditis indicus. Genome, 1998, 41: 148–153
    [35] Ambady S, Mendiola JR, Louis CF, Janzen MA, Schook LB, Buoen L, Lunney JK, Grimm DR, De Leon, FAP. Development and use of a microdissected swine chromosome 6 DNA library. Cytogenet Cell Genet. 1997, 76: 27–33
    [36] Bastien D, Favre JM, Collignon AM, Sperisen C, Jeandroz S. Characterization of a mosaic minisatellite locus in the mitochondrial DNA of Norway spruce [Picea abies (L.) Karst]. Theor Appl Genet, 2003, 107: 574–580
    [37] Birren BW, Tachi-iri Y, Kim UJ, Nguyen M, Shizuya H, Korenberg J, Simon MI. A human chromosome 22 fosmid resource: mapping and analysis of 96 clones. Genomics, 1996, 34: 97–106
    [38] Britten RJ, Kohne DE. Repeated sequences in DNA: Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science, 1968, 161: 529–540
    [39] Burke DT, Carle GF, Olson MV. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science, 1987, 236: 806–812
    [40] Cannizzaro LA. Chromosome microdissection: a brief overview. Cytogenet Cell Genet, 1996, 74: 157–160
    [41] Carstro J, Vinas A, Sanchez L et al. Characterization of an atypical NOR site polymorphism in brown trout (Salmo trutta) with Ag- and CMA3- staining, andfluorescent in situ hybridization. Cytogenet Cell Genet, 1996, 75: 234–239
    [42] Chandhary R, Kijas J, Raudsepp T, Guan XY, Zhang H, Chowdhary BP. Microdissection of pig chromosomes: dissection of whole chromosomes, arms and bands for construction of paints and library. Hereditas, 1998, 128: 265–271
    [43] Chen QF, Armstrong Ken. Characterization of a library from a single microdissected oat (Avena sativa L.) chromosome. Genome, 1995, 38: 706–714
    [44] Chen Q, Armstrong K. Characterization of a library from a single microdissected oat (Avena sativa L.) chromosome. Genome, 1995, 38: 706–714
    [45] Chen SL, Li J, Deng SP, Tian, YS, Wang QY, Zhuang ZM, Sha ZX, Xu JY. Isolation of Female-Specific AFLP Markers and Molecular Identification of Genetic Sex in Half-Smooth Tongue Sole (Cynoglossus semilaevis). Marine Biotechnology, 2007, doi: 10.1007/s10126-006-6081-x
    [46] Cheng Z, Buell CR, Wing RA, Gu M, Jiang J. Toward a cytological characterization of the rice genome. Genome Res, 2001, 11: 2133–2141
    [47] Cherif D, Julier C, Delattre O, Derre J, Lathrop GM, Berger R. Simultaneous localization of cosmids and chromosome R2banding by fluorescence microscopy: application to regional mapping of human chromosome 11. Proc Natl Acad Sci USA, 1990, 87: 6639–6643
    [48] Christian AT, Pattee MS, Marchetti F. Meiotic chromosomes as templates for microdissection. Chromosome Research, 2002, 10: 45–48
    [49] Clarke L, Carbon J. A colony bank containing synthetic Col E1 hybrid plasmids representative of the entire E. coli genome. Cell, 1976, 9: 91–99
    [50] Cohen SN, Chang ACY, Boyer H, Heling RB. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA, 1973, 70: 3240–3244
    [51] Cuadrado A, Rubio P, Ferrer E, et al. Sequential combinations of C-banding and in situ hybridization and their use in the detection of interspecific introgressions into wheat. Euphytica, 1996, 89(1): 107–112
    [52] Cui LH, Chen ZH. Amplification of microdissected chromosomes from Vicia faba by two PCR techniques. Journal of Beijing Normal University (NaturalScience), 2004, 40: 243–248
    [53] Cunningham C, Hikima J, Jenny MJ, Chapman RW, Fang GC, Saski C, Lundqvist ML, Wing RA, Cupit PM, Gross PS, Warr GW, Tomkins JP. New resources for marine genomics: bacterial artificial chromosome libraries for the Eastern and Pacific oysters (Crassostrea virginica and C. gigas). Marine Biotechnology, 2006, 8: 521–533
