用户名: 密码: 验证码:
火成岩系统广义定量化结构分析及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士论文在火成岩狭义定量化结构分析基础上,提出并探索了火成岩系统广义定量化结构分析。广义定量化结构分析以岩架复杂系统和火成岩复杂晶体群为出发点,将岩石结构作为火成岩系统研究的核心和纽带,把其中的地质学、岩石学、矿物学、岩矿物理化学和地球化学紧密联系在一起,特别强调了它们之间的定量联系,这种整合分析聚焦于火成岩系统中时间、空间、温度、压力和成分等五个主要变量之间的有机联系,并以此为据力图阐明火成岩系统中的某些基础学科问题。通过广义定量化结构分析的探索,论文取得以下一些主要成果和认识:
     1,首次系统的将狭义的火成岩定量化结构分析引入国内,并在学校985学科平台建设的资助下,建立了定量化结构分析实验室。发展和完善了一套切实可行的火成岩定量化结构分析方法。
     2,为了获得代表性样品的大小和其约束条件,基于全晶质岩石结构的特征,以理想的花岗岩成分为基础,利用模拟统计的方法,初步探讨了代表性样品与矿物含量和矿物粒径之间的关系,获得了矿物含量和粒径变化时,样品大小对矿物实际含量和真实含量间最大可能差值的影响。统计样品截面视域中斑晶数目的多少,可以获取样品中矿物实际含量与真实含量的差距。利用斑晶的平均粒度可以近似获得代表性样品的大小。相同大小样品下,粒径大的样品偏离真实含量的程度更高,斑晶或等粒结构中的粗粒矿物含量是20%时,所需代表性样品最大。最后以麻棚岩体和房山岩体为实例进行了验证和应用说明,其中房山岩体的代表性和非代表性样品的全岩主量元素和微量元素测试结果显示,非代表性的样品普遍存在过多钾长石的影响,最显著的是引起全岩K_2O和AI_2O_3含量升高,SiO_2含量变化范围减小。中国东部某些富钾的埃达克质岩石有可能存在样品代表性问题。
     3,对近年来国内已发表的744个辉钼矿Re-Os同位素测年数据进行了汇总,发现所有样品辉钼矿中的Re含量具有泥合分布的特征。按照岩性和共生矿物种类对所有数据进行了分类统计分析,结果显示辉钼矿中Re含量与岩性和共生矿物种类存在密切的关系:长英质脉和花岗岩中辉钼矿的Re含量最低,几何平均值分别为7.41X10~(-6)和7.99X10~(-6),多在lO—6?lO—5;砍卡岩中辉钼矿Re含量中等,几何平均值为58.1xl0~(-6),多在10~(-5)?10~(-4);碳酸岩中辉钼矿Re含量最高,几何平均值为231xl0~(-6),多在10~(-4)左右。辉钼矿的共生矿物种类影响其Re含量的变化,仅与白鹤矿(或黑鹤矿)和(或)方錯矿,闪锌矿,自然金和自然银共生时辉钼矿Re含量最低,几何平均值为10~(-7),多在10_8?10_6;仅与黄铜矿和(或)磁铁矿(或磁黄铁矿)共生时辉钼矿Re含量最高,几何平均值为10~(-4),多在10~(-5)?10、同时与黄铜矿(磁铁矿或磁黄铁矿)和白鹤矿(或黑鹤矿,方錯矿,闪锌矿,自然金和自然银)共生时辉钼矿Re含量处在前两者之间,几何平均值为10_6,多在10~(-7)?10~(-5)。综合分析说明辉钼矿与白鹤矿(或黑鹤矿、方錯矿、闪锌矿、自然金和自然银)共生或产在长英质脉和花岗岩中可能促使其Re含量降低,与黄铜矿、黄铁矿和磁铁矿(或磁黄铁矿)共生或产在砍卡岩和碳酸岩中可能促使其Re含量升高,辉钼矿Re含量的级数变化可能与其产出状态(岩性和共生矿物种类)密切相关,以及结合近年来辉钼矿Re含量示踪和其它同位素示踪结果间矛盾的
     存在,认为辉钼矿Re含量的级数变化似乎不能有效的反应其成矿物质来源。4,地质和地球物理多方面的证据表明以橄榄岩为主的上地幔中分布有不同尺度大小的辉石岩,这些辉石岩通常比橄榄岩固相线温度低,更容易发生部分恪融形成玄武质岩架,但我们通常假定原生玄武质岩架与地幔橄榄岩平衡,其中最主要的原因可能是直到目前我们依然没有找到辉石岩融体与橄榄岩融体的有效区别标志。在全面分析了过去三十几年文献中积累的有关橄榄岩和辉石岩恪体的实验岩石学结果基础上,发现在橄榄岩成分多样性和恪融结晶条件影响下,尽管橄榄岩和辉石岩恪体的单个元素含量,元素比值和相图中均无法区分,但从主量元素特征与岩石结构特征间的定量联系角度出发,FC3MS值(Fe0T/Ca0-3*Mg0/SiO_2,氧化物均为质量百分数)能够有效的识别大部分辉石岩恪体。橄榄岩恪体FC3MS=-0.07士0.51(25, n=656),显著低于辉石岩恪体FC3MS=0.46士0.96(25,n=494),统计学特征说明二者构成两个不同的群体。辉石岩恪体高FC3MS值的特征在中国东部和蒙古OIB型火山岩(主要是新生代玄武岩)(C-OIB)中得到了直接的体现,C-OIB (MgO>7.5wt%)的FC3MS=0.68士0.34(25, n=525),碱性C-OIB和拉斑质C-OIB具有几乎一样的FC3MS值,分别为0.65士0.35(23, n=356)和0±.700.30(25, n=138)o这些恪体在相图中主要与石植石和单斜辉石平衡,因此确定了C-OIB的源区岩性主要是石植辉石岩而不是通常假定的橄榄岩。C-OIB中的部分实例在FC3MS值和La/Yb比值关系图解中记录了辉石岩部分恪融趋势,表明某些传统上认为的演化的低镁玄武质岩架可能是原生的辉石岩恪体。正常地幔温度下,辉石岩能够合理的形成C-OIB,不需要借助高温地幔柱模型。由于辉石岩恪体与橄榄岩恪体成因的显著区别,以前在假设C-OIB以及其它各种类型的玄武岩源区为橄榄岩基础上得出的许多地质模型,例如幔源岩架成因的认识,利用玄武岩成分探讨岩架起源深度,地幔潜在温度,岩石圈厚度,软流圈与岩石圈相互作用和壳幔相互作用可能都需要重新考虑。这项研究为橄榄岩和辉石岩恪体的识别提供了新的更加直接有效的判别标准,同时也说明大陆幔源岩架可能主要是辉石岩部分恪融贡献的,体现了大陆岩石圈长期演化的不均一性特征。总体来说,橄榄岩和辉石岩恪体的识别依然是一个需要进一步研究的难题,这个问题的解决可能会成为大陆动力学理论形成和完善的一个重要的岩石学基础。
     5,天和永碱性玄武岩属于华北西部新生代玄武岩的一部分。天和永碱性玄武岩斑晶以橄榄石为主,同时含有含量小于1%的斜方辉石,单斜辉石和尖晶石斑晶,以及这几种斑晶其中两种或三种形成的斑晶聚集体。各种斑晶(长轴>300fim)边部均出现反应边现象,核部成分普遍保留着地幔橄榄岩包体中的矿物成分特征。橄榄石斑晶(长轴>300^1111)的晶体粒度分布(CSD)显示双对数F-CSD分布特征,基质橄榄石和磁铁矿显示近似直线的S-CSD分布特征。稀土元素和微量元素均类似洋岛玄武岩,但更富集大部分不相容元素,轻重稀土分谐更强。天和永玄武岩主微量元素的不均一性可通过约0?15%的汉诺坝橄榄岩平均成分泥染得到合理的解释。Sr-Nd-Pb同位素均显示类似MORB的亏损地幔特征。以上特征表明天和永玄武岩中的复杂斑晶组合均为地幔橄榄岩解体形成的捕掳晶。根据全岩成分变化趋势和实际样品中捕掳晶的含量,推测得到天和永玄武岩原始岩架为非常贫镁(MgO约5%,镁值约42.4(100*MgO/(MgO+FeOT),摩尔))的碱性玄武岩。与实验岩石学结果比较之后,可知这样的幔源贫镁岩架既可以是原生橄榄岩恪体高度演化(50%左右的结晶)形成,也可以是石植辉石岩低度部分恪融形成,两种过程形成的恪体均主要与石植石和单斜辉石平衡,从相平衡角度均可看做来自幔源辉石岩源区的恪体,但在正常的地幔温度下,如果上地幔存在岩性不均一性,在地幔橄榄岩到达固相线之前,石植辉石岩就能发生部分恪融形成天和永碱性玄武岩,因此天和永碱性玄武岩很可能是幔源低镁原生岩架(石植辉石
     岩恪体)的一个实例。6,通过整合尚古寺花岗岩系统中的野外地质学,地球化学,矿物学,地质年代学和定量化结构数据,得到以下一些主要认识:(1)尚古寺花岗岩系统由花岗斑岩,花岗质岩脉和花岗质伟晶岩组成,是东秦岭中生代斑岩钼矿的一部分,花岗质伟晶岩与花岗斑岩几乎同时侵位形成,前者可能是花岗斑岩赋存流体的顶部快速冷却结晶形成,花岗质岩脉最晚形成。尚古寺花岗岩系统成岩成矿年龄均约为126Ma。(2)尽管野外能够见到石英和钾长石的堆晶现象,但晶体粒度分布(CSD)结果显示堆晶现象在薄片尺度下并不显著。花岗质岩脉和花岗斑岩基质矿物结晶晚期均出现了结构粗化现象。(3)尚古寺花岗岩中的浩石主要与黄铁矿,萤石,磷灰石和钠长石等热液矿物呈共结关系,暗示浩石主要是岩架结晶晚期从流体中结晶形成的,浩石Hf同位素和全岩Sr-Nd-Pb-H-O同位素体现的幔源物质贡献主要是幔源流体引起的,幔源恪体的贡献十分微弱,这可能是全岩主量元素比较均一且罕见暗色微粒包体的主要原因。(4)尚古寺花岗岩结构特征和化学特征(微量元素和同位素)的不均一性以及它们之间的紧密联系可能是外来富氟富碱水流体在岩架结晶过程中迁移和不均一分布引起的。(5)尚古寺花岗岩系统中流体引起的化学分异作用可能是岩石类型和构造环境化学判别图解出现矛盾或失效的主要原因。(6)花岗岩中幔源物质可能存在幔源恪体和幔源流体两种端元物质,后者在尚古寺花岗岩中可能是主要组成部分。幔源岩架中流体和恪体物质的多样性可能是花岗岩中幔源物质贡献存在多种表现形式的一个重要原因。
     综上所述,定量联系结构和化学有利于综合理解火成岩成岩成矿物理过程和化学过程的相互关系,能够提供更加全面的火成岩成因认识,火成岩系统广义定量化结构分析对揭露和认识火成岩系统中基础学科问题十分有益。
Based on the special quantitative textural analysis theory and techniques of igneousrocks, a general quantitative texture analysis method in igneous petrological systems isproposed and explored in this PhD dissertation. The fundamental starting points of thegeneral quantitative texture analysis method are complex magmatic systems andcomplex crystal populations of igneous rocks. This method takes rocks' texture as thecore and ties in studies of igneous petrological systems, and connects field geology,petrology, mineralogy, phase equilibrium and geochemistry, and with special emphasison quantitative integrations between these and on connections between five basicvariables of time, space, temperature, pressure and compostion, and as far as seeks toclarify some basic issues. Through exploration of the general quantitative textureanalysis, the dissertation made some major achievements and insights as follows.
     1, The special quantitative texture analysis of igneous rocks is systematically, for thefirst time, introduced to our country. A quantitative texture analysis laboratory wasfounded through the financial support from “985” discipline platform. An effective andpractical method was developed for the special quantitative texture analysis.
     2, In order to obtain the size of representative samples and its constraints, therelationships of the representative samples with crystal contents and crystal size arepreliminarily discussed by statistical simulations of the holocrystalline rocks' textureand the idealized granitic compositions. The maximum possible difference between the original and measured crystal contents of samples, and the size of representativesamples are determined under the variations of crystal contents and size. Thedifference between the original and measured crystal contents of samples can beobtained by counting the number of phenocrysts across the sections of samples. Thesize of representative samples can be acquired by using the average crystal size. Thedeviation between the measured and original crystal contents are much more higher forcoarse-grained samples with the same sample size. The largest representative samplesare needed when the crystal content reach20%for phenocrysts or coarse-grainedminerals in equigranular texture. Finally, two examples including the Mapeng andFangshan intrusions are used to examine the validity and practicability. The chemicalanalytical results of representative and non-representative samples of Fangshangranites suggest that non-representative samples are significantly affected by excessiveK-feldspar phenocrysts, resulting in K_2O and AI_2O_3contents increase and limitedvariation of SiO] content, suggesting that some K-rich adakitic rocks in Eastern Chinamay result from sample representativeness.
     3,744pieces of molybdenite Re-Os isotopic dating data published in China in recentyears were collected and the authors found that the Re content of all the samples ischaracterized by mixed distribution. Classification and statistical analysis of all thedata were based on the lithology and associated mineral types. The results show thatthe Re content of molybdenite has a close relationship with the lithology and associateminerals, i.e., pure molybdenite in the felsic veins and granite has the lowest Re content with the geometric mean of7.41x110~(-6)and7'.99x10~(-6) respectively, and most ofth^e values range from10' to110~(-6); the Re content of pure molybdenite in the skam ismedium with the geometric mean of58.1x110~(-6), and most of the values range from110~(-6)to10.4; molybdenite in the carbonatite has the highest Re content with the geometric4mean of231x110~(-6), and most of the values are?10—. The Re content of molybdenite isalso affected by its associated mineral type: the Re content of molybdenite has thelowest value when molybdenite is only associated with scheelite (or wolframite) and/orgalena, sphalerite, native gold and native silver with the geometric mean of110~(-6), andmost of the values range from110~(-6) to110~(-6); when it is only associated with chalcopyriteand/or magnetite (or pyrrhotine), the molybdenite has the highest Re content with thegeometric mean of10.4, and most of the values range from110~(-6) to110~(-6); the medium Recontent occurs when molybdenite is associated with chalcopyrite (magnetite orpyrrhotine) and scheelite (or wolframite, galena, sphalerite, native gold and native^silver) with the geometric mean of10.?and most of the values ran"^ge from10" to10.A comprehensive analysis shows that molybdenite associated with scheelite (orwolframite, galena, sphalerite, native gold and native silver) or produced in the felsicveins and granite may reduce the Re content, whereas molybdenite associated withchalcopyrite and/or magnetite (or pyrrhotine) or produced in the skam and carbonatitemay increase the Re content. The magnitude changes of Re content may be related tothe modes of occurrence of molybdenite in combination with the contradiction ofisotopic tracing between the Re content of molybdenite and other isotopic methods published in recent years. It seems that the magnitude changes of Re content ofmolybdenite could not effectively represent the source of metallogenic material.
     4, It is well recognised that there are variable scales of pyroxenite present within theupper mantle peridotite, and the pyroxenite typically firstly partial melted to producebasaltic magmas because of its lower solidus temperature than that of mantle peridotite.However, source lithology identification of basalt remains uncertainty and is currentlyunder hot debate because of lacking valid criteria. Using a parameterization of meltingexperiments on peridotite and pyroxenite reported in the literature over the past threedecades, we show here a parameter call^ed FC3MS value (Fe0/Ca0-3*Mg0/SiO_2)which can effectively identify most pyroxenite-derived basalt although peridotite-andpyroxenite-derived melts cannot be distinguished in the commonly used simple plotsand phase diagrams. This parameter is pressure and temperature independent and takesinto accout compositional diversity and melting conditions of the two major lithologies.The FC3MS values of the peridotite-and pyroenite-derived melts are-0士.070.51(25,n=656) and0.46士0.96(25, n=494), repectively. Coincidentally, the FC3MS value is0.68士0.34(25, n=525) for the continental oceanic island baslats-like volcanic rocks(C-OIB)(MgO>7.5wt%) in eastern China and Mongolia, which is too high to beproduced from peridotite source. Furthermore, the majority of these C-OIB in phasediagrams can be regarded as equilibrium with garnet and clinopyroxene. For these, it isproposed that garnet pyroxenite is the dominant source lithology for the C-OIB.Because there are significant differences for the petrogenesis of peridotite-and pyroxenite-derived basalts, many previous geological interpretations of the C-OIBbased on peridotite model need to be reconsidered. This study provides a new criterionto identify source lithology of basaltic magmas, and suggests that pyroxenite-derivedmelts may be a major contribution for continental mantle-derived magmas, and alsoprovides insight into intra-continetal magmatism.
