用户名: 密码: 验证码:
汽轮发电机不同端部与冷却结构下电磁场与温度场的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为发电站中的重要能源转换装置,汽轮发电机一旦发生故障不仅影响电力系统的可靠性,还会造成巨大的经济损失。电力系统负荷处于低谷时,其过剩无功导致电网电压升高,为了保证供电质量,要求发电机具有进相运行的能力,以便吸收电网中多余的无功。发电机进相运行深度过大,会造成端部磁场过高,电机端部结构件发热严重。此外,水-氢-氢汽轮发电机运行中发生的定子绕组空心股线堵塞以及断水,会造成定子绕组冷却能力下降,局部温度过高。上述问题,都会对发电机的安全稳定运行带来影响。通过研究汽轮发电机不同端部结构和定子冷却结构对电磁和温度分布的影响规律,优化电机结构,对降低发电机损耗,改善电机内温度分布,提高发电机的运行寿命具有重要的意义。
     本文对水-氢-氢汽轮发电机定子端部采用不同阶梯段铁心结构、不同端部绕组结构尺寸及进相运行深度对端部磁场分布和结构件损耗大小的影响开展了研究,对定子绕组空心股线堵塞及断水运行下绕组温度变化进行了分析,通过实测数据验证了三维电磁场和温度场求解方法和求解结果的正确性。
     首先,对水-氢-氢汽轮发电机有效段区域二维电磁场进行了计算,采用双收敛迭代方法,确定了发电机额定运行时励磁电流和功角。针对发电机端部复杂结构,建立了包括4段阶梯段铁心的端部电磁场计算模型,采用三维时步有限元方法得到了端部阶梯段铁心的磁场分布和铁耗数值,给出了端部阶梯段铁心区域定转子气隙处磁场沿着轴向的变化规律,对比分析了端部漏磁场对阶梯段铁心损耗的影响程度。建立发电机端部采用不同阶梯段结构与不采用阶梯段结构电磁场数学模型,揭示几种结构下发电机端部铁心段齿部磁密的分布规律,研究几种结构对端部铁心损耗和结构件涡流损耗的影响程度,为汽轮发电机的端部结构优化设计提供重要参考。
     其次,对发电机定转子端部绕组尺寸变化对端部结构件涡流损耗、阶梯段铁心铁耗及端部区域磁场分布规律的影响进行了研究。计算分析了发电机定转子端部绕组伸长量不变、定子绕组端部直线段伸长和转子绕组端部直线段伸长三种结构下端部结构件涡流损耗的变化情况,确定了定子和转子绕组端部直线段伸长对端部气隙磁密的影响程度,研究了三种结构下压圈合成磁密及其轴向和径向分量的变化规律,揭示了端部绕组结构对阶梯段铁心发热的贡献程度。
     再次,针对汽轮发电机进相运行端部损耗过大的问题,对发电机端部电磁分布和损耗大小随进相深度的变化规律进行了研究。在计及铁心饱和等因素下,确定了转子励磁电流和功角随进相深度的变化情况;对比分析了发电机进相深度对端部结构件涡流损耗和定子端部铁心损耗的影响程度,综合评估了发电机不同进相深度下的安全运行能力;探讨了发电机进相运行工况下,端部压指、压圈和铜屏蔽磁密在不同位置的分布趋势,为发电机进相运行情况下端部不同区域的磁场和涡流损耗的分布及大小提供运行参考依据。
     最后,对水-氢-氢汽轮发电机定子绕组空心股线堵塞及断水故障下定子温度分布、绝缘热承受能力及发电机断水运行温度随时间变化规律开展了研究。建立了定子三维共轭传热耦合计算模型,确定了共轭传热的边界条件,计算得到了发电机正常运行下的绕组温度分布,分析了空心绕组冷却能力对绕组股线绝缘温度分布的影响;研究了定子绕组空心股线发生堵塞时,堵塞股线位置和堵塞根数对定子绕组最高温度的影响程度,给出了空心股线堵塞情况下绝缘的热承受能力;提出空心股线交错式冷却新结构,研究了新冷却结构对空实心股线涡流损耗的影响程度,得到了新冷却结构对降低堵塞故障下绕组最高温度的贡献程度;此外,研究了两种冷却结构发电机断水运行时,定子股线和空心绕组内冷却水的温度随时间的变化规律,对发电机断水运行时间进行了评估。
As the important energy conversion device in power station, the abnormaloperation of the turbo-generator not only have a serious effect to the power plantand power system security, but also bring huge economic losses. When the powersystem load is low, the surplus of reactive power in power grid will cause voltagerise. In order to ensure the power quality, it requires the generator to have the abilityof leading phase operation to absorb the excess reactive power in power grid. Theend magnetic field will increase with the increasing of the phase depth, which willcause the serious fever end in the end metal parts. Besides, the blocking failure andrun off the water occurred in the water cooled generator will cause the coolingability in the stator decreased, which will cause the high local temperature. All ofthe above problems will impact the safe and stable operation of the generator.Therefore, it is important to research the electromagnetic and temperaturedistribution of turbo-generator which will reduce the generator loss, improve thetemperature distribution, and extend working life of the generator.