    [54] De S and W.H.O. The nuclear Feulgen-DNA content of the vertebrates (especially reptiles), as measured by fluorescence cytophotometry, with notes on the cell and chromosome size. Acta Zoologica et Pathologica Antverpiensia, 1981, 76: 119–167
    [55] Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influence. Aquaculture, 2002, 208: 191–364
    [56] Ding Y, Johnson MD, Colayco R, Chen YJ, Melnyk J, Schmitt H, Shizuya H. Contig assembly of bacterial artificial chromosome clones through multiplexed fluorescence-labeled fingerprinting. Genomics, 1999, 56: 237–246
    [57] Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, Jiang J. Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet, 2000, 101: 1001–1007
    [58] Dolezel J, Bartos H, Voglmayr J and Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry, 2003, 51: 127–128
    [59] Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL, Schwarzacher T. Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. Journal of Heredity, 1995, 86(4): 289–296
    [60] Fisher EMC, Cavanna JS, Brown SDM. Microdissection and microcloning of the mouse X chromosome. P.N.A.S.USA, 1985, 82: 5846–5849
    [61] Fitz-Gibbon S, Choi AJ, Miller JH, Stetter KO, Simon MI, Swanson R, Kim UJ. A fosmid-based genomic map and identification of 474 genes of the hyperthermophilic archaeon Pyrobaculum aerophilum. Extremophiles, 1997, 1:36–51
    [62] Florijn RJ, Blonden LAJ, Vrolijk J, Wiegant J, Vaandrager JW, Baas F, den Dunnen JT, Tanke HJ, van Ommen GJB, Raap AK. High-resolution DNA fiber-FISH for genomic DNA mapping and color bar-coding of large genes. Hum Mol Genet, 1995, 5: 831–836
    [63] Florijn RJ, Rijke FM, Vrolijk J, et al. Exonmapping by fiber-FISH or LR-PCR. Genomics, 1996, 38: 277–282
    [64] Fujiwara A, Fujiwara M, Nishida-Umehara C, Abe S and Masaoka T. Characterization of Japanese flounder karyotype by chromosome bandings and fluorescence in situ hybridization with DNA markers. Genetica, 2007, 131: 267–274
    [65] Fujiwara S, Abe S, Yamaha E et al. Uniparental chromosome elimination in the early embryogenesis of the in viable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma, 1997, 106: 44–52
    [66] Fukui K, Minezawa M, Kamisugi K, Ishikawa M, Ohmido N, Yanagisawa T, Fujishita M, Sakai F. Microdissection of plant chromosomes by argon-ion laser beam. Theor Appl Genet, 1992, 84: 787–791
    [67] Fuscoe JC, Clark LM, Dilla MAV. Construction of fifteen human chromosome-specific DNA libraries from flow-purified chromosomes. Cytogenet Cell Genet, 1986, 43: 79–86
    [68] Gillett W, Hanks L, Wong GKS, Yu J, Lim R, Olson MV. Assembly of high-resolution restriction maps based on multiple complete digests of a redundant set of overlapping clones. Genomics, 1996, 33: 389–408
    [69] Gingrich JC, Boehrer DM, Garnes JA, Johnson W, Wong BS, Bergmann A, Eveleth GG, Langlois RG, Carrano AV. Construction and characterization of human chromosome 2-specific cosmid, fosmid, and PAC clone libraries. Genomics, 1996, 32: 65–74
    [70] Goldammer T, Brunner RM, Schwerin M. Comparative analysis of Y chromosome structure in Bos Taurus and B. indicus by FISH using region-specific, microdissected, and locus-specific DNA probes. Cytogenet Cell Genet, 1997, 77: 234–241