     5, The Tianheyong alkaline basalt belongs to the north weatem part of Cenozoicbasalts in North China Craton. The “phenocrysts”(Length>300(im) in Tianheyongbasalts involve olivine, orthopyroxene, clinopyroxene and spinel. They aredisequilibrium with groundmass and remain core compositions as that of minerals inmantle peridotite. Olivine “phenocrysts” show F-type CSD. Groundmass olivine andmagnetite show S-type CSD. Chondrite-normalised REE and primitivemanlte-normalised trace element of the Tianheyong basalts show similar patterns astypical ocean island basalts, but more enriched in most incompatible elements andstronger fractionation between light and heavy rare earth elements. The heterogeneityof major and trace elements can be explained by0-15%contamination of the averagecompostion of Hannuoba peridotite. Sr-Nd-Pb isotopes show depleted manlte feature,similar as N-MORB. These features suggest that the “phenocrysts” in the Tianheyongbasalts are all manlte xenocrysts. The estimated primary Tianheyong basaltic magmashows extremely low magsuim number (Mg#<50) and MgO content, which areexperimentally equilibrium with garnet pyroxenite in the upper manlte condition. Iflithological heterogeneity exists in the upper mantle, the Tianheyong basalt was likely produced by partial melting of garnet pyroxenite. Therefore, the Tianheyong basaltmight represent mantle-derived low magnesium primary magma.
     6, By integrating the field geology, geochemistry, mineralogy, geochronology, andquantitative textural data of the Shanggusi granites, the following major conclusionscan be reached:(l)The Shanggusi granitic system consists of granite porphyry, granitedykes, and granitic pegmatite, which is one part of the Mesozoic porphyrymolybdenum deposits in east Qinling. The granitic pegmatite might be produced by theundercooled fluids-rich melts in front of the granite porphyry. The crystallization andmineralization ages of the Shanggusi granitic system are?126Ma.(2) Althoughaccumulation of feldspar and quartz occurs in the field, crystal size distribution ofquartz in thin section does not significantly affected by crystal accumulation. Mostgranite dykes samples and the groundmass of the granite porphyry samples showconcave-down CSDs, indicating textural coarsening.(3) Zircons in the Shanggusigranite mainly show cotectic relationships with hydrothermal minerals such as pyrite,fluorite, apatite, and albite, suggesting that they crystallized in late stage fluids. Mantlematerials' contribution displayed by zircon Hf isotope and whole-rock Sr-Nd-Pb-H-Oisotopes might be the result of fluid-melt mixing in the Shanggusi granitic system,which may explain homogeneous major elements of the Shanggusi granite and raremafic microgranular enclaves in the field.(4) External hydrous fluids (possiblyenriched in CO2, F, and CI) in the intrusion not only controlled the fractionation oftrace elements and isotopic ratios but also affected its cooling history. Fluid migration-controlled undercooling can explain the solidification processes in theShanggusi intrusion, and may also be prevalent in other fluid-rich shallow intrusions.(5) Fluids-induced chemical fractionation can explain why chemical discriminationdiagrams of rock types and tectonic environment are invalid in the Shanggusi graniticsystem.(6) The mantle materials in granite may consist of manlte melt and mantlefluid, the latter night be the major component in the Shanggusi granite. The diversity offluids and melts in mantle-derived magmas may be one reason that there are variousforms of manifestation of mantle materails in granite.
     In summary, quantitative integration of textural and geochemical data for igneousrocks can contribute to our understanding of the relationships between physical andchemical processes in a magma system, and provide relatively comprehensive insightsinto the petrogenesis of igneous rocks. The general quantitative texture analysismethod is useful in understanding fundamental issues in igneous petrological systems.
引文
Aitchison, J. and J. Egozcue, J.,2005. Compositional Data Analysis: Where Are Weand Where Should We Be Heading? Mathematical Geology,37(7):829-850.
    Allegre, C. and Minster, J.,1978. Quantitative models of trace element behavior inmagmatic processes. Earth and Planetary Science Letters,38(1):1-25.
    Allegre, C.J. and Turcotte, D.L.,1986. Implications of a two-component marble-cakemantle. Nature,323(6084):123-127.
    Ames, L., Tilton, G.R. and Zhou, G.Z.,1993. Timing of Collision of the Sino-Koreanand Yangtze Cratons-U-Pb Zircon Dating of Coesite-Bearing Eclogites. Geology,21(4):339-342.
    Anders, E. and Grevesse, N.,1989. Abundances of the Elements-Meteoritic and Solar.Geochimica Et Cosmochimica Acta,53(1):197-214.
    Anderson, A.T.,1976. Magma mixing: petrological process and volcanological tool.Journal of Volcanology and Geothermal Research,1(1):3-33.
    Anderson, D.L.,2000. The thermal state of the upper mantle; no role for mantleplumes. Geophys Res Lett,27(22):3623-3626.
    Anderson, D.L.,2006. Speculations on the nature and cause of mantle heterogeneity.Tectonophysics,416(1-4):7-22.
    Annen, C., Blundy, J.D. and Sparks, R.S.J.,2006. The genesis of intermediate andsilicic magmas in deep crustal hot zones. Journal of Petrology,47(3):505-539.
    Armienti, P.,2008. Decryption of Igneous Rock Textures: Crystal Size DistributionTools. Rev Mineral Geochem,69:623-649.
    Armienti, P., Francalanci, L. and Landi, P.,2007. Textural effects of steady statebehaviour of the Stromboli feeding system. Journal of Volcanology andGeothermal Research,160(1-2):86-98.
    Armienti, P., Pareschi, M.T., Innocenti, F. and Pompilio, M.,1994. Effects of MagmaStorage and Ascent on the Kinetics of Crystal-Growth-the Case of the1991-93Mt Etna Eruption. Contributions to Mineralogy and Petrology,115(4):402-414.
    Armienti, P. and Tarquini, S.,2002. Power law olivine crystal size distributions inlithospheric mantle xenoliths. Lithos,65(3-4):273-285.
    Asimow, RD. and Langmuir, C.H.,2003. The importance of water to oceanic mantlemelting regimes. Nature,421(6925):815-820.
    Ayers, J.,1998. Trace element modeling of aqueous fluid-peridotite interaction in themantle wedge of subduction zones. Contributions to Mineralogy and Petrology,132(4):390-404.
    Azer, M.K.,2007. Tectonic significance of Late Precambrian calc-alkaline andalkaline magmatism in Saint Katherina Area, Southern Sinai, Egypt. Geologicaacta,5(3):255-272.
    Bacon, C.R. and Druitt, T.H.,1988. Compositional evolution of the zoned calcalkalinemagma chamber of Mount Mazama, Crater Lake, Oregon. Contributions toMineralogy and Petrology,98(2):224-256.
    Badalov, S.T., Basitova, S.M. and Godunova, L.I.,1962. Distribution of rhenium incentral asia molybdenite. Geokhimiya,9:813-817.
    Baker, D.R. and Alletti, M.,2012. Fluid saturation and volatile partitioning betweenmelts and hydrous fluids in crustal magmatic systems: The contribution ofexperimental measurements and solubility models. Earth-Sci Rev(O).
    Baker, M.B., Hirschmann, M.M., Ghiorso, M.S. and Stolper, E.M.,1995.Compositions of near-Solidus Peridotite Melts from Experiments andThermodynamic Calculations. Nature,375(6529):308-311.
    Baker, M.B. and Stolper, E.M.,1994. Determining the Composition of High-PressureMantle Melts Using Diamond Aggregates. Geochimica Et Cosmochimica Acta,58(13):2811-2827.B
    alta, J.B., Asimow, P.D. and Mosenfelder, J.L.,2011. Hydrous, Low-carbon Meltingof Garnet Peridotite. Journal of Petrology,52(11):2079-2105.
    Barker, D.S., Thompson, K.G., Smith, E.I. and McDowell, F.W.,2012. Disequilibriumcrystal-liquid processes at Hamblin-Cleopatra volcano. Lake Mead area, Nevada.
    Journal of Volcanology and Geothermal Research,237-238(0):42-53.Barry, T.L., Ivanov, A.V., Rasskazov, S.V., Demonterova, E.L, Dunai, T.J., Davies, G.R.and Harrison, D.,2007. Helium isotopes provide no evidence for deep mantleinvolvement in widespread Cenozoic volcanism across Central Asia. Lithos,95(3-4):415-424.B
    arry, T.L., Saunders, A.D., Kempton, P.D., Windley, B.R, Pringle, M.S., Dorjnamjaa,D. and Saandar, S.,2003. Petrogenesis of Cenozoic basalts from Mongolia:
    Evidence for the role of asthenospheric versus metasomatized lithospheric mantlesources. Journal of Petrology,44(1):55-91.Bartels. A., Vetere, R, Holtz, R, Behrens, H. and Linnen, R.L.,2011. Viscosity offlux-rich pegmatitic melts. Contributions to Mineralogy and Petrology,162(1):\51-60.
    Basu, A.R., Wang, J.W., Huang, W.K., Xie, G.H. and Tatsumoto, M.,1991. MajorElement, Ree, and Pb, Nd and Sr Isotopic Geochemistry of CenozoicVolcanic-Rocks of Eastern China-Implications for Their Origin fromSuboceanic-Type Mantle Reservoirs. Earth and Planetary Science Letters,105(1-3):149-169.
    Bau, M.,1996. Controls on the fractionation of isovalent trace elements in magmaticand aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect.Contributions to Mineralogy and Petrology,123(3):323-333.
    Bau, M.,1997. The lanthanide tetrad effect in highly evolved felsic igneous rocks-Reply. Contributions to Mineralogy and Petrology,128(4):409-412.
    Bau, M. and Dulski, P.,1995. Comparative-Study of Yttrium and Rare-Earth ElementBehaviors in Fluorine-Rich Hydrothermal Fluids. Contributions to Mineralogyand Petrology,119(2-3):213-223.
    Baxter, S. and Feely, M.,2002. Magma mixing and mingling textures in granitoids:examples from the Galway Granite, Connemara, Ireland. Miner Petrol,76(1-2):63-74.
    Beattie, P., Ford, C. and Russell, D.,1991. Partition-Coefficients for Olivine-Melt andOrtho-Pyroxene-Melt Systems. Contributions to Mineralogy and Petrology,109(2):212-224.
    Benn, K. and Allard, B.,1989. Preferred mineral orientations related to magmatic flowin ophiolite layered gabbros. Journal of Petrology,30(4):925-946.
    Berzina, A.N., Sotnikov, V.I., Economou-Eliopoulos, M. and Eliopoulos, D.G.,2005.Distribution of rhenium in molybdenite from porphyry Mo-Cu deposits of Russia(Siberia) and Mongolia. Ore Geology Reviews,26(1-2):91-113.
    Berger, A., Burri, T., Alt-Epping, P. and Engi, M.,2008. Tectonically controlled fluidflow and water-assisted melting in the middle crust: An example from the CentralAlps. Lithos,102(3-4):598-615.
    Bindeman, I.N.,2003. Crystal sizes in evolving silicic magma chambers. Geology,31(4):367-370.
    Blichert-Toft, J. and Albarede, R,1997. The Lu-Hf isotope geochemistry of chondritesand the evolution of the mantle-crust system. Earth and Planetary Science Letters,148(1-2):243-258.
    Blundy, J. and Cashman, K.,2001. Ascent-driven crystallisation of dacite magmas atMunt St Helens,1980-1986. Contributions to Mineralogy and Petrology,140(6):631-650.
    Bohlke, J., De Laeter, J., De Bievre, P., Hidaka, H., Peiser, H., Rosman, K. and Taylor,P.,2005. Isotopic compositions of the elements,2001. Journal of Physical andChemical Reference Data,34(1):57-68.
    Bonin, B.,2004. Do coeval mafic and felsic magmas in post-collisional to within-plateregimes necessarily imply two contrasting, mantle and crustal, sources? A review.Lithos,78(1-2):1-24.
    Boorman, S., Boudreau, A. and Kruger, F.J.,2004. The Lower Zone-Critical Zonetransition of the Bushveld Complex: A quantitative textural study. Journal ofPetrology,45(6):1209-1235.
    Borchert, M., Wilke, M., Schmidt, C., Cauzid, J. and Tucoulou, R.,2010. Partitioningof Ba, La, Yb and Y between haplogranitic melts and aqueous solutions: Anexperimental study. Chemical Geology,276(3-4):225-240.
    Bowen, N.,1922. The reaction principle in petrogenesis. The Journal of Geology:177-198.
    Bozhilov, K.N., Green, H.W. and Dobrzhinetskaya, L.F.,2003. Quantitative3Dmeasurement of ilmenite abundance in Alpe Arami olivine by confocalmicroscopy: Confirmation of high-pressure origin. American Mineralogist,88(4):596-603.
    Brenan, J.M., Ryerson, F.J. and Shaw, H.R,1998. The role of aqueous fluids in theslab-to-mantle transfer of boron, beryllium, and lithium during subduction:Experiments and models. Geochimica Et Cosmochimica Acta,62(19-20):3337-3347.
    Brey, G.P., Bulatov, V.K. and Gimis, A.V.,2009. Influence of water and fluorine onmelting of carbonated peridotite at6and10GPa. Lithos,112:249-259.
    Brey, G.P., Bulatov, V.K., Gimis, A.V. and Lahaye, Y,2008. Experimental melting ofcarbonated peridotite at6-10GPa. Journal of Petrology,49(4):797-821.
    Bryon, D.N., Atherton, M.P. and Hunter, R.H.,1995. The Interpretation of GraniticTextures from Serial Thin Sectioning, Image-Analysis and3-DimensionalReconstruction. Mineral Mag,59(395):203-211.
    Candela, P. A.,1997. A review of shallow, ore-related granites: Textures, volatiles, andore metals. Journal of Petrology,38(12):1619-1633.
    Capaccioni, B., Valentini, L., Rocchi, Nappi, G. and Sarocchi, D.,1997.Image analysis and circular statistics for shape-fabric analysis: Applications tolithified ignimbrites. Bulletin of Volcanology,58(7):501-514.
    Carlson, W.D., Denison, C. and Ketcham, R.A.,2000. High-resolution X-raycomputed tomography as a tool for visualization and quantitative analysis ofigneous textures in three dimensions. Visual Geosciences,4(3):1-14.
    Carver, R.E.,1971. Procedures in sedimentary petrology. New York,Wiley-Interscience, New York, pp.653.
    Cashman, K. and Marsh, B.,1988. Crystal size distribution (CSD) in rocks and thekinetics and dynamics of crystallization II: Makaopuhi lava lake. Contributionsto Mineralogy and Petrology,99(3):292-305.
    Cashman, K.V. and Ferry, J.M.,1988. Crystal size distribution (CSD) in rocks and thekinetics and dynamics of crystallization III: Metamorphic crystallization.Contributions to Mineralogy and Petrology,99(4):401-415.
    Castro, A., Morenoventas, I. and Delarosa, J.D.,1991. H-Type (Hybrid) Granitoids-aProposed Revision of the Granite-Type Classification and Nomenclature.Earth-Sci Rev,31(3-4):237-253.
    Castro, J.M., Cashman, K.V. and Manga, M.,2003. A technique for measuring3Dcrystal-size distributions of prismatic microtites in obsidian. AmericanMineralogist,88(8-9):1230-1240.
    Charlier, B.L.A., Wilson, C.J.N., Lowenstem, J.B., Blake, S., Van Calsteren, RW. and
    Davidson, J.R,2005. Magma Generation at a Large, Hyperactive Silicic Volcano(Taupo, New Zealand) Revealed by U-Th and U-Pb Systematics in Zircons.Journal of Petrology,46(1):3-32.
    Chen, B., Zhai, M.G. and Tian, W.,2007a. Origin of the Mesozoic magmatism in theNorth China Craton: constraints from petrological and geochemical data.Geological Society, London, Special Publications,280(1):131-151.
    Chen, J.Y., Yang, X.S., Xiao, L. and He, Q.,2010. Coupling of basaltic magmaevolution and lithospheric seismic structure in the Emeishan Large IgneousProvince: MELTS modeling constraints. Lithos,119(1-2):61-74.
    Chen, Y., Zhang, Y.X., Graham, D., Su, S.G. and Deng, J.R,2007b. Geochemistry ofCenozoic basalts and mantle xenoliths in Northeast China. Lithos,96(1-2):108-126.
    Chen, Y.L., Yang, Z.R, Zhang, H.F. and Lin, W.L.,1996. Geochemical characteristicsof Sr, Nd and Pb isotopes of Late Paleozoic-Mesozoic granitoids from northernQinling belt. J China Univ Geosci,21(5):481-486(in Chinese with Englishabstract).
    Cheng, H., Zhou, Z.Y. and Nakamura, E.,2008. Crystal-size distribution andcomposition of garnets in eclogites from the Dabie orogen, central China.American Mineralogist,93(1):124-133.
    Choi, S.H., Mukasa, S.B., Zhou, X.H., Xian, X.H. and Androniko, A.V.,2008. Mantledynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopicsystematics of ultramafic xenoliths and their host basalts from Hannuoba, NorthChina. Chemical Geology,248(1-2):40-61.
    Chu, N.-C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A.,German, C.R., Bayon, G. and Burton, K.,2002. Hf isotope ratio analysis usingmulti-collector inductively coupled plasma mass spectrometry: an evaluation ofisobaric interference corrections. J Anal Atom Spectrom,17(12):1567-1574.
    Chutas, N., Bates, E., Prevec, S., Coleman, D. and Boudreau, A.,2012. Sr and Pbisotopic disequilibrium between coexisting plagioclase and orthopyroxene in theBushveld Complex, South Africa: microdrilling and progressive leachingevidence for sub-liquidus contamination within a crystal mush. Contributions toMineralogy and Petrology,163(4):653-668.