     In this thesis, the influences of different end stator step packets, end windingdimensions and the phase depth on end magnetic field distribution and eddy-crrentlosses are studied using three dimensional transient electromagnetic field and theeffect of the blocking and water break failures of hollow strands on the stator localtemperature variation are investigated. The calculated results of the3Delectromagnetic field and temperature field were verified by the test values, whichverify the correctness of the computational method.
     First of all, for a water-hydrogen-hydrogen cooled turbo-generator endstructure, the end electromagnetic field calculation model including four stator steppackets was established. By using the3D time-stepping finite element method(FEM), the magnetic field distribution and iron losses of the stator step packets wereobtained. The air gap magnetic flux density for various axial positions in end regionwas analyzed and the effect of the end leakage magnetic field on the iron losses inend stator step packets was comparatively studied. The influences of the end statorpackets with ladder structure and without step packes on the magnetic flux densityin the teeth were studied. The magnetic field distribution and end losses withdifferent step angles were comparativly analyzed. The obtained conclusion willprovide important reference for the structure optimization design in the end part.
     Sencondly, the influences of stator and rotor end winding dimensions on endlosses and electromagnetic distributions were studied. A2D iterative calculation wasdone with the power factor and the phase voltage as the target of convergence, and the field current and angle were obtained. The effect of the length of stator endwinding and rotor end winding in the line segment parts on the end losses wascomparativly analyzed, and the influence of different end winding dimensions onend air gap magnetic was studied. The changes of magnetic flux density, also theaxial and radial component were investigeted, and the influence degree of the endwinding to stator step packes on iron core losses were analyzed, and also the eddycurrent loss distribution in the end metal parts was obtained.
     Thirdly, for the increasing losses of the end parts, the changing rules of endmagnetic field and electromagnetic loss with generator running under differentphase depth were studied. Excitation current and power angle under different phasedepth were calculated and analyzed considering the saturation characteristic ofstator and rotor cores. The eddy-current losses and iron losses under different phasedepth were obtained, and radial and axial component of the magnetic flux density inthe press plate, press finger and copper field are analyzed.
     Lastly, the temperature distribution and thermal aging property with theblocking and water break failures in the water cooled stator windings are researched.Temperature variation law with time under water break fault were analyzed.Considering the complex cooling structure, a three-dimentional conjugate heattransfer coupling analysis modle was established, and the series solid-fluid heattransfer conditions are determined. The cooling capacity of hollow strands wasanalyzed and the influences of hollow strands on strand insulation temperature wasinvestigated. The effects of blocking hollow strands numbers and locations on themain insulation were investigated. A new cooling structure of stator windings wasproposed, and the effects of the new cooling structure on the strand eddy-currentlosses and the impact of new cooling structure on reducing the highest temperaturewith blocking failure were investigated. Meanwhile, the running ability of thegenerator with water break failure were evaluated. Temperature variation law withtime of the cooling water and stator winding were obtained.