    [71] Goldammer T, Weikard R, Brunner RM et al. Generation of chromosome fragment specific bovine DNA sequences by microdissection and DOP-PCR. Mammalian Genome, 1996, 7: 291–296
    [72] Gregory SG, Sekhon M, Schein J, Zhao S, Osoegawa K, Scott CE, Evans RS, Burridge PW, Cox TV, Fox CA, et al. A physical map of the mouse genome. Nature, 2002, 418: 743–750
    [73] Greulich KO. Chromosome microtechnology: microdissection and microcloning. Cloning techniques, 1992, 10: 48–51
    [74] Grosveld FG, Lund T, Murray EJ, Mellor AL, Dahl HHM, Flavell RA. The construction of cosmid libraries which can be used to transform eukaryotic cells. Nucleic Acids Res, 1982, 10: 6715–6732
    [75] Grutzner F, Zend-Ajusch E, Stout K. Chicken microchromosomes are hypermethylated and can be identified by specific painting probes. Cytogenet Cell Genet, 2001, 93: 265–269
    [76] Guillier-Gencik Z, Bernheim A, Coullin Ph. Generation of whole-chromosome painting probes specific to each chicken macrochromosome. Cytogenet Cell Genet, 1999, 87: 282–285
    [77] Haaf T, Schmid M, Steinlein C et al. Organization and molecular cytogenetics of a satellite DNA family from Hoplias malabaricus (Pisces, Erythrinedae). Chromosome Research, 1993, 1: 77–86
    [78] Hadonou AM, Sargent DJ, Wilson F, James CM, Simpson DW. Development of microsatellite markers in Fragaria, their use in genetic diversity analysis, and their potential for genetic linkage mapping. Genome, 2004, 47: 429–438
    [79] Hamilton CM, Frary A, Lewis C, Tanksley SD. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA, 1996, 93: 9975–9979
    [80] Hamilton CM, Frary A, Xu Y, Tanksley SD, Zhang H. Construction of high molecular weight genomic DNA libraries in a binary BAC (BIBAC) vector. Plant J, 1999, 18: 223–229
    [81] Hanson RE, Zwick MS, Choi S, Islam-Faridi MN, McKnight TD, Wing RA,Price HJ, Stelly DM. Fluorescent in situ hybridization of a bacterial artificial chromosomes. Genome, 1995, 38 (4): 646–651
    [82] Hardie DC and P.D.N. Hebert. The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome, 2003, 46: 683–706
    [83] Hardie DC and P.D.N. Hebert. Genome-size evolution in fishes. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61: 1636–1646
    [84] Harvey SC, Masabanda J, Carrasco LA, Bromage NR, Penman DJ, Griffin DK. Molecular-cytogenetic analysis reveals sequence differences between the sex chromosomes of Oreochromis niloticus: evidence for an early stage of sex-chromosome differentiation. Cytogenet Genome Research, 2002, 97: 76–80
    [85] Heng HQH, Squire J, Tsui LC. High-Resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci USA, 1992, 89: 9509–9513
    [86] Heng HQH, Tsui LC. Modes of DAPI banding and simultaneous in situ hybridisation. Chromosoma 1993, 102(5): 325–332
    [87] Hinegardner R. Evolution of cellular DNA content in teleost fishes. American Naturalist, 1968, 102: 517–523
    [88] Hinegardner R and D.E. Rosen. Cellular DNA content and the evolution of teleostean fishes. American Naturalist, 1972, 106: 621–644
    [89] Hizume M, Shibata F, Maruyama Y. Cloning of DNA sequence localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora sieb.& Zucc. Chromosoma, 2001, 110: 345–351
    [90] Hoskins RA, Nelson CR, Berman BP, Laverty TR, George RA, Ciesiolka L, Naeemuddin M, Arenson AD, Durbin J, David RG, et al. A BAC-based physical map of the major autosomes of Drosophila melanogaster. Science, 2000, 287: 2271–2274