    Claiborne, L.L., Miller, C.F., Flanagan, D.M., Clynne, M.A. and Wooden, J.L.,2010.Zircon reveals protracted magma storage and recycling beneath Mount St. Helens.Geology,38(11):1011-1014.
    Clark, P.J. and Evans, F.C.,1954. Distance to nearest neighbor as a measure of spatialrelationships in populations. Ecology:445-453.
    Clemens, J.D.,1984. Water contents of silicic to intermediate magmas. Lithos,17(0):273-287.
    Clemens, J.D. and Stevens, G.,2012. What controls chemical variation in graniticmagmas? Lithos,134-135(0):317-329.
    Collins, W.J., Beams, S.D., White, A.J.R. and Chappell, B.W.,1982. Nature and originof A-type granites with particular reference to southeastern Australia.Contributions to Mineralogy and Petrology,80(2):189-200.
    Conceicao, R.V. and Green, D.H.,2004. Derivation of potassic (shoshonitic) magmasby decompression melting of phlogopite plus pargasite Iherzolite. Lithos,72(3-4):209-229.
    Cortes, J.A.,2009. On the Harker Variation Diagrams; A Comment on "The StatisticalAnalysis of Compositional Data. Where Are We and Where Should We BeHeading?" by Aitchison and Egozcue (2005). Math Geosci,41(7):817-828.Costa, R, Dohmen, R. and Chakraborty, S.,2008. Time Scales of Magmatic Processesfrom Modeling the Zoning Patterns of Crystals. Rev Mineral Geochem,69:545-594.
    Costa, F. and Dung an, M.,2005. Short time scales of magmatic assimilation fromdiffusion modeling of multiple elements in olivine. Geology,33(10):837-840.
    Creaser, R., Price, R. and Wormald, R.,1991. A-type granites revisited: assessment ofa residual-source model. Geology,19(2):163-166.
    Dasgupta, R., Hirschmann, M.M. and Smith, N.D.,2007. Partial melting experimentsof peridotite C02at3GPa and genesis of alkalic ocean island basalts. Journal ofPetrology,48(11):2093-2124.
    Dasgupta, R., Hirschmann, M.M. and Stalker, K.,2006. Immiscible transition fromcarbonate-rich to silicate-rich melts in the3GPa melting interval of eclogite plusC02and genesis of silica-undersaturated ocean island lavas. Journal of Petrology,47(4):647-671.
    Dasgupta, R., Jackson, M.G. and Lee, C.T.A.,2010. Major element chemistry of oceanisland basalts-Conditions of mantle melting and heterogeneity of mantle source.Earth and Planetary Science Letters,289(3-4):377-392.
    Davidson, J.P., Morgan, D.J., Charlier, B.L.A., Harlou, R. and Hora, J.M.,2007.Microsampling and Isotopic Analysis of Igneous Rocks: Implications for theStudy of Magmatic Systems. Annu Rev Earth PI Sc,35(1):273-311.
    Davis, F.A., Hirschmann, M.M. and Humayun, M.,2011. The composition of theincipient partial melt of garnet peridotite at3GPa and the origin of〇IB. Earthand Planetary Science Letters,308(3-4):380-390.
    Davis, F.A., Humayun, M., Hirschmann, M.M. and Cooper, R.S.,2013.Experimentally determined mineral/melt partitioning of first-row transitionelements (FRTE) during partial melting of peridotite at3GPa. Geochimica EtCosmochimica Acta,104(0):232-260.
    Davis, J.C.,1986. Statistics and Data Analysis in Geology,646pp. John Wiley, NewYork.
    DeHoff, R.T.,1991. A geometrically general theory of diffusion controlled coarsening.Acta Metallurgia et Materialia,39(10):2349-2360.Del Gaudio, P., Mollo, S., Ventura, G., lezzi, G., Taddeucci, J. and Cavallo, A.,2010.Cooling rate-induced differentiation in anhydrous and hydrous basalts at500 MPa: Implications for the storage and transport of magmas in dikes.Chemical Geology,270(1一):164-178.
    Delesse, M.A.,1847. Procede mechanique pour determiner la composition des roches.Comptes Rendus del' academie des sciences (Paris),25:544-545.
    Demouchy, S., Jacobsen, S.D., Gaillard, F. and Stem, C.R.,2006. Rapid magma ascentrecorded by water diffusion profiles in mantle olivine. Geology,34(6):429-432.
    DePaolo, D.J.,1981. Trace element and isotopic effects of combined wallrockassimilation and fractional crystallization. Earth and Planetary Science Letters,53(2):189-202.
    Drake, M.J. and Weill, D.F.,1975. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and otherREE between plagioclase feldspar and magmatic liquid: an experimental study.Geochimica Et Cosmochimica Acta,39:689-712.
    Duan, Y.H., Zhao, D.R, Zhang, X.K., Xia, S.H., Liu, Z., Wang, F.Y. and Li, L.,2009.Seismic structure and origin of active intraplate volcanoes in Northeast Asia.Tectonophysics,470(3-4):257-266.
    Dunn, T. and Sen, C.,1994. Mineral/matrix partition coefficients for orthopyroxene,plagioclase, and olivine in basaltic to andesitic systems: a combined analyticaland experimental study. Geochimica Et Cosmochimica Acta,58(2):717-733.
    Eberl, D.D., Drits, V.A. and Srodon, J.,1998. Deducing growth mechanisms forminerals from the shapes of crystal size distributions. Am J Sci,298(6):499-533.
    Eby, G.,1992. Chemical subdivision of the A-type granitoids: petrogenetic andtectonic implications. Geology,20(7):641-644.
    Egozcue, J.J.,2009. Reply to "On the Harker Variation Diagrams;..." by JA Cortes.Math Geosci,41(7):829-834.
    Elliott, M.T., Cheadle, M.J. and Jerram, D.A.,1997. On the identification of texturalequilibrium in rocks using dihedral angle measurements. Geology,25(4):355-358.
    Ewart, A. and Griffin, W.L.,1994. Application of Proton-Microprobe Data toTrace-Element Partitioning in Volcanic-Rocks. Chemical Geology,117(1-4):251-284.
    Forster, H.J.,1998. The chemical composition of REE-Y-Th-U-rich accessoryminerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region,Germany, Part I: The monazite-(Ce)-brabantite solid solution series. AmericanMineralogist,83(3-4):259-272.
    Falloon, T.J. and Danyushevsky, L.V.,2000. Melting of refractory mantle at1centerdot5,2and2center dot5GPa under, anhydrous and H20-undersaturatedconditions: Implications for the petrogenesis of high-Ca boninites and theinfluence of subduction components on mantle melting. Journal of Petrology,41(2):257-283.
    Falloon, T.J., Danyushevsky, L.V. and Green, D.H.,2001. Peridotite melting at1GPa:Reversal experiments on partial melt compositions produced by peridotite-basaltsandwich experiments. Journal of Petrology,42(12):2363-2390.
    Falloon, T.J. and Green, D.H.,1987. Anhydrous Partial Melting of Morb Pyrolite andother Peridotite Compositions at1Okbar-Implications for the Origin ofPrimitive Morb Glasses. Miner Petrol,37(3-4):181-219.
    Falloon, T.J. and Green, D.H.,1988. Anhydrous partial melting of peridotite from8to35kb and the petrogenesis of MORB. Journal of Petrology,29:379-414.
    Falloon, T.J., Green, D.H., Danyushevsky, L.V. and Faul, U.H.,1999. Peridotitemelting at1center dot0and1center dot5GPa: an experimental evaluation oftechniques using diamond aggregates and mineral mixes for determination ofnear-solidus melts. Journal of Petrology,40(9):1343-1375.
    Falloon, T.J., Green, D.H., Danyushevsky, L.V. and McNeill, A.W.,2008. Thecomposition of near-solidus partial melts of fertile peridotite at1and1.5GPa:Implications for the petrogenesis of MORB. Journal of Petrology,49(4):591-613.
    Falloon, T.J., Green, D.H., Hatton, C.J. and Harris, K.L.,1988. Anhydrous PartialMelting of a Fertile and Depleted Peridotite from2-Kb to30-Kb and Applicationto Basalt Petrogenesis. Journal of Petrology,29(6):1257-1282.
    Falloon, T.J., Green, D.H., O'Neill, H.S. and Hibberson, W.O.,1997. Experimentaltests of low degree peridotite partial melt compositions: implications for thenature of anhydrous near-solidus peridotite melts at1GPa. Earth and PlanetaryScience Letters,152(1-4):149-162.
    Fan, Q.C. and Hooper, P.R.,1991. The Cenozoic Basaltic Rocks of Eastern China-Petrology and Chemical-Composition. Journal of Petrology,32(4):765-810.
    Farina, R, Dini, A., Innocenti, R, Rocchi, S. and Westerman, D.S.,2010. Rapidincremental assembly of the Monte Capanne pluton (Elba Island, Tuscany) bydownward stacking of magma sheets. Geol Soc Am Bull,122(9-10):1463-1479.
    Fenner, C.N.,1931. The residual liquids of crystallizing magmas. Mineral Mag,22(134):539-560.
    Ferry, J. and Watson, E.,2007. New thermodynamic models and revised calibrationsfor the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogyand Petrology,154(4):429-437.
    Figueiredo, M.A.T. and Jain, A.K.,2002. Unsupervised learning of finite mixturemodels. leee Transactions on Pattern Analysis and Machine Intelligence,24(3):381-396.
    Foley, S.R, Yaxley, G.M., Rosenthal, A., Buhre, S., Kiseeva, E.S., Rapp, R.R andJacob, D.E.,2009. The composition of near-solidus melts of peridotite in thepresence of C02and H20between40and60kbar. Lithos,112:274-283.
    Friedrich, H., McCartney, M.R. and Buseck, P.R.,2005. Comparison of intensitydistributions in tomograms from BF TEM, ADF STEM, HAADF STEM, andcalculated tilt series. Ultramicroscopy,106(1):18-27.
    Frost, B., Barnes, C., Collins, W., Arculus, R., Ellis, D. and Frost, C.,2001. Ageochemical classification for granitic rocks. Journal of Petrology,42(11):2033-2048.
    Frost, C.D. and Frost, B.R.,2011. On Ferroan (A-type) Granitoids: theirCompositional Variability and Modes of Origin. Journal of Petrology,52(1):39-53.
    Fu, B., Memagh, T.R, Kita, N.T., Kemp, A.I.S. and Valley, J.W.,2009. Distinguishingmagmatic zircon from hydrothermal zircon: A case study from the Gidginbunghigh-sulphidation Au-Ag-(Cu) deposit, SE Australia. Chemical Geology,
    259(3一):131-142.
    Fujii, T. and Scarfe, C.M.,1985. Composition of Liquids Coexisting with SpinelLherzolite at10-Kbar and the Genesis of Morbs. Contributions to Mineralogyand Petrology,90(1):18-28.
    Gaetani, G.A. and Grove, T.L.,1998. The influence of water on melting of mantleperidotite. Contributions to Mineralogy and Petrology,131(4):323-346.
    Gaetani, G.A., Grove, T.L. and Bryan, W.B.,1993. The Influence of Water on thePetrogenesis of Subduetion-Related Igneous Rocks. Nature,365(6444):332-334.
    Gao, S., Rudnick, R.L., Xu, W.L., Yuan, H.L., Liu, Y.S., Walker, R.J., Puchtel, I.S., Liu,
    X.M., Huang, H., Wang, X.R. and Yang, J.,2008. Recycling deep cratoniclithosphere and generation of intraplate magmatism in the North China Craton.Earth and Planetary Science Letters,270(1-2):41-53.
    Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Ling, W.L., Ayers,
    J., Wang, X.C. and Wang, Q.H.,2004. Recycling lower continental crust in theNorth China craton. Nature,432(7019):892-897.
    Garrido, C.J., Kelemen, P.B. and Hirth, G.,2001. Variation of cooling rate with depthin lower crust formed at an oceanic spreading ridge: Plagioclase crystal sizedistributions in gabbros from the Oman ophiolite. Geochemistry GeophysicsGeosystems,2:-
    Gast, P.W.,1968. Trace element fractionation and the origin of tholeiitic and alkalinemagma types. Geochimica Et Cosmochimica Acta,32(10):1057-1086.
    Gerbode, C. and Dasgupta, R.,2010. Carbonate-fluxed Melting of MORB-likePyroxenite at2center dot9GPa and Genesis of HIMU Ocean Island Basalts.Journal of Petrology,51(10):2067-2088.
    Ghiorso, M.S. and Sack, R.O.,1995. Chemical Mass-Transfer in MagmaticProcesses.4. A Revised and Internally Consistent Thermodynamic Model for theInterpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systemsat Elevated-Temperatures and Pressures. Contributions to Mineralogy andPetrology,119(2-3):197-212.
    Gingras, M.K., MacMillan, B. and Balcom, B.J.,2002. Visualizing the internalphysical characteristics of carbonate sediments with magnetic resonance imagingand petrography. B Can Petrol Geol,50(3):363-369.
    Giordano, D., Romano, D.B., Dingwell, D.B., Poe, B. and Behrens, H.,2004. Thecombined effects of water and fluorine on the viscosity of silicic magmas.Geochimica Et Cosmochimica Acta,68(24):5159-5168.
    Godel, B., Barnes, S.J. and Maier, W.D.,2006.3-D distribution of sulphide minerals inthe Merensky Reef (Bushveld Complex, South Africa) and the J-M Reef(Stillwater Complex, USA) and their relationship to microstructures using X-raycomputed tomography. Journal of Petrology,47(9):1853-1872.
    Green, D. and Ringwood, A.,1967. The genesis of basaltic magmas. Contributions toMineralogy and Petrology,15(2):103-190.
    Green, D.H. and Falloon, T.J.,2005. Primary magmas at mid-ocean ridges,"hotspots"and other intraplate settings: Constraints on mantle potential temperature.Plates, Plumes, and Paradigms:217-247.
    Green, T.,1995. Significance of Nb/Ta as an indicator of geochemical processes in thecrust-mantle system. Chemical Geology,120(3-4):347-359.
    Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E.,O'Reilly, S.Y. and Shee, S.R.,2000. The Hf isotope composition of cratonicmantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.Geochimica Et Cosmochimica Acta,64(1):133-147.
    Gualda, G.A.R.,2006. Crystal size distributions derived from3D datasets: Sample sizeversus uncertainties. Journal of Petrology,47(6):1245-1254.
    Gualda, G.A.R. and Rivers, M.,2006. Quantitative3D petrography using X-raytomography: Application to Bishop Tuff pumice clasts. Journal of Volcanologyand Geothermal Research,154(1-2):48-62.
    Gudfinnsson, G.H. and Presnall, D.C.,2000. Melting behaviour of model Iherzolite inthe system Ca0-]VIg0-A1203-Si02-Fe0at0center dot7-2center dot8GPa.Journal of Petrology,41(8):1241-1269.
    Guo, J., Guo, R, Yan Wang, C. and Li, C.,2013. Crustal recycling processes ingenerating the early Cretaceous Fangcheng basalts. North China Craton: Newconstraints from mineral chemistry, oxygen isotopes of olivine and whole-rockgeochemistry. Lithos,170-171(0):1-16.
    Hall, L.,1999. The effect of water on mantle melting, Univ. of Bristol, Bristol, U. K.
    Hammouda, T.,2003. High-pressure melting of carbonated eclogite and experimentalconstraints on carbon recycling and storage in the mantle. Earth and PlanetaryScience Letters,214(1-2):357-368.
    Harford, C.L. and Sparks, R.S.J.,2001. Recent remobilisation of shallow-levelintrusions on Montserrat revealed by hydrogen isotope composition ofamphiboles. Earth and Planetary Science Letters,185(3-4):285-297.
    Hart, S., Erlank, A. and Kable, E.,1974. Sea floor basalt alteration: some chemical andSr isotopic effects. Contributions to Mineralogy and Petrology,44(3):219-230.
    Hart, S.R.,1984. A Large-Scale Isotope Anomaly in the Southern-Hemisphere Mantle.Nature,309(5971):753-757.
    Harvey, P.K. and Laxton, R.R.,1980. The estimation of finite strain from theorientation distribution of passively deformed linear markers: Eigenvaluerelationships. Tectonophysics,70(3-4):285-307.
    Hauri, E.H.,1996. Major-element variability in the Hawaiian mantle plume. Nature,382(6590):415-419.
    Hauri, E.H. and Hart, S.R.,1997, Rhenium abundances and systematics in oceanicbasalts. Chemical Geology,139(1-4):185-205.
    Hawkesworth, C.J., Norry, M.J., Roddick, J.C. and Vollmer, R.,1979.143Nd/144Ndand87Sr/86Sr ratios from the Azores and their significance in LIL-elementenriched mantle. Nature,280(5717):28-31.
    Hedenquist, J.W. and Lowenstem, J.B.,1994. The Role of Magmas in the Formationof Hydrothermal Ore-Deposits. Nature,370(6490):519-527.
    Herzberg, C.,2004. Partial crystallization of mid-ocean ridge basalts in the crust andmantle. Journal of Petrology,45(12):2389-2405.