引文
[1]汪耕,李希明.大型汽轮发电机设计、制造与运行[M].上海:上海科学技术出版社,2012:536-537.
    [2] Joho R, Picech C, Mayor L K. Air-cooled turbogenerators-extending theboundaries[C]. Cigre2006, A1-106.
    [3] Weiss J, Stephens C M. Finite Elements for Three-Dimensional MagnetostaticFields and its Application to Turbine-Generator End Regions[J]. IEEETransactions on Power Apparatus and Systems,1981,100(4):1591-1596.
    [4] Jack A G,Mecrow B C. Calculation of three-dimensional electromagneticfields involving laminar eddy currents[J]. PIEE Pt. A,1987,134(8):663-671.
    [5] Bahemmat P, Mohammadi M, Molki H, Kharamani A A. Finding a simplifiedmodel for a stator end winding field[C].20124th Conference on thermalPower Plants (CTPP),2012:1-6.
    [6] Khan G K M, Buckley G W. An integrated approach for the calculation oflosses and temperatures in the end-region of large turbinegenerators[J]. IEEETransactions on Energy Conversion,1990,5(1):183-194.
    [7] Vogt G, Romary R, Parent G, Costan V. Study of stator core-end packets underthe action of two incident fluxes-Real scale model[C]. IECON2012-38thAnnual Conference on IEEE Industrial Electronics Society,2012:2043-2048.
    [8] Fujita M, Ueda T, Tokumasu T, Nagakura K, Kakiuchi M, Otaka T. Eddycurrent analysis in the stator end structures of large capacity turbinegenerators[C]. International Conference on Electrical Machines and Systems,2009:1-6,15-18.
    [9]渭井真一.汽轮发电机定子端部的三维磁场解析[J].国外大电机,2006,(03):26-31.
    [10] Joshi T, Baker A E. Turbine-generator end-region analysis using the quasi-3dmethod[C]. IET8th International Conference on Computation inElectromagnetics,2011:1-2,11-14.
    [11] Yamazaki K, Tada S, Mogi H, Mishima Y, Kaido C, Kanao S, Takahashi K, IdeK, Hattori K, Nakahara A. Eddy Current Analysis Considering Lamination forStator Core Ends of Turbine Generators[J]. IEEE Transactions on Magnetics,2008,44(6):1502-1505.
    [12] Yamazaki K, Yamato Y, Mogi H, Kaido C, Nakahara A, Takahashi K, Ide K,Hattori K. In-plane eddy current analysis for end and interior stator corepackets of turbine generators[C]. International Conference on ElectricalMachines,2008:1-6.
    [13] Haruyuki Kometani, Susumu Maeda and Kazuichi Suzuki. Application ofElectromagnetic Numerical Analyses for Large Indirectly Hydrogen CooledTurbine Generators[C]. Cigre2008, A1-109.
    [14] Ionel D M等.电机铁损系数随磁通与频率的变化[J].国外大电机,2008(3):42-49,54.
    [15] Kazuo Shima, Takeo Murai, Tadashi Fukami, Yoko Furukawa, AkiyoshiKomura. Measurement and Analysis of In-Plane Eddy Current in LaminationSteel Using a New Tester[C]. International Conference on Electrical Machines(ICEM),2012:1771-1777.
    [16] Freese M. Analytic Calculation of Turbo Generator End Winding Inductancesusing Neumann’s Formula[C]. International Symposium on Power ElectronicsElectrical Drives Automation and Motion,2010:1597-1602.
    [17] Freese M. Comparison between an Analytic Method and a NumericalCalculation to Determine the End Winding Inductances of a TurboGenerator[C]. International Conference on Electrical Machines (ICEM),2010:1-5.
    [18] Rumena D Stancheva, Ilona I Iatcheva.3-D Electromagnetic ForceDistribution in the End Region of Turbo-generator[J]. IEEE Transactions onMagnetics,2009,45(3):1000-1003.