    [91] Ingavale SS, Kaur R, Aggarwal P, Bachhawat AK. A minisatellite sequence within the propeptide region of the vacuolar carboxypeptidase Y gene of Schizosaccharomyces pombe. J Bacteriol, 1998, 180: 3727–3729
    [92] International Human Genome Mapping Consortium. A physical map of the human genome. Nature, 2001, 409: 934–941
    [93] International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 2001, 409: 860–921
    [94] Ioannou PA, Amemiya CT, Garnes J, Kroisel PM, Shizuya H, Chen C, Batzer MA,de Jong PJ. A new bacteriophage P1 derived vector for the propagation of large human DNA fragments. Nat Gentet, 1994, 6: 84–89
    [95] Jauert PA, Edmiston SN, Conway K, Kirkpatrick DT. RAD1 controls the meiotic expansion of the human HRAS1 minisatellite in Saccharomyces cerevisiae. Mol Cell Biol, 2002, 22: 953–964
    [96] Jeffreys AJ, Wilson V, Thein SL. Hypervariable minisatellite regions in human DNA. Nature, 1985, 314: 67–73
    [97] Jiang J, Gill BS, Wang GL, Ronald PC,Ward DC. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA, 1995, 92 (10): 4487–4491
    [98] Kao FT, Yu JW. Chromosome microdissection and cloning in human genome and genetic disease analysis. P.N.A.S.USA, 1991, 88: 1844–1848
    [99] Kikuno T, Ojima Y, Yamashita N. Chromosome of flounder, Paralichthys olivaceus. Japan Acad Sci, 1986, 62(13): 194–196
    [100] Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A. Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol, 1997, 35:187–195
    [101] Kim C, Fujiyama A, Saitoua N. Construction of a gorilla fosmid library and its PCR screening system. Genomics, 2003, 82: 571–574
    [102] Kim JS, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, Klein PE, Price HJ, Mullet JE, Stelly DM. Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome, 2002, 45: 402–412
    [103] Kim UJ, Shizuya H, de Jong PJ, Birren B, Simon MI. Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res, 1992, 20: 1083–1085
    [104] Klevytska AM, Price LB, Schupp JM, Worsham PL, Wong J, Keim P. Identification and characterization of variable-number tandem repeats in the Yersiniapestis Genome. J Clin Microbiol, 2001, 39: 3179–3185
    [105] Kraak, S.B.M., de Looze, E.M.A.. A new hypothesis on the evolution of sex determination in vertebrates: big females ZW, big males XY. Neth. J. Zool., 1993, 43: 260–273
    [106] Lambrecht B, Gonze M, Morales D, Meulemans G, van den Berg TP. Comparison of biological activities of natural and recombinant chicken interferon-gamma. Vet Immunol Immunopathol, 1999, 70: 257–267
    [107] Leon F, Ambady S, Hawkins GA et al. Development of a bovine X chromosome linkage group and painting probes to assess cattle, sheep, and goat X chromosome segment homologies. P.N.A.S.USA, 1996, 93: 3450–3454
    [108] Li B, Xia Q, Lu C, Zhou Z, Xiang Z. Analysis on frequency and density of microsatellites in coding sequences of several eukaryotic genomes. Geonmics Proteomics Bioinformatics, 2004, 2: 24–31
    [109] Liao X, Shao CW, Tian YS. Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis). Molecular Ecology Notes, 2007, doi: 10.1111/j.1471-8286.2007.01812.x.
    [110] Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB. Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L.Theor Appl Genet, 2004, 110: 492–510
    [111] Liu YG, Bao BL, Liu LX. Isolation and characterization of polymorphic microsatellite loci from RAPD product in half-smooth tongue sole (Cynoglossus semilaevis) and a test of cross-species amplification. Molecular Ecology Notes, 2007b, doi: 10.1111/j.1471-8286.2007.01923.x.