    Herzberg, C.,2006. Petrology and thermal structure of the Hawaiian plume fromMauna Kea volcano. Nature,444(7119):605-609.
    Herzberg, C.,2011. Identification of Source Lithology in the Hawaiian and CanaryIslands: Implications for Origins. Journal of Petrology,52(1):113-146.
    Herzberg, C. and Asimow, P.D.,2008. Petrology of some oceanic island basalts:PRIMELT2.XLS software for primary magma calculation. GeochemistryGeophysics Geosystems,9: Q09001, doi:09010.01029/02008GC002057.
    Herzberg, C., Asimow, P.D., lonov, D.A., Vidito, C., Jackson, M.G. and Geist, D.,2013. Nickel and helium evidence for melt above the core-mantle boundary.Nature,493(7432):393-397.
    Herzberg, C. and O'Hara, M.J.,1998. Phase equilibrium constraints on the origin ofbasalts, picrites, and komatiites. Earth-Sci Rev,44(1-2):39-79.
    Herzberg, C. and O'Hara, M.J.,2002. Plume-associated ultramafic magmas ofphanerozoic age. Journal of Petrology,43(10):1857-1883.Herzberg, C. and Zhang, J.Z.,1996. Melting experiments on anhydrous peridotite
    KLB-1: Compositions of magmas in the upper mantle and transition zone.Journal of Geophysical Research-Solid Earth,101(B4):8271-8295.
    Hibbard, M.,1981. The magma mixing origin of mantled feldspars. Contributions toMineralogy and Petrology,76(2):158-170.
    Higgins, M.,1991. The origin of laminated and massive anorthosite. Sept lies layeredintrusion, Quebec, Canada. Contributions to Mineralogy and Petrology,106(3):340-354.
    Higgins, M.,1999. Origin of megacrysts in granitoids by textural coarsening: a crystalsize distribution (CSD) study of microcline in the Cathedral Peak Granodiorite,Sierra Nevada, California. Understanding granites: Integrating new and classicaltechniques,168:207-219.
    Higgins, M. and Meilleur, D.,2009a. Development and emplacement of the InyoDomes Magmatic Suite, California: Evidence from geological, textural (CSD)and geochemical observations of ash and lava. Journal of Volcanology andGeothermal Research.
    Higgins, M.D.,1994. NUMERICAL MODELING OF CRYSTAL SHAPES INTHIN-SECTIONS-ESTIMATION OF CRYSTAL HABIT AND TRUE SIZE.American Mineralogist,79(1-2):113-119.
    Higgins, M.D.,1996a. Crystal size distributions and other quantitative texturalmeasurements in lavas and tuff from Egmont volcano (Mt Taranaki), NewZealand. Bulletin of Volcanology,58(2-3):194-204.
    Higgins, M.D.,1996b. Magma dynamics beneath Kameni volcano, Thera, Greece, asrevealed by crystal size and shape measurements. Journal of Volcanology andGeothermal Research,70(1-2):37-48.
    Higgins, M.D.,1998. Origin of anorthosite by textural coarsening: Quantitativemeasurements of a natural sequence of textural development. Journal ofPetrology,39(7):1307-1323.
    Higgins, M.D.,2000. Measurement of crystal size distributions. AmericanMineralogist,85(9):1105-1116.
    Higgins, M.D.,2002a. Closure in crystal size distributions (CSD), verification of CSDcalculations, and the significance of CSD fans. American Mineralogist,87(1):171-175.
    Higgins, M.D.,2002b. A crystal size-distribution study of the Kiglapait layered maficintrusion, Labrador, Canada: evidence for textural coarsening. Contributions toMineralogy and Petrology,144(3):314-330.
    Higgins, M.D.,2006a. Quantitative textural measurements in igneous andmetamorphic petrology. Cambridge University Press, Cambridge,276pp.
    Higgins, M.D.,2006b. Verification of ideal semi-logarithmic, lognormal or fractalcrystal size distributions from2D datasets. Journal of Volcanology andGeothermal Research,154(1-2):8-16.
    Higgins, M.D.,2009. The Cascadia megathmst earthquake of1700may haverejuvenated an isolated basalt volcano in western Canada: Age and petrographicevidence. Journal of Volcano logy and Geothermal Research,179(1-2):149-156.
    Higgins, M.D. and Meilleur, D.,2009b. Development and emplacement of the InyoDomes Magmatic Suite, California: Evidence from geological, textural (CSD)and geochemical observations of ash and lava. Journal of Volcanology andGeothermal Research,186(3-4):280-292.
    Higgins, M.D. and Roberge, J.,2003. Crystal size distribution of plagioclase andamphibole from Soufriere Hills volcano, Montserrat: Evidence for dynamiccrystallization-textural coarsening cycles. Journal of Petrology,44(8):1401-1411.
    Higgins, M.D. and Roberge, J.,2007. Three magmatic components in the1973eruption of Eldfell volcano, Iceland: Evidence from plagioclase crystal sizedistribution (CSD) and geochemistry. Journal of Volcanology and GeothermalResearch,161(3):247-260.
    Hildreth, W. and Moorbath, S.,1988. Crustal Contributions to Arc Magmatism in theAndes of Central Chile. Contributions to Mineralogy and Petrology,98(4):455-489.
    Hirose, K.,1997a. Melting experiments on Iherzolite KLB-1under hydrous conditionsand generation of high-magnesian andesitic melts. Geology,25(1):42-44.
    Hirose, K.,1997b. Partial melt compositions of carbonated peridotite at3GPa androle of C02in alkali-basalt magma generation. Geophys Res Lett,24(22):2837-2840.
    Hirose, K. and Kawamoto, T.,1995. Hydrous Partial Melting of Iherzolite at1Gpa-the Effect of H2o on the Genesis of Basaltic Magmas. Earth and PlanetaryScience Letters,133(3-4):463-473.
    Hirose, K. and Kushiro, I.,1993. Partial Melting of Dry Peridotites at High-Pressures-Determination of Compositions of Melts Segregated from Peridotite UsingAggregates of Diamond. Earth and Planetary Science Letters,114(4):477-489.
    Hirose, K. and Kushiro, I.,1998. The effect of melt segregation on polybaric mantlemelting: Estimation from the incremental melting experiments. Physics of theEarth and Planetary Interiors,107(1-3):111-118.
    Hirschmann, M.M.,2000. Mantle solidus: Experimental constraints and the effects ofperidotite composition. Geochemistry Geophysics Geosystems,1.
    Hirschmann, M.M., Ghiorso, M.S., Wasylenki, L.E., Asimow, RD. and Stolper, E.M.,1998. Calculation of peridotite partial melting from thermodynamic models ofminerals and melts. I. Review of methods and comparison with experiments.Journal of Petrology,39(6):1091-1115.
    Hirschmann, M.M., Kogiso, T., Baker, M.B. and Stolper, E.M.,2003. Alkalic magmasgenerated by partial melting of garnet pyroxenite. Geology,31(6):481-484.
    Hirschmann, M.M. and Stolper, E.M.,1996. A possible role for garnet pyroxenite inthe origin of the "garnet signature" in MORB. Contributions to Mineralogy andPetrology,124(2):185-208.
    Ho, K.S., Chen, J.C., Lo, C.H. and Zhao, H.L.,2003. Ar-40-Ar-39dating andgeochemical characteristics of late Cenozoic basaltic rocks from theZhejiang-Fujian region, SE China: eruption ages, magma evolution andpetrogenesis. Chemical Geology,197(1-4):287-318.
    Hofmann, A.W. and White, W.M.,1982. Mantle Plumes from Ancient Oceanic-Crust.Earth and Planetary Science Letters,57(2):421-436.
    Holness, M.B., Cheadle, M.J. and McKenzie, D.,2005. On the use of changes indihedral angle to decode late-stage textural evolution in cumulates. Journal ofPetrology,46(8):1565-1583.
    Holtz, R, Becker, A., Freise, M. and Johannes, W.,2001. The water-undersaturatedand dry Qz-Ab-Or system revisited. Experimental results at very low wateractivities and geological implications. Contributions to Mineralogy and Petrology,141(3):347-357.
    Hong, L.B., Zhang, Y.H., Qian, S.R, Liu, J.Q., Ren, Z.Y. and Xu, Y.G.,2012.Constraints from melt inclusions and their host olivines on the petrogenesis ofOligocene-Early Miocene XIndian basalts, Chifeng area. North China Craton.Contributions to Mineralogy and Petrology:1-22.
    Ho skin, P.W.O.,2005. Trace-element composition of hydrothermal zircon and thealteration of Hadean zircon from the Jack Hills, Australia. Geochimica EtCosmochimica Acta,69(3):637-648.
    Huang, R, Lundstrom, C.C., Glessner, J., I anno. A., Boudreau, A., Li, J., Ferre, E.C.,Marshak, S. and DeFrates, J.,2009. Chemical and isotopic fractionation of wetandesite in a temperature gradient: Experiments and models suggesting a newmechanism of magma differentiation. Geochimica Et Cosmochimica Acta,73(3):729-749.
    Huang, S.C. and Frey, F.A.,2005. Recycled oceanic crust in the Hawaiian Plume:evidence from temporal geochemical variations within the Koolau Shield.Contributions to Mineralogy and Petrology,149(5):556-575.
    Huang, S.C., Humayun, M. and Frey, F.A.,2007. Iron/manganese ratio and manganesecontent in shield lavas from Ko'olau Volcano, Hawai'i. Geochimica EtCosmochimica Acta,71(18):4557-4569.
    Humayun, M., Qin, L.P. and Norman, M.D.,2004. Geochemical evidence for excessiron in the mantle beneath Hawaii. Science,306(5693):91-94.
    Hunt, A.C., Parkinson, I.J., Harris, N.B.W., Barry, T.L., Rogers, N.W. and Yondon, M.,2012. Cenozoic Volcanism on the Hangai Dome, Central Mongolia: GeochemicalEvidence for Changing Melt Sources and Implications for Mechanisms ofMelting. Journal of Petrology,53(9):1913-1942.
    Hunter, R.,1996. Texture development in cumulate rocks. Layered Intrusions.Developments in Petrology,15:77-101.
    Huppert, H.E. and Sparks, R.S.J.,1988. The Generation of Granitic Magmas byIntrusion of Basalt into Continental-Crust. Journal of Petrology,29(3):599-624.
    Ikeda, S., Nakano, T., Tsuchiyama, A., Uesugi, K., Suzuki, Y, Nakamura, K.,Nakashima, Y. and Yoshida, H.,2004. Nondestructive three-dimensionalelement-concentration mapping of a Cs-doped partially molten granite by X-raycomputed tomography using synchrotron radiation. American Mineralogist,89(8-9):1304-1313.
    Ildefonse, B., Launeau, P., Bouchez, J.L. and Fernandez, A.,1992. Effect ofMechanical Interactions on the Development of Shape Preferred Orientations-a2-Dimensional Experimental Approach. J Struct Geol,14(1):73-83.
    Inanli, F. and Huff, W.,2009. Quartz crystal size distribution of the OrdovicianMillbrig K-bentonite. Journal of Volcanology and Geothermal Research.
    Irber, W.,1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*,Sr/Eu, Y/Ho, and Zr Hf of evolving peraluminous granite suites. Geochimica EtCosmochimica Acta,63(3-4):489-508.
    Irving, A.J. and Frey, F.A.,1978. Distribution of trace elements between garnetmegacrysts and host volcanic liquids of kimberlitic to rhyolitic composition.Geochimica Et Cosmochimica Acta,42(6):771-787.
    Ishihara, S.,1988. Rhenium contents of molybdenites in granitoid-series rocks inJapan. Econ. GeoL,83:1047-1051.
    Ito, K. and Kennedy, G.C.,1968. Melting and phase relations in the planetholeiite-lherzolite-nepheline basanite to40kilobars with geological implications.Contributions to Mineralogy and Petrology,19(3):177-211.
    Ivanov, V.V., Poplavko, E.M., and Corokhova, V.N.,1972. The Geochemistry ofRheniuim. International Geology Review,14:1-105.
    Jackson, M.G., Weis, D. and Huang, S.,2012. Major element variations in Hawaiianshield lavas: Source features and perspectives from global ocean island basalt(〇IB) systematics. Geochem. Geophys. Geosyst.,13: Q09009.
    Jahn, B.M., Capdevila, R., Liu, D.Y., Vernon, A. and Badarch, G.,2004. Sources ofPhanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia:geochemical and Nd isotopic evidence, and implications for Phanerozoic crustalgrowth. Journal of Asian Earth Sciences,23(5):629-653.
    Jahn, B.M., Wu, F.Y., Capdevila, R., Martineau, R, Zhao, Z.H. and Wang, Y.X.,2001.Highly evolved juvenile granites with tetrad REE patterns: the Woduhe andBaerzhe granites from the Great Xing'an Mountains in NE China. Lithos,59(4):171-198.
    Jahn, B.M., Wu, F.Y., Lo, C.H. and Tsai, C.H.,1999. Crust-mantle interaction inducedby deep subduction of the continental crust: Geochemical and Sr-Nd isotopicevidence from post-collisional mafic-ultramafic intrusions of the northern Dabiecomplex, central China. Chemical Geology,157(1-2):119-146.
    Jakobsson, S. and Holloway, J.R.,2008. Mantle melting in equilibrium with anIron-Wustite-Graphite buffered COH-fluid. Contributions to Mineralogy andPetrology,155(2):247-256.
    Jankovics, M.E., Harangi, S., Kiss, B. and Ntaflos, T.,2012. Open-system evolution ofthe Fiizes-to alkaline basaltic magma, western Pannonian Basin: Constraints frommineral textures and compositions. Lithos,140-141(0):25-37.
    Jaques, A. and Green, D.,1980. Anhydrous melting of peridotite at0"C15kb pressureand the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology,73(3):287-310.
    Jerram, D. and Martin, V.,2008a. Understanding crystal populations and theirsignificance through the magma plumbing system. Geological Society LondonSpecial Publications,304(1):133.
    Jerram, D.A., Cheadle, M.J., Hunter, R.H. and Elliott, M.T.,1996. The spatialdistribution of grains and crystals in rocks. Contributions to Mineralogy andPetrology,125(1):60-74.
    Jerram, D.A., Cheadle, M.J. and Philpotts, A.R.,2003. Quantifying the building blocksof igneous rocks: Are clustered crystal frameworks the foundation? Journal ofPetrology,44(11):2033-2051.
    Jerram, D.A. and Davidson, J.R,2007. Frontiers in textural and microgeochemicalanalysis. Elements,3(4):235-238.
    Jerram, D.A. and Martin, V.M.,2008b. Understanding crystal populations and theirsignificance through the magma plumbing system. Geological Society, London,Special Publications,304(1):133-148.
    Jerram, D.A., Morgan, D.J. and Davidson, J.R,2006. Fully quantified crystalpopulations? Combining CSD and microanalysis to constrain timescales andcontamination in magmas. Geochimica Et Cosmochimica Acta,70(18):A292-A292.
    Jiang, N., Carlson, R.W. and Guo, J.H.,2011. Source of Mesozoic intermediate-felsicigneous rocks in the North China craton: Granulite xenolith evidence. Lithos,125(1-2):335-346.
    Johannes, W. and Holtz, R,1996. Petrogenesis and experimental petrology of graniticrocks. Springer-Verlag, Berlin.John, T., Scherer, E.E., Haase, K. and V, S.,2004. Trace element fractionation duringfluid-induced eclogitization in a subducting slab: trace element andLu-Hf-Sm-Nd isotope systematics. Earth and Planetary Science Letters,227(3-4):441-456.
    Jolliff, B.L., Papike, J.J. and Shearer, C.K.,1989. Inter-Crystal and Intra-Crystal ReeVariations in Apatite from the Ingersoll,Bob Pegmatite, Black Hills,South-Dakota. Geochimica Et Cosmochimica Acta,53(2):429-441.
    Jung, S., Hoemes, S. and Mezger, K.,2000. Geochronology and petrology ofmigmatites from the Proterozoic Damara Belt-importance of episodicfluid-present disequilibrium melting and consequences for granite petrology.Lithos,51(3):153-179.
    Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C. and McDonald, G.D.,2002.Fluid-mobile trace element constraints on the role of slab melting andimplications for Archaean crustal growth models. Contributions to Mineralogyand Petrology,144(1):38-56.
    Kamenetsky, VS., Crawford, A.J. and Meffre, S.,2001. Factors controlling chemistryof magmatic spinel: An empirical study of associated olivine, Cr-spinel and meltinclusions from primitive rocks. Journal of Petrology,42(4):655-671.
    Kamenetsky, VS., Elburg, M., Arculus, R. and Thomas, R.,2006. Magmatic origin oflow-Ca olivine in subduction-related magmas: Co-existence of contrastingmagmas. Chemical Geology,233(3-4):346-357.
    Kaur, P., Chaudhri, N., Hofmann, A.W., Raczek, I., Okmsch, M., Skora, S. andBaumgartner, L.R,2012. Two-Stage, Extreme Albitization of A-type Granitesfrom Rajasthan, NW India. Journal of Petrology,53(5):919-948.