    [19] Albanese R, Calvano F, DalMut G, Ferraioli F, Formisano A, Marignetti F,Martone R, Romano A, Rubinacci G, Tamburrino A, Ventre S. Coupled ThreeDimensional Numerical Calculation of Forces and Stresses on the EndWindings of Large Turbo Generators via Integral Formulation[J]. IEEETransactions on Magnetics,2012,48(2):875-878.
    [20] Masafumi Fujita, Yasuo Kabata, Tadashi Tokumasu, Ken Nagakura, MikioKakiuchi, Susumu Nagano. Circulating Currents in Stator Coils of LargeTurbine Generators and Loss Reduction[J]. IEEE Transactions on industryApplications,2009,45(2):685-693.
    [21] Pantelyat M G, Saphonov A N, Shulzhenko NG.3D finite element analysis ofthe turbogenerator rotor electromagnetic field[C]. International Conference onComputation in Electromagnetics (CEM2011),2011:1-2.
    [22]郭立炜,汤蕴璆.汽轮发电机的非线性涡流场和运算电抗的数值计算[J].哈尔滨电工学院学报,1989,12(2):111-114.
    [23]单继聪,梁旭彪,杨仕友,黄磊,咸哲龙,倪光正.大型汽轮发电机定子绕组端部电磁力解析计算[J].机电工程,2008,25(10):98-100.
    [24]夏海霞,姚缨英,熊素铭,倪培宏,倪光正,梁旭彪,咸哲龙,范成西.1000MW汽轮发电机端部磁-热耦合分析[J].中国电机工程学报,2008,28(14):118-122.
    [25] Jia Zhang, Shiyou Yang, Ho S L, Yingying Yao.3D Finite Element Study ofTransient Electromagnetic Forces Acting on the Stator End-Windings of aLarge Turbo-generator[C]. IEEE Conference on Electromagnetic FieldComputation (CEFC),2010:1.
    [26]吴永霞,张甲,梁旭彪,倪光正,黄磊,咸哲龙,杨仕友.大型汽轮发电机端部电磁场数值分析[J].机电工程,2012,29(3):249-252.
    [27]胡刚,张建涛,李金香.大型汽轮发电机定子绕组端部电动力三维有限元计算[J].大电机技术,2013,(2):1-4,12.
    [28]万书亭,姚肖方,朱建斌.汽轮发电机定子绕组端部电磁力特性分析[J].华北电力大学学报(自然科学版),2012,39(6):7-12.
    [29]赵玉.大型汽轮发电机端部磁场的二维有限元分析及应用[J].华东电力,2006,34(6):32-34.
    [30]黄学良,胡敏强,杜炎森.发电机端部涡流电磁场分析[J].东南大学学报,1995,25(5):14-20.
    [31]黄学良,胡敏强,杜炎森,周鹗.汽轮发电机端部涡流电磁场及影响因素的研究[J].电工技术学报,1996,11(2):1-6.
    [32]苏文印,许善格.电机端部磁场的准三维有限元分析[J].大电机技术,1997,(1):12-17.
    [33]梁艳萍,张沛,陈晶,孙玉田.1000MW空冷水轮发电机端部结构件涡流损耗[J].电工技术学报,2012,27(12):213-218.
    [34]梁艳萍,王鸿鹄,张建涛,等.空冷汽轮发电机端部电磁场与涡流损耗研究[J].电机与控制学报,2010,(1):29-34.
    [35]潘峰,汤岷,刘传坤.220MW空冷汽轮发电机端部磁热耦合计算[J].东方电气评论,2012,26(102):14-17,21.
    [36]李和明,李永刚,张建忠,邢超.大型汽轮发电机定子端部绕组典型故障分析[J].广东电力,2011,24(5):85-88.
    [37]张学洋.大型汽轮发电机定子端部绕组典型故障及防范措施[J].科技创新与应用,2012,(33):115.
    [38]姜茜.汽轮发电机常见故障及事故分析[J].东方电机,2012(6):16-25,28.