    [112] Liu YG, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chomosome vector accelerates positional cloning. Proc Natl Acad Sci USA, 1999, 96: 6535–6540
    [113] Liu YG, Sun XQ, Gao H. Microsatellite markers from an expressed sequence tag library of half-smooth tongue sole (Cynoglossus semilaevis) and their applicationin other related fish species. Molecular Ecology Notes, 2007a, doi: 10.1111/j.1471-8286.2007.01844.x.
    [114] Ludecke HJ, Senger G, Claussen U, Horsthuemke B. Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature, 1989, 338: 348–350
    [115] Magrini V, Warren WC, Wallis J, Goldman WE, Xu J, Mardis ER, Mcpherson JD. Fosmid-based physical mapping of the Histoplasma capsulatum genome. Genome Res, 2004, 14: 1603–1609
    [116] Marinangeli P, Angelozzi D, Ciani M, Clementi F, Mannazzu I. Minisatellites in Saccharomyces cerevisiae genes encoding cell wall proteins: a new way towards wine strain characterisation. FEMS Yeast Res, 2004, 4: 427–435
    [117] Martinez JL, Moran P, Garcia-Vazquez E et al. Chromosomal localization of the major and 5S rRNA genes in the European eel (Anguilla anguiila). Cytogenet Cell Genet, 1996, 73: 149–152
    [118] Matsunaga S, Kawano S, Michinoto T, Higashiyama T, Nakao S, Sakai A, Kuroiwa T. Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, silene latifolia. Plant Cell Physiol, 1999, 40(1): 60–68
    [119] Meyer W, Maszewska K, Sorrell TC. PCR fingerprinting: a convenient molecular tool to distinguish between Candida dubliniensis and Candida albicans. Med Mycol, 2001, 39: 185–193
    [120] Meyerowitz EM, Guild GM, Prestidge LS, Hogness DS. A new high-capacity cosmid vector and its use. Gene, 1980, 11: 271–282
    [121] Meyne J, Ratliff RL, Moyzis RK. Conservation of the human telomere sequence (TTAGGG)n among vertebrate chromosomes. Chromosoma, 1989, 99: 33–40
    [122] Michael S, Robert E and Thomas D et al. A rapid procedure for the isolation of Cot-1 DNA from plants. Genome, 1997, 40:138–142
    [123] Monaco AP, Larin Z. YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol, 1994, 12: 280–286
    [124] Monajembashi S, Cremer C, Cermer T, Wolfrum J, Greulich KO. Microdissection of human chromosomes by a laser microbeam. Exp Cell Res, 1986, 167: 262–265
    [125] Moon DA, Magor KE. Construction and characterization of a fosmid library for comparative analysis of the duck genome. Anim Genet, 2004, 35: 408–423
    [126] Mozo T, Dewar K, Dunn P, Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S, Altmann T. A complete BAC based physical map of the Arabidopsis thaliana genome. Nat Genet, 1999, 22: 271–275
    [127] Murray NE, Brammar WJ, Murray K. Lamdoid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet, 1977, 150: 53–61
    [128] Murray NE, Murray K. Manipulation of restriction targets in phage lambda to form receptor chromosomes for DNA fragments. Nature, 1974, 251: 476–481
    [129] Nakamura S, Asakawa S, Ohmido N, Fukui K, Shimizu N, Kawasaki S. Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta2 using a highly representative rice BAC library. Mol Gen Genet, 1997, 254: 611–620
    [130] Nakayama I, Foresti R, Tewari R et al. Sex chromosome polymorphism and heterogametic males revealed by two cloned DNA probes in the ZW/ZZ fish Leporinus elongates. Chromosoma, 1994, 103: 31–39
    [131] Nederlof PM, Van der Flier, S., Wiegant J, Raap AK, Tanke HJ, Ploem, J.S., Van der Ploeg, M. Multiple fluorescence in situ hybridization. 1990. Cytometry, 11: 126–131