    Kawabe, L,1995. Tetrad Effects and Fine-Structures of Ree Abundance Patterns ofGranitic and Rhyolitic Rocks-Icp-Aes Determinations of Ree and Y in8GsjReference Rocks. Geochem J,29(4):213-230.
    Kawamoto, T. and Holloway, J.R.,1997. Melting temperature and partial meltchemistry of H20-saturated mantle peridotite to11gigapascals. Science,276(5310):240-243.
    Kelley, S.R and Wartho, J.A.,2000. Rapid kimberlite ascent and the significance ofAr-Ar ages in xenolith phlogopites. Science,289(5479):609-611.
    Keppler, H. and Wyllie, P.J.,1990. Role of Fluids in Transport and Fractionation ofUranium and Thorium in Magmatic Processes. Nature,348(6301):531-533.
    Keshav, S., Gudfinnsson, G.H., Sen, G. and Fei, Y,2004. High-pressure meltingexperiments on garnet clinopyroxenite and the alkalic to tholeiitic transition inocean-island basalts. Earth and Planetary Science Letters,223(3-4):365-379.
    Ketcham, R.A. and Carlson, W.D.,2001. Acquisition, optimization and interpretationof X-ray computed tomographic imagery: applications to the geosciences.Computers&Geosciences,27(4):381-400.
    Kile, D.E., Eberl, D.D., Hoch, A.R. and Reddy, M.M.,2000. An assessment of calcitecrystal growth mechanisms based on crystal size distributions. Geochimica EtCosmochimica Acta,64(17):2937-2950.
    King, P.L., White, A.J.R., Chappell, B.W. and Allen, C.M.,1997. Characterization andorigin of aluminous A-type granites from the Lachlan Fold Belt, SoutheasternAustralia. Journal of Petrology,38(3):371-391.
    Kinzler, R.J.,1997. Melting of mantle peridotite at pressures approaching the spinel togarnet transition: Application to mid-ocean ridge basalt petrogenesis. Journal ofGeophysical Research-Solid Earth,102(B1):853-874.
    Kinzler, R.J. and Grove, T.L.,1992a. Primary magmas of mid-ocean ridge basalts1.Experiments and methods. Journal of Geophysical Research,97(B5):6885-6906.
    Kinzler, R.J. and Grove, T.L.,1992b. Primary magmas of mid-ocean ridge basalts2.Applications. Journal of Geophysical Research,97(B5):6907-6926.
    Kinzler, R.J. and Grove, T.L.,1993. Corrections and further discussion of the primarymagmas of mid-ocean ridge basalts,1and2. Journal of Geophysical Research,98(B12):22339-22322,22347.
    Kiseeva, E.S., Yaxley, G.M., Hermann, J., Litasov, K.D., Rosenthal, A. andKamenetsky, VS.,2012. An Experimental Study of Carbonated Eclogite at3-5-5-5GPa一Implications for Silicate and Carbonate Metasomatism in theCratonic Mantle. Journal of Petrology,53(4):727-759.
    Klein, E.M. and Langmuir, C.H.,1987. Global Correlations of Ocean Ridge BasaltChemistry with Axial Depth and Crustal Thickness. J Geophys Res-Solid,92(B8):8089-8115.
    Knesel, K.M. and Davidson, J.P.,1996. Isotopic disequilibrium during melting ofgranite and implications for crustal contamination of magmas. Geology,24(3):243-246.
    Kogiso, T.,2007. A geochemical and petrological view of mantle plume, Superplumes:Beyond Plate Tectonics. Springer, pp.165-186.
    Kogiso, T., Hirose, K. and Takahashi, E.,1998. Melting experiments on homogeneousmixtures of peridotite and basalt: application to the genesis of ocean islandbasalts. Earth and Planetary Science Letters,162(1-4):45-61.
    Kogiso, T. and Hirschmann, M.M.,2001. Experimental study of clinopyroxenitepartial melting and the origin of ultra-calcic melt inclusions. Contributions toMineralogy and Petrology,142(3):347-360.
    Kogiso, T. and Hirschmann, M.M.,2006. Partial melting experiments of bimineraliceclogite and the role of recycled mafic oceanic crust in the genesis of oceanisland basalts. Earth and Planetary Science Letters,249(3-4):188-199.
    Kogiso, T., Hirschmann, M.M. and Frost, D.J.,2003. High-pressure partial melting ofgarnet pyroxenite: possible mafic lithologies in the source of ocean island basalts.Earth and Planetary Science Letters,216(4):603-617.
    Kogiso, T., Hirschmann, M.M. and Pertermann, M.,2004. High-pressure partialmelting of mafic lithologies in the mantle. Journal of Petrology,45(12):2407-2422.
    Kramers, J.D. and Tolstikhin, I.N.,1997. Two terrestrial lead isotope paradoxes,forward transport modelling, core formation and the history of the continentalcrust. Chemical Geology,139(1-4):75-110.
    Kuritani, T., Kimura, J.I., Miyamoto, T., Wei, H.Q., Shimano, T., Maeno, R, Jin, X.and Taniguchi, H.,2009. Intraplate magmatism related to deceleration ofupwrelling asthenospheric mantle: Implications from the Changbaishan shieldbasalts, northeast China. Lithos,112(3-4):247-258.
    Kushiro, I.,1996. Partial melting of a fertile mantle peridotite at high pressures: anexperimental study using aggregates of diamond. In: A. Basu and S. Hart(Editors), Earth processes: Reading the isotopic code. Geophysical Monograph,American Geophysical Union, pp.109-122.Kushiro, I.,2001. Partial melting experiments on peridotite and origin of mid-ocean
    ridge basalt. Annu Rev Earth PI Sc,29:71-107.
    Kyle, J.R., Mote, A.S. and Ketcham, R.A.,2008. High resolution X-ray computedtomography studies of Grasberg porphyry Cu-Au ores, Papua, Indonesia. MinerDeposita,43(5):519-532.
    Lambart, S., Laporte, D., Provost, A. and Schiano, P.,2012. Fate ofPyroxenite-derived Melts in the Peridotitic Mantle: Thermodynamic andExperimental Constraints. Journal of Petrology,53(3):451-476.
    Lambart, S., Laporte, D. and Schiano, P.,2009a. An experimental study of focusedmagma transport and basalt-peridotite interactions beneath mid-ocean ridges:implications for the generation of primitive MORB compositions. Contributionsto Mineralogy and Petrology,157(4):429-451.
    Lambart, S., Laporte, D. and Schiano, P.,2009b. An experimental study of pyroxenitepartial melts at1and1.5GPa: Implications for the major-element composition ofMid-Ocean Ridge Basalts. Earth and Planetary Science Letters,288(1-2):335-347.
    Lambart, S., Laporte, D. and Schiano, P.,2013. Markers of the pyroxenite contributionin the major-element compositions of oceanic basalts: Review of theexperimental constraints. Lithos,160-161(0):14-36.
    Lane, A.C.,1898. Geological report on Isle Royale, Michigan. Lansing, MI: MichiganGeological Survey.
    Langmuir, C.H., Klein, E.M. and Plank, T.,1992. Petrological systematics ofmid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges.Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophys. Monogr. Ser.AGU, Washington, DC, pp.183-280.
    Laporte, D., Toplis, M.J., Seyler, M. and Devidal, J.L.,2004. A new experimentaltechnique for extracting liquids from peridotite at very low degrees of melting:application to partial melting of depleted peridotite. Contributions to Mineralogyand Petrology,146(4):463-484.
    Larrea, P., Franca, Z., Lago, M., Widom, E., Gale, C. and Ubide, T.,2012. MagmaticProcesses and the Role of Antecrysts in the Genesis of Corvo Island (AzoresArchipelago, Portugal). Journal of Petrology.
    Larrea, P., Franca, Z., Lago, M., Widom, E., Gale, C. and Ubide, T.,2013. MagmaticProcesses and the Role of Antecrysts in the Genesis of Corvo Island (AzoresArchipelago, Portugal). Journal of Petrology,54(4):769-793.
    Laurie, A. and Stevens, G.,2012. Water-present eclogite melting to produce Earth'searly felsic crust. Chemical Geology,314-317(0):83-95.
    Lawrie, K.C., Memagh, T.R, Ryan, C.G., Achterbergh, E.v. and Black, L.R,2007.Chemical fingerprinting of hydrothermal zircons: an example from theGidginbung high sulphidation Au-Ag-(Cu) deposit. New South Wales, Australia.Proceedings of the Geologists' Association,118(1):37-46.
    Le Roux, v., Dasgupta, R. and Lee, C.T.A.,2011. Mineralogical heterogeneities in theEarth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partialmelting. Earth and Planetary Science Letters,307(34):395-408.
    Le Roux, v., Lee, C.T.A. and Turner, S.J.,2010. Zn/Fe systematics in mafic andultramafic systems: Implications for detecting major element heterogeneities inthe Earth's mantle. Geochimica Et Cosmochimica Acta,74(9):2779-2796.
    Leeman, W.P. and Phelps, D.W.,1981. Partitioning of rare earths and other traceelements between sanidine and coexisting volcanic glass. Journal of GeophysicalResearch: Solid Earth (1978-2012),86(B11):10193-10199.
    Lehnert, K., Su, Y., Langmuir, C.H., Sarbas, B. and Nohl, U.,2000. A globalgeochemical database structure for rocks. Geochemistry, Geophysics,Geosystems,1(5):1012.
    Lemelle, L., Simionovici, A., Truche, R., Rau, C., Chukalina, M. and Gillet, P.,2004.A new nondestructive X-ray method for the determination of the3D mineralogyat the micrometer scale. American Mineralogist,89(4):547-553.
    Li, C., Thakurta, J. and Ripley, E.,2012. Low-Ca contents and kink-banded texturesare not unique to mantle olivine: evidence from the Duke Island Complex, Alaska.Miner Petrol,104(3):147-153.
    Li, C.S. and Ripley, E.M.,2010. The relative effects of composition and temperatureon olivine-liquid Ni partitioning: Statistical deconvolution and implications forpetrologic modeling. Chemical Geology,275(1-2):99-104.
    Li, H.M., Wei, J.H., Wang, H.L., Xiao, G.L., Peng, L.N. and Wang, F.Y.,2009. Thesources of Ore-forming metrials in Weishancheng Au-Ag mineralization belt inTongbai Henan province: Lead isotope evidences. Geology and Exploration,45(4):374-384(in Chinese with English abstract).
    Lifshitz, I.M. and Slyozov, V.V.,1961. The kinetics of precipitation fromsupersaturated solid solutions. J Phys Chem Solids,19(1/2):35-50.
    Liu, C.Q., Masuda, A., Okada, A., Yabuki, S., Zhang, J. and Fan, Z.L.,1993. AGeochemical Study of Loess and Desert Sand in Northern China-Implicationsfor Continental-Crust Weathering and Composition. Chemical Geology,106(3-4):359-374.
    Liu, C.Q. and Zhang, H.,2005. The lanthanide tetrad effect in apatite from the AltayNo.3pegmatite, Xingjiang, China: an intrinsic feature of the pegmatite magma.Chemical Geology,214(1-2):61-77.
    Liu, J., Rudnick, R.L., Walker, R.J., Gao, S., Wu, F.-y., Piccoli, P.M., Yuan, H., Xu,W.-l. and Xu, Y.-G.,2011. Mapping lithospheric boundaries using〇s isotopes ofmantle xenoliths: An example from the North China Craton. Geochimica EtCosmochimica Acta,75(13):3881-3902.
    Liu, Y.S., Gao, S., Kelemen, RB. and Xu, W.L.,2008. Recycled crust controlscontrasting source compositions of Mesozoic and Cenozoic basalts in the NorthChina Craton. Geochimica Et Cosmochimica Acta,72(9):2349-2376.
    Liu, Y.S., Gao, S., Yuan, H.L., Zhou, L., Liu, X.M., Wang, X.C., Hu, Z.C. and Wang,L.S.,2004. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustalxenoliths from North China Craton: insights on evolution of lower continentalcrust. Chemical Geology,211(1-2):87-109.
    Loiselle, M. and Wones, D.,1979. Characteristics and origin of anorogenic granites.Geological Society of America Abstracts with Programs, pp.468.
    London, D.,2005. Granitic pegmatites: an assessment of current concepts anddirections for the future. Lithos,80(1-4):281-303.
    London, D.,2009. The Origin of Primary Textures in Granitic Pegmatites. CanMineral,47(4):697-724.
    Longhi, J.,2002. Some phase equilibrium systematics of Iherzolite melting: I.Geochemistry Geophysics Geosystems,3:-.
    Ludwig, K.R.,2003. User's manual for Isoplot3.00: A geochronological toolkit forMicrosoft Excel. Kenneth R. Ludwig.
    Luo, Z.H., Mo, X.X., Lu, X.X., Chen, B.H., Ke, S.S., Hou, Z.Q. and Jiang, W.,2007.Metallogeny by Trans-magmatic Fluids—Theoretical Analysis and Field Evidence.Earth Science Frontiers,14(3):165-183.
    Lustrino, M.,2005. How the delamination and detachment of lower crust caninfluence basaltic magmatism. Earth-Sci Rev,72(1-2):21-38.
    Mahood, G. and Hildreth, W.,1983. Large partition coefficients for trace elements inhigh-silica rhyolites. Geochimica Et Cosmochimica Acta,47(1):11-30.
    Mallik, A. and Dasgupta, R.,2012. Reaction between MORB-eclogite derived meltsand fertile peridotite and generation of ocean island basalts. Earth and PlanetaryScience Letters,329-330(0):97-108.
    Mao, J.W., Zhang Z.C., Zhang, Z.H. and Du, A.D.,1999. Re-Os isotopic dating ofmolybdenites in the Xiaoliugou W-(]VIo) deposit in the northern Qilian mountainsand its geological significance. Geochimica et Cosmochimica Acta,63(11-12):1815-1818.
    Mao, J.W., Xie, G.Q., Bierlein, R, Qu, W.J., Du, A.D., Ye, H.S., Pirajno, R, Li, H.M.,Guo, B.J., Li, Y.F and Yang, Z.Q.,2008. Tectonic implications from Re-Osdating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenicbelt. Geochimica et Cosmochimica Acta,72(18):4607-4626.
    Marschallinger, R.,1998. Correction of geometric errors associated with the3-Dreconstruction of geological materials by precision serial lapping. Mineral Mag,62(6):783-792.
    Marsh, B.D.,1981. On the crystallinity, probability of occurrence, and rheology oflava and magma. Contributions to Mineralogy and Petrology,78(1):85-98.
    Marsh, B.D.,1988. Crystal size distribution (CSD) in rocks and the kinetics anddynamics of crystallization I. Theory. Contributions to Mineralogy andPetrology,99(3):277-291.
    Marsh, B.D.,1998. On the interpretation of crystal size distributions in magmaticsystems. Journal of Petrology,39(4):553-599.
    Marsh, B.D.,2006. Crystallization of silicate magmas deciphered using crystal sizedistributions,8th International Symposium on Crystallization in Glasses andLiquids, Jackson Hole, WY, pp.746-757.
    Marsh, B.D.,2007. Crystallization of silicate magmas deciphered using crystal sizedistributions. J Am Ceram Soc,90(3):746-757.
    Marsh, B.D. and Higgins, M.D.,2002. Inherited correlation in crystal size distribution:Comment. Geology,30(3):284-285.
    Martin, R.F.,2006. A-type granites of crustal origin ultimately result fromopen-system fenitization-type reactions in an extensional environment. Lithos,91(1-4):125-136.
    Martin, R.R,2012. The petrogenesis of anorogenic felsic magmas and AMCG suites:Insights on element mobility and mutual cryptic contamination from polythermalexperiments. Lithos,151(0):35-45.
    Masau, M., Cemy, P. and Chapman, R.,2000. Dysprosian xenotime-(Y) from theAnnie Claim#3granitic pegmatite, southeastern Manitoba, Canada: Evidence ofthe tetrad effect? Can Mineral,38:899-905.
    Masuda, A. and Akagi, T.,1989. Lanthanide Tetrad Effect Observed in Leukogranitesfrom China. Geochem J,23(5):245-253.
    Masuda, A., Kawakami,〇.,Dohmoto, Y. and Takenaka, T.,1987. Lanthanide TetradEffects in Nature-2Mutually Opposite Types, W and M. Geochem J,21(3):119-124.
    Matzen, A., Baker, M., Beckett, J. and Stolper, E.,2009. The temperature and pressuredependence of Ni partitioning between olivine and MgO-rich silicate melt.Geochimica Et Cosmochimica Acta,73(13): A851-A851.
    Mayanovic, R.A., Anderson, A.J., Bassett, W.A. and Chou, I.M.,2009. The structureand stability of aqueous rare-earth elements in hydrothermal fluids: New resultson neodymium(III) aqua and chloroaqua complexes in aqueous solutions to500degrees C and520MPa. Chemical Geology,259(1-2):30-38.
    Mcbimey, A.R. and Hunter, R.H.,1995. The Cumulate Paradigm Reconsidered. J Geol,103(1):114-122.
    McDonough, W.F. and Sun, S.s.,1995. The composition of the Earth. ChemicalGeology,120(3^):223-253.
    Mclennan, S.M.,1994. Rare-Earth Element Geochemistry and the Tetrad Effect.Geochimica Et Cosmochimica Acta,58(9):2025-2033.