    [39]欧阳鹏,王建辉,范成西,钟后鸿.基于ElecNet的汽轮发电机定子绕组端部结构建模及电场计算[J].大电机技术,2009,(1):14-18.
    [40]刘瑞丽,魏燕飞.汽轮发电机定子线圈端部设计的精确计算[J].上海大中型电机,2011,(4):23-26.
    [41]金丽萍,何圣熙.基于Pro/E的汽轮发电机定子绕组精确建模[J].机械设计与制造,2006,(10):38-40.
    [42]任盼秋,严欣平,周光厚,韩伟峰.1150MW核能发电机定子端部绕组三维建模[J].大电机技术,2012,(04):17-20.
    [43]孙景文.600MW汽轮发电机念子线圈端部曲线的转化计算[J].大电机技术,1993,(5):17-24,29.
    [44]刘晓芳,杨世彦,刘大鹏,陈景易.基于I-DEAS的汽轮发电机定子绕组自动三维建模[J].中国机械工程,2011,(3):317-321.
    [45] Самородов Ю Н.汽轮发电机毛病和故障图集[J].国外大电机,2006(4),:38-42.
    [46] Атаманов В В等.负载汽轮发电机定子铁心边段的状态检测[J].国外大电机,2006(3):23-25.
    [47] MALJKOVI Z, ILI I, GA PARAC I, PAVLICA M, VI KOVI A,ANDRO EC I. Determination of operating limits of underexcited synchronousgenerator by measurements[C]. Cigre2006,PARIS,A1-204.
    [48] S.S. Choi等.欠励磁限制器对防治同步发电机定子铁心端部过热的作用[J].国外大电机,2001(2):28-33,38.
    [49] Masafumi Fujita,Tadashi Tokumasu, Hiroyuki Yoda, Hideaki Tsuda, Kaoru Ito,Susumu Nagano. Magnetic Field Analysis of Stator Core End Region of LargeTurbogenerators[J]. IEEE Transactions on Magnetics,2000,36(4):1850-1853.
    [50]韦延方,卫志农,张友强,孙国强,王成亮,孙永辉.发电机进相运行的研究现状及展望[J].电力系统保护与控制,2012,40(9):146-154.
    [51]王成亮,王宏华.同步发电机进相研究综述[J].电力自动化设备,2012,32(12):131-135.
    [52]王芳,王宏华,王成亮.发电机进相运行研究现状[J].机械制造与自动化,2009,38(3):4-6.
    [53]宋敏慧,杨华峰.大型汽轮发电机进相能力分析[J].上海大中型电机,2013,(01):33-35.
    [54]孟宪瑞,王焕,叶鸣钧,董华.核电厂发电机进相运行分析[J].电源技术应用,2013,(2):141.
    [55]翁洪杰.大型汽轮发电机组的进相运行试验研究[J].电工技术,2011,(2):47-48.
    [56]李晓霞,章岩.大型汽轮发电机进相运行试验的分析研究[J].陕西电力,2009,(11):30-32.
    [57]王茂松.大唐鲁北发电厂330MW发电机组进相运行分析[J].电气技术,2010,(2):67-69.
    [58]李英显.发电机组运行中进相故障原因分析与对策[J].工程技术,2008,(24):92,94.
    [59]孟凡超.发电机进相运行引起失磁保护误动作的事故分析[J].陕西电力,2011,(04):82-84.
    [60]史家燕,董明会,李惠升,等.汽轮发电机的饱和功-角特性[J].中国电机工程学报,1986,6(3):1-7.
    [61]史家燕,董明会,李惠升,等.汽轮发电机的饱和P-Q容量图[J].中国电机工程学报,1988,8(5):55-60.
    [62]司捷.发电机进相运行的分析研究[D].北京:清华大学硕士学位论文,1987:8-13.
    [63]史家燕,刘作宗,吕桂清,等.确定发电机稳态安全运行判据的新方法[J].中国电力,1995,(6):37-41.
    [64]徐倩,王正风,潘学萍.发电机进相深度对电力系统低频振荡的影响[J].中国电力,2012,45(12):57-60.