    [132] Nelson DL, Ledbetter SA, Corbo L, Victoria MF, Ramirez-Solis R, Webster TD, Ledbetter DH, Caskey CT. Alu polymerase chain reaction: a method for rapid isolation of human - specific sequence from complex DNA sources. Proc Natl Acad Sci USA, 1989, 86: 6681–6690
    [133] Noutoshi Y, Arai R, Fujie M, Yamada T. Designing of plant artificial chromosomes (PAC) by using the Chlorella smallest chromosome as a model system. Nucleic Acids Symp Ser, 1997, 37: 143–144
    [134] Ohno S and N.B. Atkin. Comparative DNA values and chromosomecomplements of eight species of fishes. Chromosoma, 1966, 18: 455–466
    [135] Ojima Y and K Yamamoto. Cellular DNA contents of fishes determined by flow cytometry. La Kromosomo, 1990, II 57: 1871–1888
    [136] Okada N, Hamada M, Ogiwara I, Ohshima K. SINEs and LINEs share common 3’sequences: A review. Gene, 1997, 205: 229–243
    [137] Pardo MBG, Bouza C, Castro J, Martínez P and Sánchez L. Localization of ribosomal genes in Pleuronectiformes using Ag-, CMA3-banding and in situ hybridization. Heredity, 2001, 86:531–536
    [138] Pendas AM, Moran P, Garcia-Vazquez. Multi-chromosomal location of ribosomal RNA genes and heterochromatic chromosome association in brown trout. Chromosome Research, 1993, 1: 63–67
    [139] Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity fluorescence hybridization. Proc Natl Acad Sci USA, 1986, 83: 2934–2938
    [140] Phillips RB, Konkol NR, Reed KM. Chromosome painting supports lack of homology among sex chromosomes in Oncorhynchus, Salmon and Salvelinus (Salmonidae). Genetica, 2001, 111: 119–123
    [141] Ponelies N, Stein N, Weber G. Microamplification of specific chromosome sequence: an improved method for genome analysis. Nucleic Acids Research, 1997, 25(17): 3555–3557
    [142] Qi X, Lindup S, Pittaway TS, Allouis S, Gale MD, Devos KM. Development of simple sequence repeat (SSR) markers from bacterial artificial chromosomes (BACs) without subcloning. BioTechniques, 2001, 31: 355–362
    [143] Quan X, Laes JF, Ravoet M, Vooren PV, Szpirer C. Localization of new, microdissection-generated, anonymous markers and the genes Pcsk1, Dhfr, Ndub13 and Ccnb1 to rat chromosome region 2q1. Cytogenet Cell Genet, 2000, 88: 119–123
    [144] Reed KM, Phillips RB. Molecular characterization and cytogenetic analysis of highly repeated DNAs of lake trout, Salvelinus namaycush. Chromosoma, 1995, 104: 242–251
    [145] Reed KM, Bohlander SK, Phillips RB. Microdissection of the Y chromosomeand FISH analysis of the sex chromosomes of lake trout (Salvelinus namaycush). Chromosome Research, 1995, 3: 221–226
    [146] Rohme D, Fox H, Herrmann B et al. Molecular clone of the mouse t complex derived from microdissected metaphase chromosomes. Cell, 1984, 36: 783–788
    [147] Romero C, Pedryc A, Munoz V, Llacer G, Badenes ML. Genetic diversity of different apricot geographical groups determined by SSR markers. Genome, 2003, 46: 244–252
    [148] Royal A, Garapin AC, Cami B, Perrin F, Mandel JL, Le Meur M, Bregegere F, Gannon F, Le Pennec JP, Chambon P, Kourilsky P. The ovalbumin gene region: common features in the organization of three genes expressed in chicken oviduct under hormonal control. Nature, 1979, 279: 125–132
    [149] Saha A, Bamezai R. Detection of genetic variation in Indian population groups using a novel minisatellite probe and finding relationships through tree construction. J Hum Genet, 2000, 45: 207–211