    McLeod, C.L., Davidson, J.P., Nowell, G.M. and de Silva, S.L.,2012. Disequilibriummelting during crustal anatexis and implications for modeling open magmaticsystems. Geology.
    Medard, E., Schmidt, M.W., Schiano, P. and Ottolini, L.,2006. Melting ofamphibole-bearing wehrlites: An experimental study on the origin of ultra-calcicnepheline-normative melts. Journal of Petrology,47(3):481-504.
    Meibom, A. and Anderson, D.L.,2004. The statistical upper mantle assemblage. Earthand Planetary Science Letters,217(1-2):123-139.
    Meng, Q.R. and Zhang, G.W.,2000. Geologic framework and tectonic evolution of theQinling orogen, central China. Tectonophysics,323(3-4):183-196.
    Meurer, W.R and Boudreau, A.E.,1998. Compaction of igneous cumulates Part II:Compaction and the development of igneous foliations. J Geol,106(3):293-304.
    Middlemost, E.A.K.,1989. Iron oxidation ratios, norms and the classification ofvolcanic rocks. Chemical Geology,77(1):19-26.
    Miller, C.R, McDowell, S.M. and Mapes, R.W.,2003. Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance.Geology,31(6):529-532. —
    Miller, J.S., Matzel, J.E.P., Miller, C.F., Burgess, S.D. and Miller, R.B.,2007. Zircongrowth and recycling during the assembly of large, composite arc plutons.Journal of Volcanology and Geothermal Research,167(1^):282-299.
    Mock, A. and Jerram, D.A.,2005. Crystal size distributions (CSD) in three dimensions:Insights from the3D reconstruction of a highly porphyritic rhyolite. Journal ofPetrology,46(8):1525-1541.
    Mock, A., Jerram, D.A. and Breitkreuz, C.,2003. Using quantitative textural analysisto understand the emplacement of shallow-level rhyolitic laccoliths-A case studyfrom the Halle Volcanic Complex, Germany. Journal of Petrology,44(5):833-849.
    Monecke, T., Kempe, U. and Monecke, J.,2003. Comment on the paper”W-andM-type tetrad effects in REE patterns for water-rock systems in the Tono uraniumdeposit, central Japan"-By Y. Takahasi, H. Yoshida, N. Sato, K. Hama, Y. Yasa,and H. Shimizu. Chemical Geology,202(1-2):183-184.
    Monecke, T., Kempe, U., Trinkler, M., Thomas, R., Dulski, P. and Wagner, T.,2011.Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermalsystem. Geology,39(4):295-298.
    Monecke, T., Kempf, U., Monecke, J., Sala, M. and Wolf, D.,2002. Tetrad effect inrare earth element distribution patterns: A method of quantification withapplication to rock and mineral samples from granite-related rare metal deposits.Geochimica Et Cosmochimica Acta,66(7):1185-1196.
    Morgan, D.J. and Jerram, D.A.,2006. On estimating crystal shape for crystal sizedistribution analysis. Journal of Volcanology and Geothermal Research,154(1-2):1-7.
    Morgan, D.J., Jerram, D.A., Chertkoff, D.G., Davidson, J.R, Pearson, D.G., Kronz, A.and Nowell, G.M.,2007. Combining CSD and isotopic microanalysis: Magmasupply and mixing processes at Stromboli Volcano, Aeolian Islands, Italy. Earthand Planetary Science Letters,260(3-4):419-431.
    Moyen, J.-R,2011. The composite Archaean grey gneisses: Petrological significance,and evidence for a non-unique tectonic setting for Archaean crustal growth.Lithos,123(1一):21-36.
    Muller, T., Baumgartner, L.R, Foster, C.T. and Bowman, J.R.,2009. Crystal SizeDistribution of Periclase in Contact Metamorphic Dolomite Marbles from theSouthern Adamello Massif, Italy. Journal of Petrology,50(3):451-465.
    Nabelek, P.I., Whittington, A.G. and Sirbescu, M.L.C.,2010. The role of H(2)0inrapid emplacement and crystallization of granite pegmatites: resolving theparadox of large crystals in highly undercooled melts. Contributions toMineralogy and Petrology,160(3):313-325.
    Nash, W. and Crecraft, H.,1985. Partition coefficients for trace elements in silicicmagmas. Geochimica Et Cosmochimica Acta,49(11):2309-2322.
    Nicolas, A.,1992. Kinematics in magmatic rocks with special reference to gabbros.Journal of Petrology,33(4):891-915.
    Nishimura, K.,2012. A mathematical model of trace element and isotopic behaviorduring simultaneous assimilation and imperfect fractional crystallization.Contributions to Mineralogy and Petrology,164(3):427-440.
    Niu, Y.L.,1997. Mantle melting and melt extraction processes beneath ocean ridges:Evidence from abyssal peridotites. Journal of Petrology,38(8):1047-1074.
    Niu, Y.L.,2004. Bulk-rock major and trace element compositions of abyssalperidotites: Implications for mantle melting, melt extraction and post-meltingprocesses beneath mid-ocean ridges. Journal of Petrology,45(12):2423-2458.
    Niu, Y.L. and O'Hara, M.J.,2003. Origin of ocean island basalts: A new perspectivefrom petrology, geochemistry, and mineral physics considerations. Journal ofGeophysical Research-Solid Earth,108(B4):2209, doi:2210.1029/2002JB002048.
    Niu, Y.L. and O'Hara, M.J.,2008. Global correlations of ocean ridge basalt chemistrywith axial depth: Anew perspective. Journal of Petrology,49(4):633-664.
    Niu, Y.L., Wilson, M., Humphreys, E.R. and O'Hara, M.J.,2011. The Origin ofIntra-plate Ocean Island Basalts (OIB): the Lid Effect and its GeodynamicImplications. Journal of Petrology,52(7-8):1443-1468.
    Nkono, C., Femenias,O, Diot, H., Berza, T. and Demaiffe, D.,2006. Flowagedifferentiation in an andesitic dyke of the Motru Dyke Swarm (SouthernCarpathians, Romania) inferred from AMS, CSD and geochemistry. Journal ofVolcanology and Geothermal Research,154(3-4):201-221.
    O'Driscoll, B., Donaldson, C., Daly, J. and Emeleus, C.,2008a. The roles of meltinfiltration and cumulate assimilation in the formation of anorthosite and aCr-spinel seam in the Rum Eastern Layered Intrusion, NW Scotland. Lithos.
    O'Driscoll, B., Donaldson, C.H., Troll, V.R., Jerram, D.A. and Emeleus, C.H.,2007.An origin for harrisitic and granular olivine in the Rum Layered Suite, NWScotland: a crystal size distribution study. Journal of Petrology,48(2):253-270.
    O'Driscoll, B., Stevenson, C.E. and Trolly, V.R.,2008b. Mineral laminationdevelopment in layered gabbros of the British palaeogene igneous province: Acombined anisotropy of magnetic susceptibility, quantitative textural and mineralchemistry study. Journal of Petrology,49(6):1187-1221.
    O'hara, M.,1968. The bearing of phase equilibria studies in synthetic and naturalsystems on the origin and evolution of basic and ultrabasic rocks. Earth-Sci Rev,4:69-133.
    O'Neill, H., Dingwell, D., Borisov, A., Spettel, B. and Palme, H.,1995. Experimentalpetrochemistry of some highly siderophile elements at high temperatures, andsome implications for core formation and the mantle's early history. ChemicalGeology,120(3-4):255-273.
    Pan, Y.C.,2001. Inherited correlation in crystal size distribution. Geology,29(3):227-230.
    Pan, Y.M.,1997. Controls on the fractionation of isovalent trace elements in magmaticand aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect-adiscussion of the article by M. Bau (1996). Contributions to Mineralogy andPetrology,128(4):405-408.
    Pan, Y.M. and Breaks, F.W.,1997. Rare-earth elements in fluorapatite, separation lakearea, Ontario: Evidence for S-type granite-Rare-element pegmatite linkage. CanMineral,35:659-671.
    Pappalardo, L. and Mastrolorenzo, G.,2010. Short residence times for alkalineVesuvius magmas in a multi-depth supply system: Evidence from geochemicaland textural studies. Earth and Planetary Science Letters,296(1-2):133-143.
    Parman, S.W. and Grove, T.L.,2004. Harzburgite melting with and without H20:Experimental data and predictive modeling. Journal of GeophysicalResearch-Solid Earth,109(B2):-
    Patino Douce, A.E.,1997. Generation of metaluminous A-type granites bylow-pressure melting of calc-alkaline granitoids. Geology,25(8):743-746.
    Patino Douce, A.E.,1999. What do experiments tell us about the relative contributionsof crust and mantle to the origin of granitic magmas? In: Castro, A., Fernandez,C., Vigneresse, J.L.(Eds.), Understanding granites: intergrating new and classicaltechniques. Geological Society, London, Special Publications, pp.55-75.
    Patterson, M., Francis, D. and McCandless, T.,2009. Kimberlites: Magmas ormixtures? Lithos,112, Supplement1(0):191-200.
    Patwardhan, K. and Marsh, B.D.,2011. Dynamics of the Development of the Isle auHaut Gabbro-Diorite Layered Complex: Quantitative Implications forMafic-Silicic Magma Interactions. Journal of Petrology,52(12):2365-2395.
    Peng, J.T., Zhou, M.F., Hu, R.Z., Shen, N.P., Yuan, S.D., Bi, X.W., Du, A.D. and Qu,W.J.,2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the MesozoicYaogangxian tungsten deposit, central Nanling district. South China. MineraliumDeposita,41:661-669.
    Peppard, D.R, Mason, G.W. and Lewey, S.,1969. A tetrad effect in the liquid-liquidextraction ordering of lanthanides (III). Journal of Inorganic and NuclearChemistry,31(7):2271-2272.
    Pertermann, M. and Hirschmann, M.M.,2003. Partial melting experiments on aMORB-like pyroxenite between2and3GPa: Constraints on the presence ofpyroxenite in basalt source regions from solidus location and melting rate.Journal of Geophysical Research-Solid Earth,108(B2):2125.
    Perugini, D. and Poli, G.,2012. The mixing of magmas in plutonic and volcanicenvironments: Analogies and differences. Lithos,153(0):261-277.
    Peslier, A.H. and Luhr, J.F.,2006. Hydrogen loss from olivines in mantle xenolithsfrom Simcoe (USA) and Mexico: Mafic alkalic magma ascent rates and waterbudget of the sub-continental lithosphere. Earth and Planetary Science Letters,242(3-4):302-319.
    Peslier, A.H., Woodland, A.B. and Wolff, J.A.,2008. Fast kimberlite ascent ratesestimated from hydrogen diffusion profiles in xenolithic mantle olivines fromsouthern Africa. Geochimica Et Cosmochimica Acta,72(11):2711-2722.
    Peterson, T.D.,1996. A refined technique for measuring crystal size distributions inthin section. Contributions to Mineralogy and Petrology,124(3-4):395-405.
    Petford, N., Cruden, A.R., McCaffrey, K.J.W. and Vigneresse, J.L.,2000. Granitemagma formation, transport and emplacement in the Earth's crust. Nature,408(6813):669-673.
    Petford, N., Davidson, G. and Miller, J.A.,2001. Investigation of the petrophysicalproperties of a porous sandstone sample using confocal scanning lasermicroscopy. Petrol Geosci,7(2):99-105.
    Pickering-Witter, J. and Johnston, A.D.,2000. The effects of variable bulkcomposition on the melting systematics of fertile peridotitic assemblages.Contributions to Mineralogy and Petrology,140(2):190-211.
    Pilet, S., Baker, M.B. and Stolper, E.M.,2008. Metasomatized litho sphere and theorigin of alkaline lavas. Science,320(5878):916-919.
    Piochi, M., Mastrolorenzo, G. and Pappalardo, L.,2005. Magma ascent and eruptiveprocesses from textural and compositional features of Monte Nuovo pyroclasticproducts, Campi Flegrei, Italy. Bulletin of Volcanology,67(7):663-678.
    Presnall, D.C. and Gudfinnsson, G.H.,2011. Oceanic Volcanism from theLow-velocity Zone-without Mantle Plumes. Journal of Petrology,52(7-8):1533-1546.
    Prytulak, J. and Elliott, T.,2007. Ti〇2enrichment in ocean island basalts. Earth andPlanetary Science Letters,263(3-4):388-403.
    Pupier, E., Barbey, P., Toplis, M.J. and Bussy, R,2008. Igneous layering, fractionalcrystallization and growth of granitic plutons: The Dolbel batholith in SW niger.Journal of Petrology,49(6):1043-1068.
    Putirka, K., Jean, M., Cousens, B., Sharma, R., Torrez, G. and Carlson, C.,2012.Cenozoic volcanism in the Sierra Nevada and Walker Lane, California, and a newmodel for lithosphere degradation. Geosphere,8(2):265-291.
    Putirka, K., Ryerson, F.J., Perfit, M. and Ridley, W.I.,2011. Mineralogy andComposition of the Oceanic Mantle. Journal of Petrology,52(2):279-313.Putirka, K.D.,2008. Thermometers and Barometers for Volcanic Systems. RevMineral Geochem,69:61-120.
    Qian, Q., O'Neill, H.S.C. and Hermann, J.,2010. Comparative diffusion coefficients ofmajor and trace elements in olivine at?950°C from a xenocryst included indioritic magma. Geology,38(4):331-334.
    Randolph, A., Beckman, J. and Kraljevich, Z.,1977. Crystal size distributiondynamics in a classified crystallizer: Part I. Experimental and theoretical study ofcycling in a potassium chloride crystallizer. Aiche J,23(4).
    Randolph, A.D. and Larson, M.A.,1971. Theory of particulate processes. AcademicPress New York.
    Rapp, R.P. and Watson, E.B.,1995. Dehydration Melting of Metabasalt at8-32-Kbar-Implications for Continental Growth and Crust-Mantle Recycling. Journal ofPetrology,36(4):891-931.
    Resmini, R.G. and Marsh, B.D.,1995. Steady-State Volcanism, Paleoeffusion Rates,and Magma System Volume Inferred from Plagioclase Crystal Size Distributionsin Mafic Lavas-Dome Mountain, Nevada. Journal of Volcanology andGeothermal Research,68(4):273-296.
    Reyners, M., Eberhart-Phillips, D. and Stuart, G.,2007. The role of fluids inlower-crustal earthquakes near continental rifts. Nature,446(7139):1075-1078.
    Rhodes, J.M., Huang, S., Frey, F.A., Pringle, M. and Xu, G.,2012. Compositionaldiversity of Mauna Kea shield lavas recovered by the Hawaii Scientific DrillingProject: Inferences on source lithology, magma supply, and the role of multiplevolcanoes. Geochem. Geophys. Geosyst.,13: Q03014.
    Richards, J.P.,2003. Tectono-magmatic precursors for porphyry Cu-(]VIo-Au) depositformation. Econ. Geol. Bull. Soc. Econ. GeoL,98(8):1515-1533.
    Righter, K. and Hauri, E.,1998. Compatibility of rhenium in garnet during mantlemelting and magma genesis. Science,280(5370):1737-1741.
    Robinson, J.A.C., Wood, B.J. and Blundy, J.D.,1998. The beginning of melting offertile and depleted peridotite at1.5GPa. Earth and Planetary Science Letters,155(1-2):97-111.
    Roeder, P.L. and Emslie, R.F.,1970. Olivine-liquid equilibrium. Contributions toMineralogy and Petrology,29(4):275-289.
    Rohrbach, A., Schuth, S., Ballhaus,C., Miinker, C., Matveev, S. and Qopoto, C.,2005.Petrological constraints on the origin of arc picrites. New Georgia Group,Solomon Islands. Contributions to Mineralogy and Petrology,149(6):685-698.
    Rollinson, H.R.,1993. Using Geochemical Data: Evaluation, Presentation,Interpretation. Longman, Harlow, UK,352pp.
    Royet, J.R,1991. Stereology: a method for analyzing images. Progress inneurobiology,37(5):433-474.
    Rudnick, R.L., Shan, G., Ling, W.L., Liu, Y.S. and McDonough, W.F.,2004. Petrologyand geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, NorthChina craton. Lithos,77(1-4):609-637.
    Russell, J.K., Porritt, L.A., Lavallee, Y. and Dingwell, D.B.,2012. Kimberlite ascentby assimilation-fuelled buoyancy. Nature,481(7381):352-356.Soderlund, U., Patchett, P.J., Vervoort, J.D. and Isachsen, C.E.,2004. The176Ludecay constant determined by Lu-Hf and U-Pb isotope systematics ofPrecambrian mafic intrusions. Earth and Planetary Science Letters,219(3^):311-324.
    Sahagian, D.L. and Proussevitch, A.A.,1998.3D particle size distributions from2Dobservations: Stereology for natural applications. Journal of Volcanology andGeothermal Research,84(3-4):173-196.
    Sakyi, P.A., Tanaka, R., Kobayashi, K. and Nakamura, E.,2012. Inherited Pb isotopicrecords in olivine antecryst-hosted melt inclusions from Hawaiian lavas.Geochimica Et Cosmochimica Acta,95(0):169-195.