    [65]盛四清. Matlab电力系统工具箱在发电机进相运行仿真中的应用[J].继电器,2005,33(20):53-56,73.
    [66]付俊杰.大型汽轮发电机进相运行状态特性分析与研究[D].北京:华北电力大学硕士论文,2009:15-20.
    [67]王常宝.浅谈汽轮发电机定子端部绕组绝缘故障分析[J].科技创新与应用,2012,(25):68.
    [68]肖国振.某国产600MW发电机定子端部绝缘烧损分析及处理[J].江苏电机工程,2012,(6):75-77.
    [69]付海涛,杨长安,张炳军,唐孝镐.大型水轮发电机进相运行时端部磁场分析[J].上海大中型电机,2004,(2):25-28.
    [70]咸哲龙,钟后鸿,刘明慧,范成西.600MW发电机端部损耗与发热研究[J].大电机技术,2008,(5):12-15,58.
    [71]姚若萍,侯小全,饶芳权.大型水轮发电机在各种工况下的端部磁场计算[J].上海交通大学学报,2002,36(2):234-236,242.
    [72]史家燕,史源素,赵肖敏,曲世路,郭永红,张力.发电机工况参数模型及进相运行在线监测[J].中国电机工程学报,2006,26(11):139-143.
    [73]程波,周秋月.300MW汽轮发电机内冷水系统故障检查及处理[J].大电机技术,2002,(4):29-32.
    [74]李伟清.汽轮发电机故障检查分析及预防(第二版)[M].北京:中国电力出版社,2010:48-49.
    [75] JOHO R, SABATER Y, FERRETTO H, ABRAHAM D, FERENS W. Hydrogen/water-cooled turbogenerators: a mature technology on the move[C].Cigre2008,paris, A1-117.
    [76] Worden J A等.对水冷发电机定子绕组泄露的认识、诊断和维修[J].国外大电机,2006,(3):1-11.
    [77] Latini M F, Britojr G C, Correia R A S. Hydro generators with water-cooledtype stator winding: difficulties and solutions on doing dielectric tests[C].Cigre2006, A1-201:1-8.
    [78] Radek Vlach, Robert Grepl, Petr Krejci. Control of Stator Winding SlotCooling by Water Using Prediction of Heating[C]. IEEE InternationalConference on Mechatronics,2007:1-5.
    [79] KIMURA K等.汽轮发电机中绕组绝缘的在线工况监测[J].国外大电机,2000,(4):53-56.
    [80] Gray R F, Montgomery L, Nelson R, Pipkin J, Joki-Korpela S, CaguiatF. Designing the Cooling Systems for the World’s Most PowerfulTurbogenerator-Olkiluoto Unit3[J]. IEEE Power Engineering Society GeneralMeeting,2006:1-5.
    [81] Ken Nagakura, Toru Otaka, Mikio Kakiuchi, Yuichiro Gunji, ShinyaNakayama, Daisuke Murata, Yasuo Kabata, Hiroshi Hatano. Development ofthe world’s Largest Hydrogen Indirectly Cooled Turbine Generator[C].International Conference on Electrical Machines and Systems,2009:1-6.
    [82] Gurevich E I, Pinchuk N D. Experimental study of the latest design of thepowerful air-cooled turbogenerator stator[C]. Cigre2008,A1-103:1-8.
    [83] Miller M L等.高压定子线圈主绝缘的导热系数[J].国外大电机,2009,(4):42-46.
    [84] Tari M, Yoshida K, Sekito S, Brutsch R, Allison J, Lutz A.HTC InsulationTechnology Drives Rapid Progress of Indirect-Cooled Turbo Generator UnitCapacity[C]. Power Engineering Society Summer Meeting,2001,3:1427-1432.
    [85] Ken'ichi Hattori, Kazumasa Ide, Kazuhiko Takahashi, Keiji Kobashi, HiroshiOkabe,Takashi Watanabe. Performance Assessment Study of a250MVAAir-cooled Turbo Generator[C].IEEE International Electric Machines andDrives Conference,2003,1:124-128.