    [150] Sakurai K, Horiuchi Y, Ikeda H, Ikezaki K, Yoshimoto T, Fukui M, Arinami T. A novel susceptibility locus for moyamoya disease on chromosome 8q23. J Hum Genet, 2004, 49: 278–281
    [151] Saunder RDC et al. PCR amplification of DNA microdissected from a polytene chromosome band: a comparison with conventional microcloning. Nucleic Acids Research, 1989, 17(22): 9027–9037
    [152] Scalenghe F, Turco E, Edstrom JE, Pirrotta V, Melli M. Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma (Berl.), 1981, 82: 205–216
    [153] Selvamani MJ, Degnan SM, Degnan BM. Microsatellite genotyping of individual abalone larvae: parentage assignment in aquaculture. Mar Biotechnol, 2001, 3: 478–485
    [154] Shizuya H, Brieen B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M. Clonging and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F factor based vector. Proc Natl Acad Sci USA, 1992, 89 (18): 8794–8797
    [155] Soderlund C, Longden I, Mott R. FPC: a system for building contigs from restriction fingerprinted clones. Comput Appl Biosci, 1997, 13: 523–535
    [156] Song YC. Chromosome G-banding in situ hybridization of RFLP marker umclinked with the gene in maize. Wuhan University Journal of Natural Sciences, 1997, 22:1–5
    [157] Staten R, Schully SD, Noor MA. A microsatellite linkage map of Drosophila mojavensis. BMC Genet, 2004, 5: 12
    [158] Stein N, Ponelies N, Musket T, McMullen M, Weber G. Chromosome micro-dissection and region-specific libraries from pachytene chromosomes of maize (Zea mays L.). Plant J, 1998, 13:281–289
    [159] Sternberg N. Bacteriophage P1 cloning system for the isolation amplification and recovery of DNA fragments as large as 100 kilobase pairs. Proc Natl Acad Sci USA, 1990, 87: 103–107
    [160] Takagi M, Sato J, Monbayashi C, Aoki K, Tsuji T, Hatanaka H, Takahashi H, Harumi S. Evaluation of microsatellites identified in the tiger puffer Takifugu rubripes DNA database. Fisheries Sci, 2003, 69: 1085–1095
    [161] Takayuki K, Shuichi A, Ikuo H, Takashi A and Nobuyoshi S. Genomic Bacterial Artificial Chromosome Library of the Japanese Flounder Paralichthys olivaceus. Marine Biotechnology, 2000, 2: 571–576
    [162] Tao Q, Chang Y, Wang J, Chen H, Islam-Faridi MN, Schuering C, Wang B, Stelly DM, Zhang H. Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis. Genetics, 2001, 158: 1711–1724
    [163] Telenius H, Carter N, Bebb C, Nordenskjold M, Ponder BAJ, Tummacliffe A. Degenerate oligonucleotide-primed PCR: General amplification of target DNA by a single degenerate primer. Genomics, 1992, 13: 718–725
    [164] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796–815
    [165] Tomaso AWD, Weissman IL. Construction and characterization of large-insert genomic libraries (BAC and fosmid) from the ascidian Botryllus schlosseri andinitial physical mapping of a histocompatibility locus. Mar Biotechnol, 2003, 5: 103–115
    [166] Traut W, Winking H. Meiotic chromosome and stage of sex chromosome evolution in fish: zebrafish, platyfish and guppy. Chromosome Research, 2001, 9: 659–672
    [167] Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res, 2000, 10: 967–981
    [168] Vergnaud G, Denoeud F. Minisatellites: Mutability and genome architecture. Genome Res, 2000, 10: 899–907
    [169] Wang Y, Xu Z, Pierce JC, Guo X. Characterization of eastern oyster (Crassostrea virginica Gmelin) chromosomes by fluorescence in situ hybridization with bacteriophage P1 clones. Mar Biotechnol, 2005, 7: 207–214