    Salisbury, M.J., Bohrson, W.A., Clynne, M.A., Ramos, RC. and Hoskin, P.,2008.Multiple Plagioclase Crystal Populations Identified by Crystal Size Distributionand in situ Chemical Data: Implications for Timescales of Magma ChamberProcesses Associated with the1915Eruption of Lassen Peak, CA. Journal ofPetrology,49(10):1755-1780.
    Salters, Longhi, J.E. and Bizimis, M.,2002. Near mantle solidus trace elementpartitioning at pressures up to3.4GPa. Geochemistry Geophysics Geosystems,3:
    Saltikov, S.A.,1967. The determination of the size distribution of particles in anopaque material from a measurement of the size distribution of their sections, pp.163-173.
    Sawyer, E.W.,2010. Migmatites formed by water-fluxed partial melting of aleucogranodiorite protolith: Micro structures in the residual rocks and source ofthe fluid. Lithos,116(3-4):273-286.
    Selby, D. and Creaser, R.A.,2001. Re-Os geochronology and systematics inmolybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia,Canada. Econ. GeoL,96(1):197-204.
    Schaeben, H., van den Boogaart, K.G., Mock, A. and Breitkreuz, C.,2002. Inheritedcorrelation in crystal size distribution: Comment. Geology,30(3):282-283.
    Schnetzler, C. and Philpotts, J.A.,1970. Partition coefficients of rare-earth elementsbetween igneous matrix material and rock-forming mineral phenocrysts—II.Geochimica Et Cosmochimica Acta,34(3):331-340.
    Schwab, B.E. and Johnston, A.D.,2001. Melting systematics of modally variable,compositionally intermediate peridotites and the effects of mineral fertility.Journal of Petrology,42(10):1789-1811.
    Sha, L.-K.,2012. Concurrent fractional and equilibrium crystallisation. Geochimica EtCosmochimica Acta,86(0):52-75.
    Sharon, E., Galun, M., Sharon, D., Basri, R. and Brandt, A.,2006. Hierarchy andadaptivity in segmenting visual scenes. NATURE-LONDON-,442(7104):810.
    Shaw, C.S.J.,1999. Dissolution of orthopyroxene in basanitic magma between0.4and2GPa: further implications for the origin of Si-rich alkaline glass inclusions inmantle xenoliths. Contributions to Mineralogy and Petrology,135(2-3):114-132.
    Shaw, C.S.J., Thibault, Y, Edgar, A.D. and Lloyd, RE.,1998. Mechanisms oforthopyroxene dissolution in silica-undersaturated melts at1atmosphere andimplications for the origin of silica-rich glass in mantle xenoliths. Contributionsto Mineralogy and Petrology,132(4):354-370.
    Shaw, D.,1968. A review of K-Rb fractionation trends by covariance analysis.Geochimica Et Cosmochimica Acta,32(6):573-601.
    Shaw, D.M.,1970. Trace element fractionation during anatexis. Geochimica EtCosmochimica Acta,34(2):237-243.
    Shearer, C.K., Papike, J.J. and Laul, J.C.,1985. Chemistry of Potassium Feldsparsfrom3Zoned Pegmatites, Black Hills, South-Dakota-Implications ConcerningPegmatite Evolution. Geochimica Et Cosmochimica Acta,49(3):663-673.
    Shinohara, H., Kazahaya, K. and Lowenstem, J.B.,1995. Volatile Transport in aConvecting Magma Column-Implications for Porphyry Mo Mineralization.Geology,23(12):1091-1094.
    Shirey, S.B. and Walker, R.J.,1998. The Re-Os isotope system in cosmochemistry andhigh-temperature geochemistry. Annual Review of Earth and Planetary Sciences,26:423-500.
    Simakin, A.G. and Bindeman, I.N.,2008. Evolution of crystal sizes in the series ofdissolution and precipitation events in open magma systems. Journal ofVolcanology and Geothermal Research,177(4):997-1010.
    Simkin, T. and Smith, J.,1970. Minor-element distribution in olivine. The Journal ofGeology:304-325.
    Sisson, T.,1991. Pyroxene-high silica rhyolite trace element partition coefficientsmeasured by ion microprobe. Geochimica Et Cosmochimica Acta,55(6):1575-1585.
    Sisson, T.,1994. Homblende-melt trace-element partitioning measured by ionmicroprobe. Chemical Geology,117(1):331-344.
    Sisson, T. and Bacon, C.,1992. Gamet/high-silica rhyolite trace element partitioncoefficients measured by ion microprobe. Geochimica Et Cosmochimica Acta,56(5):2133-2136.
    Skjerlie, K.P. and Johnston, A.D.,1992. Vapor-Absent Melting at10-Kbar of aBiotite-Bearing and Amphibole-Bearing Tonalitic Gneiss-Implications for theGeneration of a-Type Granites. Geology,20(3):263-266.
    Slaby, E., Martin, H., Hamada, M., Smigielski, M., Domonik, A., Gotze, J., Hoefs, J.,Halas, S., Simon, K., Devidal, J.L., Moyen, J.F. and Jayananda, M.,2012.Evidence in Archaean Alkali Feldspar Megacrysts for High-TemperatureInteraction with Mantle Fluids. Journal of Petrology,53(1):67-98.
    Sobolev, A.v., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Amdt, N.T., Chung, S.L.,Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A.,Kamenetsky, VS., Kerr, A.C., Krivolutskaya, N.A., Matvienkov, V.V.,Nikogosian, I.K., Rocholl, A., Sigurdsson, LA., Sushchevskaya, N.M. and Teklay,M.,2007. The amount of recycled crust in sources of mantle-derived melts.Science,316(5823):412-417.
    Sobolev, A.v., Hofmann, A.W., Sobolev, S.V. and Nikogosian, I.K.,2005. Anolivine-free mantle source of Hawaiian shield basalts. Nature,434(7033):590-597.
    Solgadi, F. and Sawyer, E.W.,2008. Formation of Igneous Layering in Granodiorite byGravity Flow: a Field, Micro structure and Geochemical Study of the TuolumneIntrusive Suite at Sawmill Canyon, California. Journal of Petrology,49(11):2009-2042.
    Song, Y, Frey, F.A. and Zhi, X.C.,1990. Isotopic Characteristics of Hannuoba Basalts,Eastern China-Implications for Their Petrogenesis and the Composition ofSubcontinental Mantle. Chemical Geology,88(1-2):35-52.
    Spandler, C., Yaxley, G., Green, D.H. and Rosenthal, A.,2008. Phase relations andmelting of anhydrous k-bearing eclogite from1200to1600degrees C and3to5GPa. Journal of Petrology,49(4):771-795.
    Spera, F.J. and Bohrson, W.A.,2001. Energy-Constrained Open-System MagmaticProcesses I: General Model and Energy-Constrained Assimilation and FractionalCrystallization (EC-AFC) Formulation. Journal of Petrology,42(5):999-1018.
    Spera, F.J. and Bohrson, W.A.,2004. Open-System Magma Chamber Evolution: anEnergy-constrained Geochemical Model Incorporating the Effects of ConcurrentEruption, Recharge, Variable Assimilation and Fractional Crystallization(EC-E'RAxFC). Journal of Petrology,45(12):2459-2480.
    Spowart, J.E.,2006. Automated serial sectioning for3-D analysis of microstructures.Scripta Mater,55(1):5-10.
    Stein, H.J., Markey, R.J., Morgan, J.W., Du, A. and Sun Y,1997. Highly precise andaccurate Re-Os ages for molybdenite from the east Qinling molybdenum belt,Shanxi Province, China. Econ. GeoL,92(7-8):827-835.
    Stein, H.J., Markey, R.J., Morgan, J.W., Hannah, J.L. and Schersten, A.,2001. Theremarkable Re-Os chronometer in molybdenite: how and why it works. TerraNoval,3:479-486.
    Stemprok, M., Dolejs, D., Muler, A. and Seltmann, R.,2008. Textural evidence ofmagma decompression, devolatilization and disequilibrium quenching: anexample from the Western Krusne hory/Erzgebirge granite pluton. Contributionsto Mineralogy and Petrology,155(1):93-109.
    Stimac, J. and Hickmott, D.,1994. Trace-element partition coefficients for ilmenite,orthopyroxene and pyrrhotite in rhyolite determined by micro-PIXE analysis.Chemical Geology,117(1):313-330.
    Stix, J. and Gorton, M.R,1990. Variations in Trace-Element Partition-Coefficients inSanidine in the Cerro Toledo Rhyolite, Jemez Mountains, New-Mexico-Effectsof Composition, Temperature, and Volatiles. Geochimica Et Cosmochimica Acta,54(10):2697-2708.
    Streck, M.J. and Grunder, A.L.,1997. Compositional gradients and gaps in high-silicarhyolites of the Rattlesnake Tuff, Oregon. Journal of Petrology,38(1):133-163.
    Sun, S.S. and McDonough, W.R,1989. Chemical and isotopic systematics of oceanicbasalts: implications for mantle composition and processes. Geological Society,London, Special Publications,42(1):313-345.
    Sun, W., Li, S., Chen, Y. and Li, Y,2002. Timing of Synorogenic Granitoids in theSouth Qinling, Central China: Constraints on the Evolution of the Qinling-Dabie Orogenic Belt. The Journal of Geology,110(4):457-468.
    Sweeney, R.J., Thompson, A.B. and Ulmer, P.,1993. Phase-Relations of a NaturalMarid Composition and Implications for Marid Genesis, Lithospheric Meltingand Mantle Metasomatism. Contributions to Mineralogy and Petrology,115(2):225-241.
    Takahahshi, E., Nakajima, K. and Wright, T.L.,1998. Origin of the Columbia Riverbasalts: melting model of a heterogeneous plume head. Earth and PlanetaryScience Letters,162(1-4):63-80.
    Takahashi, E. and Kushiro, I.,1983. Melting of a Dry Peridotite at High-Pressures andBasalt Magma Genesis. American Mineralogist,68(9-10):859-879.TAKAHASHI, E. and NAKAJIMA, K.,2002. Melting process in the Hawaiian plume:an experimental study. Geophysical monograph,128:403-418.
    Takahashi, E. and Scarfe, C.M.,1985. Melting of Peridotite to14Gpa and the GenesisofKomatiite. Nature,315(6020):566-568.
    Takahashi, E., Shimazaki, T., Tsuzaki, Y. and Yoshida, H.,1993. Melting Study of aPeridotite Klb-1to6.5Gpa, and the Origin of Basaltic Magmas. Philos T RoySocA,342(1663):105-120.
    Takahashi, Y, Yoshida, H., Sato, N., Hama, K., Yusa, Y. and Shimizu, H.,2002. W-and M-type tetrad effects in REE patterns for water-rock systems in the Tonouranium deposit, central Japan. Chemical Geology,184(3-4):311-335.
    Tang, Y.J., Zhang, H.F. and Ying, J.R,2006. Asthenosphere-litho spheric mantleinteraction in an extensional regime: Implication from the geochemistry ofCenozoic basalts from Taihang Mountains, North China Craton. ChemicalGeology,233(3-4):309-327.
    Tatsumoto, M., Basu, A.R., Huang, W.K., Wang, J.W. and Xie, G.H.,1992. Sr, Nd, andPb Isotopes of Ultramafic Xenoliths in Volcanic-Rocks of Eastern China-Enriched Components Emi and Emii in Subcontinental Lithosphere. Earth andPlanetary Science Letters,113(1-2):107-128.
    Tenner, T.J., Hirschmann, M.M. and Humayun, M.,2012. The effect of H20on partialmelting of garnet peridotite at3.5GPa. Geochem. Geophys. Geosyst,13:Q03016.
    Terada, K., Osaki, S., Ishihara, S. and Kiba, T.,1971. Distribution of rhenium inmolybdenites from Japan. Geochemical Journal,4:123-141.
    Thibault, Y, Edgar, A.D. and Lloyd, RE.,1992. Experimental Investigation of Meltsfrom a Carbonated Phlogopite Lherzolite-Implications for Metasomatism in theContinental Lithospheric Mantle. American Mineralogist,77(7-8):784-794.
    Thompson, R.N. and Gibson, S.A.,2000. Transient high temperatures in mantle plumeheads inferred from magnesian olivines in Phanerozoic picrites. Nature,407(6803):502-506.
    Till, C.B., Grove, T.L. and Krawczynski, M.J.,2012. A melting model for variablydepleted and enriched lherzolite in the plagioclase and spinel stability fields. J.Geophys. Res.,117(B6): B06206.
    Trail, D., Watson, E.B. and Tailby, N.D.,2011. The oxidation state of Hadean magmasand implications for early Earth/'s atmosphere. Nature,480(7375):79-82.
    Tsuruta, K. and Takahashi, E.,1998. Melting study of an alkali basalt IB-1up to12.5GPa: behavior of potassium in the deep mantle. Physics of the Earth andPlanetary Interiors,107(1-3):119-130.
    Tuff, J., Takahashi, E. and Gibson, S.A.,2005. Experimental constraints on the role ofgarnet pyroxenite in the genesis of high-Fe mantle plume derived melts. Journalof Petrology,46(10):2023-2058.
    Tuffen, H.,1998. L'origine des cristaux dans le chambre magmatique de Santorin(Grece). Universite Blaise-Pascal, Clermont-Ferrand, France:45.
    Turcotte, D.,1997. Fractals and chaos in geology and geophysics. Cambridgeuniversity press, Cambridge,221pp.
    Turner, S., George, R., Jerram, D.A., Carpenter, N. and Hawkesworth, C.,2003. Casestudies of plagioclase growth and residence times in island arc lavas from Tongaand the Lesser Antilles, and a model to reconcile discordant age information.Earth and Planetary Science Letters,214(1-2):279-294.
    Tuttle, O.F. and Bowen, N.L.,1958. Origin of granite in the light of experimentalstudies in the system NaAlSi3〇8-KAlSi3〇8-Si〇2-H2〇.74:1-153.
    Ulmer, P. and Sweeney, R.J.,2002. Generation and differentiation of group IIkimberlites: Constraints from a high-pressure experimental study to10GPa.Geochimica Et Cosmochimica Acta,66(12):2139-2153.
    Underwood, E.E.,1970. Quantitative stereology. ADDISON-WESLEY PUBLISHINGCO, READING, MASS.1970,274P.
    Usui, T., McSween, H.Y. and Floss, C.,2008. Petrogenesis of olivine-phyricshergottite Yamato980459, revisited. Geochimica Et Cosmochimica Acta,72(6):1711-1730.
    Veksler, I.V., Dorfman, A.M., Kamenetsky, M., Dulski, P. and Dingwell, D.B.,2005.Partitioning of lanthanides and Y between immiscible silicate and fluoride melts,fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks.Geochimica Et Cosmochimica Acta,69(11):2847-2860.
    Vemon, R.H.,1984. Microgranitoid Enclaves in Granites-Globules of Hybrid MagmaQuenched in a Plutonic Environment. Nature,309(5967):438-439.
    Vemon, R.H.,2004. A practical guide to Rock Microstructure,594pp. CambridgeUniversity Press.
    Vervoort, J.D. and Blichert-Toft, J.,1999. Evolution of the depleted mantle: Hf isotopeevidence from juvenile rocks through time. Geochimica Et Cosmochimica Acta,63(3-4):533-556.
    Vinet, N. and Higgins, M.D.,2010. Magma Solidification Processes beneath KilaueaVolcano, Hawaii: a Quantitative Textural and Geochemical Study of the1969-1974Mauna Ulu Lavas. Journal of Petrology,51(6):1297-1332.
    Vinet, N. and Higgins, M.D.,2011. What can crystal size distributions and olivinecompositions tell us about magma solidification processes inside Kilauea Iki lavalake, Hawaii? Journal of Volcanology and Geothermal Research,208(3-4):136-162.
    Voorhees, P.W.,1992. Ostwald Ripening of2-Phase Mixtures. Annu Rev Mater Sci,22:197-215.
    Wager, L.R.,1961. A note on the origin of ophitic texture in the chilled olivine gabbroof the Skaergaard intrusion. Geol Mag,98(5):353-366.
    Wagner, T.R and Grove, T.L.,1998. Melt/harzburgite reaction in the petrogenesis oftholeiitic magma from Kilauea volcano, Hawaii. Contributions to Mineralogy andPetrology,131(1):1-12.
    Walker, D. and DeLong, S.E.,1982. Soret separation of mid-ocean ridge basalt magma.Contributions to Mineralogy and Petrology,79(3):231-240.
    Walter, M.J.,1998. Melting of garnet peridotite and the origin of komatiite anddepleted lithosphere. Journal of Petrology,39(1):29-60.
    Wan, Y, Li, R., Wilde, S.A., Liu, D., Chen, Z., Yan, L., Song, T. and Yin, X.,2005.UHP metamorphism and exhumation of the Dabie Orogen, China: Evidence fromSHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble fromthe Hefei Basin. Geochimica Et Cosmochimica Acta,69(17):4333-4348.
    Wang, C., Jin, Z.M., Gao, S., Zhang, J.F. and Zheng, S.,2010. Eclogite-melt/peridotitereaction: Experimental constrains on the destruction mechanism of the NorthChina Craton. Sci China Earth Sci,53(6):797-809.