    [86] Naghashan M R,Shoar D H. Investigation of temperature rise and permissibleload current of water-cooled generators with blockage of hollow sub-conductors[C]. Electrical Insulation Conference and Electrical ManufacturingExpo,2005:85-88.
    [87] Masafumi Fujita, Yasuo Kabata, Tadashi Tokumasu, Mikio Kakiuchi, HidekazuShiomi, Susumu Nagano. Air-cooled Large Turbine Generator withMultiple-pitched Ventilation Ducts[C]. IEEE International Conference onElectric Machines and Drives,2005:910-917.
    [88] Kenichi Hattori, Kazuhiko Takahashi, Kazumasa Ide, Keiji Kobashi, HiroshiOkabe, Takashi Watanabe. Calculation of Temperature in a Large TurbineGenerator with Multilayer Roebel Transposition Coils[C]. Cigre2005.
    [89] Wang H Y, Su P S, Wang X H.Calculation on the Thermal Field of the WaterCooling Stator of Three-Gorge Hydro-Generator[C].Proceedings of the EighthInternational Conference on Electrical Machines and Systems,2005,3:2231-2235.
    [90] Hu Lei, Yuan jianhua, Hu xiaohong, Yuan Yichao, Liang Xubiao, XianZhelong.Resistance Analysis on the Gap-pickup Diagonal Flow Passage inTurbine Generator Rotors[C].Cigre2011, CS A1:178-184.
    [91]郑东平,胡晓红,袁益超.汽轮发电机转子轴向-径向通风冷却系统流动特性研究[J].大电机技术,2011,(5):9-12,16.
    [92]张小虎,袁益超,边缘,胡晓红.大型核电汽轮发电机转子通风系统流动特性数值模拟[J].能源研究与信息,2011,27(2):87-94.
    [93] Zhong H h, Xian Z L, Zhao W. Negative Sequence Eddy Current FieldAnalysis and Temperature Calculations of1100MW Turbo-generator with3DFinite Element Methods[C]. Cigre2011, SC A1:185-191.
    [94]周怀理.防止双水内冷发电机断水和断水保护装置的改进[J].电力技术,1982,(6):32-34.
    [95]栾春凤.汽轮发电机断水运行方式及其断水自动减负荷装置的局限性[J].东北电力技术,1998,(2),33-35.
    [96]赵昌宗.三峡水轮发电机定子线圈断水运行能力分析[J].东方电气评论,2004,18(1):1-3,14.
    [97]李俊卿.采用混合单元的汽轮发电机定子温度场的分析与计算[J].中国电机工程学报,2009,29(18):78-82.
    [98] LI Junqing, Hu Jiwei. Fluid Characteristic Research of Cooling-Water onStator waterway Blockage in Turbo-generators[C]. Power and EnergyEngineering Conference,2010:1-4.
    [99]刘为民.大型汽轮发电机定子线棒堵塞原因分析和处理方法的研究[D].杭州:浙江大学硕士论文,2006:35-45.
    [100]Xing Xuhui, Wang Yunshan, Zhuge Wenbing, Li Zhi. Test Analysis of600MWGenerator Stator Bar Temperature Measure[C]. Cigre2011, SC A1:201-208.
    [101]Shen Liangwei, Jiao Xiaoxia. The Developing Road of HEC TurbineGenerator[C]. Cigre2011, SC A1:148-156.
    [102]何智蓉,陈勇,陈永庚,彭涵.空冷汽轮发电机定子整浸VPI国产材料应用研究[J].湖北工业大学学报,2012,27(1):46-50.
    [103]Li Zhenguo, Liu Feihui, Xiong Bin. Study of evaporative cooling technologyin the rectification devices[C].201215th International Conference onElectrical Machines and Systems (ICEMS),2012:1-4.
    [104]鲁涤强,黄学良,胡敏强.汽轮发电机端部三维温度场的有限元计算[J].中国电机工程学报,2001,21(3):82-85.