    [170] Weier HUG, Wang M, Mullikin JC, Zhu Y, Cheng JF, Greulich KM, Bensimon A, Gray JW. Quantitative DNA fiber mapping. Hum Mol Genet, 1995, 4: 1903-1910
    [171] Weiner AM. Do all SINEs lead to LINEs? Nat Genet, 2000, 24: 332–333
    [172] Wickstead B, Ersfeld K, Gull K. Repetitive elements in genomes of parasitic protozoa. Microbiol Mol Biol Rev, 2003, 67: 360–375
    [173] Wu C, Sun S, Nimmakayala P, Santos FA, Meksem K, Springman R, Ding K, Lightfoot DA, Zhang HB. A BAC-and BIBAC-based physical map of the soybean genome. Genome Res, 2004, 14: 319–326
    [174] Xiao Y, Darroudi F, Kuipers AGJ, de Jong JH, de Boer P, Natarajan AT. Generation of mouse chromosome painting probes by DOP-PCR amplification of microdissected meiotic chromosomes. Cytogenet Cell Genet, 1996, 75: 63–66
    [175] Yan AS, Jeffrey M, Trent XY et al. Direct isolation of genes encoded within a homogeneously staining region by chromosome microdissection. P.N.A.S.USA, 1994, 91: 9121–9125
    [176] Yan HM, Song YC, Li LJ, et al. Physicial location of the rice Pi 25 (t), Glh and RTSV gene by ISH of BAC clones. Wuhan Univ J Natur Sci, 1998, 3 (2): 226–230
    [177] Yang DC, Parco A, Nandi S, Subudhi P, Zhu Y, Wang G, Huang N.Construction of a bacterial artificial chromosome (BAC) library and identification of overlapping BAC clones with chromosome 42-specific RFLP markers in rice. Theor Appl Genet, 1997, 95 (7): 1147–1154
    [178] Yoshido A, Bando H, Yasukochi Y, Sahara K. The Bombyx mori karyotype and the assignment of linkage groups. Genetics, 2005, 170: 675–685
    [179] Yu QY, Li B, Li GR, Fang SM, Yan H, Tong XL, Qian JF, Xia QY, Lu C. Abundance and distribution of microsatellites in the entire mosquito genome. Prog Biochem Biophys, 2005, 32: 435–441
    [180] Zhang LL, Bao ZM, Cheng J, Li H, Huang XT, Wang S, Zhang C, Hu JJ. Fosmid library construction and initial analysis of end sequences in Zhikong scallop (Chlamys farreri ). Marine Biotechnology, 2007, 9: 606–612
    [181] Zhang LL, Chen C, Cheng J, Wang S, Hu XL, Hu JJ and Bao ZM. Initial analysis of tandemly repetitive sequences in the genome of Zhikong scallop (Chlamys farreri Jones et Preston). DNA Seq. 2007. DOI: 10.1080/10425170701462316
    [182] Zhang QQ and Katsutoshi A. Flow cytometry for DNA contents of somatic cells and spermatozoa in the progeny of natural tetraploid loach. Fisheries Science, 1996, 62 (6): 870–877
    [183] Zhao F, Ambady S, De leon, Aponce F. Microsatellite markers from a microdissected swine chromosome 6 genomic library. Animal Genetics, 1999, 30(4): 251–255
    [184] Zhou YH, Hu ZM, Dang BY, Wang H, Deng XD, Wang LL, Chen ZH. Microdissection and microcloning of rye (Secale cereale L.) chromosome 1R. Chromosoma, 1999, 108: 250–255
    [185] Zhuang ZM, Wu D, Zhang SC, Pang QX, Wang CL, Wan RJ. G-banding patterns of the chromosomes of tonguefish Cynoglossus semilaevis Günther, 1873. Journal of Applied Ichthyology, 2006, 22: 437–440
    [186] Zimmer R, Haberfeld A, Gibbins AMV. Microdissection of the chicken Z chromosome and construction of microclone libraries. Genome, 1997, 40: 865–872
    [187] Zimmer R, King WA, Gibbins AMV. Generation of chicken Z chromosome painting probes by microdissection for screening large-insert genomic libraries. Cytogenet Cell Genet, 1997, 78: 124–130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700