    [105]胡敏强,陈贤珍,周克定.定子铁心三维温度场的有限元分析[J].华中理工大学学报,1990,18(4):15-22.
    [106]杜炎森,黄学良.大型汽轮发电机端部三维温度场研究[J].中国电机工程学报,1996,16(2):95-101.
    [107]Weili L, Yu Z, Yuhong C. Calculation and Analysis of Heat TransferCoefficients and Temperature Fields of Air-Cooled Large Hydro-GeneratorRotor Excitation Windings[J]. IEEE Transactions on Energy Conversion,26(3):946-956.
    [108]Li Weili, Wu Zhenxing, Huo Feiyang. Influence of Main Insulation ThermalAging on Stator Temperature Field in Large Turbo-generator[C]. ICEEAC2010,2010:345-348.
    [109] Feiyang H,Weili L, Yu Z. Calculation of Damper Winding Loss and Influenceon Large Hydro-generator Temperature[C]. IEEE International Conference onComputer Application and System Modeling,2010:365-369.
    [110]丁树业,孙兆琼,苗立杰,徐殿国.大型发电机定子主绝缘温度场数值研究[J].电机与控制学报,2010,14(7):53-58.
    [111]吕向平,丁树业.空冷汽轮发电机多工况下定子热性能分析[J].黑龙江电力,2011,33(6):409-413.
    [112]路义萍,郑国丽,韩家德,王佐民.副槽及出风口结构尺寸对汽轮发电机转子三维温度场的影响[J].中国电机工程学报,2011,31(26):90-96.
    [113]Cui Yibo, Ruan Ling.Study on Internal Cooling Water Quality and CoilsCorrosion of Large Generators[C]. Cigre2011, SC A1:209-215.
    [114]邓隐北.采用新通风方式的大型空冷汽轮发电机[J].电源技术应,2011,(12):65-69.
    [115]钟后鸿,刘明慧,胡磊,汪耕.大型汽轮发电机转子水流量分析与计算[J].上海大中型电机,2011,(4):5-9.
    [116]魏永田,孟大伟,温嘉斌.电机内热交换[M].北京:机械工业出版社,1998:112-140.
    [117]丁舜年.大型电机的发热与冷却[M].北京:科学出版社,1992:92-132.
    [118]Shackshaftl G, Henser P B. Model of generator saturation for use in powersystem studies[J]. IEE Proc.1979,1as(s):759-763.
    [119]Lin D, Zhou P, Fu W N, Badics Z, Cendes Z J. A Dynamic Core Loss Modelfor Soft Ferromagnetic and Power Ferrite Materials in Transient Finite ElementAnalysis[J]. IEEE Transactions on Magnetics,2004,40(2):1318-1321.
    [120]Lin D, Zhou P, Badics Z, Fu W N, Chen Q M, Cendes Z J. A new nonlinearanisotropic model for soft magnetic materials[J]. IEEE transactions onmagnetics,2006,42(4):963-966.
    [121]柴峰.大型同步发电机定子绕组涡流损耗的理论分析与计算[D].哈尔滨:哈尔滨理工大学硕士学位论文,2009:7-20.
    [122]于海涛.同步发电机断股时电磁场与温度场分析及稳态端部场计算[D].哈尔滨:哈尔滨理工大学硕士学位论文,2010:8-16.
    [123]李勇.大型空冷汽轮发电机多物理场计算与分析[D].哈尔滨:哈尔滨理工大学硕士学位论文,2010:1-8.
    [124]杨雪峰.大型空冷汽轮发电机定子内流体场与温度场计算与分析[D].哈尔滨:哈尔滨理工大学硕士学位论文,2010:6-24.
    [125]符建民.汽轮发电机定子流体和温度场的耦合计算[D].北京:华北电力大学硕士学位论文,2010:13-18.
    [126]Li Junqing, Li Herring. A thermal model for the water-cooled stator bars of thesynchronous generator[C]. International Conference on Power SystemTechnology,2002,2:756-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700