    Wang, T.H., Mao, J.W., Xie, G.Q., Ye, A.W. and Li, Z.Y.,2008. Sr, Nd, Pb IsotopicComposition of the Meso-Basic Dykes in the Xiaoqinling-Xiong'ershanArea,Henan Province,Central China and Its Tectonic Significance. Acta GeolSin-Engl,82(11):1580-1581(in Chinese with English abstract).
    Wang, X.-C., Li, Z.-X., Li, X.-H., Li, J., Liu, Y, Long, W.-G., Zhou, J.-B. and Wang, R,2012. Temperature, Pressure, and Composition of the Mantle Source Region ofLate Cenozoic Basalts in Hainan Island, SE Asia: a Consequence of a YoungThermal Mantle Plume close to Subduction Zones? Journal of Petrology,53(1):177-233.
    Wang, X.X., Wang, T., Qi, Q.J. and Li, S.,2011a. Temporal-spatial variations, originand their tectonic significance of the Late Mesozoic granites in the Qinling,Central China. Acta Petrologica Sinica,27(6):1573-1593(in Chiese with Englishabstract).
    Wang, Y, Zhao, Z.R, Zheng, Y.F. and Zhang, J.J.,2011b. Geochemical constraints onthe nature of mantle source for Cenozoic continental basalts in east-central China.Lithos,125:940-955.
    Wang, Z.R. and Gaetani, G.A.,2008. Partitioning of Ni between olivine and siliceouseclogite partial melt: experimental constraints on the mantle source of Hawaiianbasalts. Contributions to Mineralogy and Petrology,156(5):661-678.
    Ward, R., Stevens, G. and Kisters, A.,2008. Fluid and deformation induced partialmelting and melt volumes in low-temperature granulite-facies metasediments,Damara Belt, Namibia. Lithos,105(3-4):253-271.
    Washington, H.S.,1925. The chemical composition of the earth. Am J Sci, Series5Vol.9(53):351-378.
    Wasylenki, L.E., Baker, M.B., Kent, A.J.R. and Stolper, E.M.,2003. Near-solidusmelting of the shallow upper mantle: Partial melting experiments on depletedperidotite. Journal of Petrology,44(7):1163-1191.
    Weber, R., Wallace, P. and Dana Johnston, A.,2011. Experimental insights into theformation of high-Mg basalitc andesites in the trans-Mexican volcanic belt.Contributions to Mineralogy and Petrology:1-16.
    Whalen, J.B., Currie, K.L. and Chappell, B.W.,1987. A-Type Granites-GeochemicalCharacteristics, Discrimination and Petrogenesis. Contributions to Mineralogyand Petrology,95(4):407-419.
    White, A.,1979. Sources of granite magmas. Geological Society of America, Abstractswith Programs, pp.539.
    Wiedenbeck, M., AllE, P., Corfu, R, Griffin, W.L., Meier, M., Oberli, R, Quadt, A.V.,Roddick, J.C. and Spiegel, W.,1995. THREE NATURAL ZIRCONSTANDARDS FOR U-TH-PB, LU-HF, TRACE ELEMENT AND REEANALYSES. Geostandard Newslett,19(1):1-23.
    Wieser, M.,2006. Atomic weights of the elements2005(lUPAC Technical Report).Pure and Applied Chemistry,78(11):2051-2066.
    Williams-Jones, A.E. and Heinrich, C.A.,2005.100th Anniversary special paper:Vapor transport of metals and the formation of magmatic-hydrothermal oredeposits. Economic Geology,100(7):1287-1312.
    Williams, E., Boudreau, A.E., Boorman, S. and Kruger, F.J.,2006. Textures oforthopyroxenites from the burgersfort bulge of the eastern Bushveld Complex,Republic of South Africa. Contributions to Mineralogy and Petrology,151(4):480-492.
    Workman, R.K. and Hart, S.R.,2005. Major and trace element composition of thedepleted MORB mantle (DMM). Earth and Planetary Science Letters,231(1-2):53-72.
    Wu, F.Y., Jahn, B.M., Wilde, S. and Sun, D.Y.,2000. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China.Tectonophysics,328(1-2):89-113.
    Wu, F.Y., Sun, D.Y., Jahn, B.M. and Wilde, S.,2004. A Jurassic gamet-bearing graniticpluton from NE China showing tetrad REE patterns. Journal of Asian EarthSciences,23(5):731-744.
    Xu, S., Nagao, K., Uto, K., Wakita, H., Nakai, S.i. and Liu, C.,1998. He, Sr and Ndisotopes of mantle-derived xenoliths in volcanic rocks of NE China. Journal ofAsian Earth Sciences,16(5):547-556.
    Xu, X.-S., Zhang, M., Zhu, K.-Y, Chen, X.-M. and He, Z.-Y,2012a. Reverse agezonation of zircon formed by metamictisation and hydro thermal fluid leaching.Lithos,150(0):256-267.
    Xu, Y.-G., Zhang, H.-H., Qiu, H.-N., Ge, W.-C. and Wu, F.-Y,2012b. Oceanic crustcomponents in continental basalts from Shuangliao, Northeast China: Derivedfrom the mantle transition zone? Chemical Geology,328(0):168-184.
    Xu, Y.G.,2002. Evidence for crustal components in the mantle and constraints oncrustal recycling mechanisms: pyroxenite xenoliths from Hannuoba, North China.Chemical Geology,182(2-4):301-322.
    Xu, Y.G., Ma, J.L., Frey, F.A., Feigenson, M.D. and Liu, J.F.,2005. Role oflithosphere-asthenosphere interaction in the genesis of Quaternary alkali andtholeiitic basalts from Datong, western North China Craton. Chemical Geology,224(4):247-271.
    Xu, Z., Zhao, Z.-F. and Zheng, Y.-R,2012c. Slab-mantle interaction for thinning ofcratonic lithospheric mantle in North China: Geochemical evidence fromCenozoic continental basalts in central Shandong. Lithos,146-147(0):202-217.
    Yang, D.B., Xu, W.L., Pei, RR, Yang, C.H. and Wang, Q.H.,2012. Spatial extent ofthe influence of the deeply subducted South China Block on the southeasternNorth China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic maficigneous rocks. Lithos,136:246-260.
    Yang, Z., Luo, Z., Zhang, H., Zhang, Y, Huang, R, Sun, C. and Dai, J.,2009.Petrogenesis and Geological Implications of the Tianheyong Cenozoic Basalts,Inner Mongolia China. Earth Science Frontiers,16(2):90-106.
    Yasuda, A., Fujii, T. and Kurita, K.,1994. Melting Phase-Relations of an AnhydrousMidocean Ridge Basalt from3to20Gpa-Implications for the Behavior ofSubducted Oceanic-Crust in the Mantle. Journal of Geophysical Research-SolidEarth,99(B5):9401-9414.
    Yaxley, G.M. and Green, D.H.,1994. Experimental demonstration of refractorycarbonate-bearing eclogite and siliceous melt in the subduction regime. Earth andPlanetary Science Letters,128(3-4):313-325.
    Yaxley, G.M. and Green, D.H.,1998. Reactions between eclogite and peridotite:Mantle refertilisation by subduction of oceanic crust. Schweiz Miner Petrog,78(2):243-255.
    Yaxley, G.M. and Sobolev, A.V.,2007. High-pressure partial melting of gabbro and itsrole in the Hawaiian magma source. Contributions to Mineralogy and Petrology,154(4):371-383.
    Yoder, H.S.,1976. Generation of basaltic magma. National Academy of Sciences,Washingdon, D. C.
    Yoder, H.S. and Tilley, C.E.,1962. Origin of basalt magmas: an experimental study ofnatural and synthetic rock systems. Journal of Petrology,3(3):342.
    Yu, H., Xu, J., Lin, C., Shi, L. and Chen, X.,2012. Magmatic processes inferred fromchemical composition, texture and crystal size distribution of the Heikongshanlavas in the Tengchong volcanic field, SW China. Journal of Asian Earth Sciences,58(0):1-15.
    Yurimoto, H., Duke, E.R, Papike, J.J. and Shearer, C.K.,1990. Are DiscontinuousChondrite-Normalized Ree Patterns in Pegmatitic Granite Systems the Results ofMonazite Fractionation. Geochimica Et Cosmochimica Acta,54(7):2141-2145.
    Zeng, G., Chen, L.H., Hofmann, A.W., Jiang, S.Y. and Xu, X.S.,2011. Crust recyclingin the sources of two parallel volcanic chains in Shandong, North China. Earthand Planetary Science Letters,302(3-4):359-368.
    Zhang, H.F.,2005. Transformation of lithospheric mantle through peridotite-meltreaction: A case of Sino-Korean craton. Earth and Planetary Science Letters,237(3-4):768-780.
    Zhang, H.R, Sun, M., Zhou, M.F., Fan, W.M., Zhou, X.H. and Zhai, M.G.,2004.Highly heterogeneous Late Mesozoic lithospheric mantle beneath the NorthChina Craton: evidence from Sr-Nd-Pb isotopic systematics of mafic igneousrocks. Geol Mag,141(1):55-62.
    Zhang, H.R, Zhang, B.R., Zhao, Z.D., Luo, T.C. and Chen, Y.L.,1997. Feldspar leadisotopic compositions of granitoids from the eastern Qinling orogenic belt andtheir tectonic significance. Acta Geol Sin-Engl,71(2):142-149(in Chiese withEngllish abstract).
    Zhang, J.J., Zheng, Y.F. and Zhao, Z.F.,2009. Geochemical evidence for interactionbetween oceanic crust and lithospheric mantle in the origin of Cenozoiccontinental basalts in east-central China. Lithos,110(1-4):305-326.
    Zhang, Z.Q., Zhang, G., W., Liu, D.Y., Wang, Z.Q., Tang, S.H. and Wang, J.H.,2006.Isotopic Geochronology and Geochemistry of Ophiolites, Granites and ClasticSedimentary Rocks in the Qinling Orogenic Belt. Geological Publishing House,Beijing,348pp.
    Zhao, J.X. and Cooper, J.A.,1993. Fractionation of Monazite in the Development ofV-Shaped Ree Patterns in Leukogranite Systems-Evidence from a MuscoviteLeukogranite Body in Central Australia. Lithos,30(1):23-32.
    Zhao, Z.H., Bao, Z.W. and Qiao, Y.L.,2010. A peculiar composite M-and W-typeREE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex,Hebei Province, China. Chinese Science Bulletin,55(24):2684-2696.
    Zhi, X., Song, Y, Frey, F.A., Feng, J. and Zhai, M.,1990. Geochemistry of Hannuobabasalts, eastern China: Constraints on the origin of continental alkalic andtholeiitic basalt. Chemical Geology,88(1-2):1-33.
    Zhou, X.H., Sun, M., Zhang, G.H. and Chen, S.H.,2002. Continental crust andlithospheric mantle interaction beneath North China: isotopic evidence fromgranulite xenoliths in Hannuoba, Sino-Korean craton. Lithos,62(3-4):111-124.
    Zhu, L.M., Zhang, G.W., Guo, B., Lee, B., Gong, H.J. and Wang, R,2010.Geochemistry of the Jinduicheng Mo-bearing porphyry and deposit, and itsimplications for the geodynamic setting in East Qinling, PR China. ChemErde-Geochem,70(2):159-174.
    Zieg, M.J. and Lofgren, G.E.,2006. An experimental investigation of texture evolutionduring continuous cooling. Journal of Volcanology and Geothermal Research,154(1-2):74-88.Zieg, M.J. and Marsh, B.D.,2002. Crystal size distributions and scaling laws in thequantification of igneous textures. Journal of Petrology,43(1):85-101.
    Zimova, M. and Webb, S.L.,2007. The combined effects of chlorine and fluorine onthe viscosity of aluminosilicate melts. Geochimica Et Cosmochimica Acta,71(6):1553-1562.
    Zindler, A. and Hart, S.,1986. Chemical geodynamics. Annu Rev Earth PI Sc,14:493-571.
    Zou, H.B., Zindler, A., Xu, X.S. and Qi, Q.,2000. Major, trace element, and Nd, Srand Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regionalvariations, and tectonic significance. Chemical Geology,171(1-2):33-47.
    蔡明海,陈开旭,屈文俊,刘国庆,付建明,印建平,2006.湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年.矿床地质,25(3):263-268.
    曹志敏,路耀南,王汝成,Stein J, Hannah J L,2002.沐川太平砂岩型铼,目(饿)矿点的地质特征和矿化时代.地质学报,76(1):95-99.
    陈文明,李树屏,1998.中条山铜矿峪斑岩铜矿金属硫化物的铼-锇同位素年龄及地质意义.矿床地质,17(3):224-228.
    陈燕,吴泰然,许绚,张双涛,2004.内蒙古四子王旗东八号中新世含深源捕虔体富钾橄榄玄武岩的发现及其意义.高校地质学报(04):586-593.
    陈郑辉,王登红,屈文俊,陈統川,王平安,许建祥,张家昔,许敏林,2006.赣南崇义地区淘锡坑鹤矿的地质特征与成矿时代.地质通报,25(4):496-501.
    成中梅,路凤香,1997.准噶尔盆地老山沟火山岩晶体粒度分布及其结晶动力学意义.现代地质,11(002):149-156.
    代军治,毛景文,杜安道,谢桂青,白杰,杨富全,屈文俊,2007.辽西肖家营子I目(铁)矿床Re-Os年龄及其地质意义.地质学报,81(7):917-923.
    丁振举,姚书振,周宗桂,伍刚,1998.陕西略阳铜厂铜矿成矿时代及地质意义.西安工程学院学报,20(3):24-27.
    董方浏,侯增谦,高永丰,曾普胜,蒋成兴,杜安道,2005.滇西腾冲大硐厂铜-铅-锌矿床的辉钼矿Re-Os同位素定年.矿床地质,24(6):663-668.
    丰成友,许建祥,曾载淋,张德全,屈文俊,佘宏全,李进文,李大新,杜安道,董英君,2007.赣南天门山一红桃岭鹤锡矿田成岩成矿时代精细测定及其地质意义.地质学报,81(7):952-963.
    丰成友,丰耀东,许建祥,曾载淋,佘宏全,张德全,屈文俊,杜安道,2007.赣南张天堂地区岩体型鹤矿晚侏罗世成岩成矿的同位素年代学证据.中国地质,34(4):642-650.
    丰成友,李东生,屈文俊,杜安道,王松,苏生顺,江军华,2009.青海祁漫塔格索拉吉尔鞋卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义.岩矿测试,28(3):223-227.
    付建明,李华芽,屈文俊,杨晓君,魏君奇,刘国庆,马丽艳,2007.湘南九嶽山大埙鹤锡矿的Re-Os同位素定年研究.中国地质,34(4):651-656.
    付建明,李华芽,屈文俊,马丽艳,杨晓君,魏君奇,刘国庆,2008.粤北始兴地区石英脉型鹤矿成矿时代的确定及其地质意义.大地构造与成矿学,32(1):57-62.
    高阳,李永峰,郭保健,程国祥,刘彦伟,2010.豫西嵩县前范岭石英脉型钼矿床地质特征及辉I目矿Re-Os同位素年龄.26(3):757-767.
    高亚龙,张江明,叶会寿,孟芳,周柯,高阳,2010.东秦岭石?沟斑岩钼矿床地质特征及辉钼矿Re-Os年龄.岩石学报,26(3):729-739.
    龚福志,郑有业,张刚阳,屈文俊,2008.首次在岡底斯发现主碰撞期斑岩铜矿一来自西藏吉如斑岩铜矿辉钼矿Re-Os同位素年龄的证据.四川地质学报,28(4):296-299.
    郭保健,毛景文,李厚民,屈文俊,仇建军,叶会寿,李蒙文,竹学丽,2006.秦岭造山带秋树湾铜钼矿床辉钼矿Re-Os定年及其地质意义.岩石学报,22(9):2341-2348.
    韩海涛,刘继顺,董新,欧阳玉飞.2008.西秦岭温泉斑岩型钼矿床地质特征及成因浅析.地质与勘探,44(4):1-7.
    何书跃,李东生,李良林,祁兰英,何寿福,2009.青海东昆企鸭子沟斑岩型铜(IS)矿区辉钼矿铼-锇同位素年龄及地质意义.大地构造与成矿学,33(2):236-242.
    洪大卫,王式洸,韩宝福,靳满元,1995.碱性花岗岩的构造环境分类及其鉴别标志.中国科学(B辑化学生命科学地学)(04):418-426.
    侯增谦,曲晓明,王淑贤,高永丰,杜安道,黄卫,2003.西藏高原R底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学(D),33(7):609-618.
    黄典豪,王义昌,聂凤军,江秀杰,1985.一种新的钼矿床类型一陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制.地质学报,59:241-257.
    黄典豪,吴澄宇,杜安道,何红蓼,1994.东秦岭地区钼矿床的铼-锇同位素年龄及其意义.矿床地质,13(3):221-230.
    黄典豪,侯增谦,杨志明,李振清,许道学,2009.东秦岭I目矿带内碳酸岩脉型I目(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景.地质学报,83(12):1968-1984.
    焦建刚,袁海潮,何克,孙涛,徐刚,刘瑞平,2009.陕西华县八里坡钼矿床错石U-Pb和辉钼矿Re-Os年龄及其地质意义.地质学报,83(8):1159-1166.
    荆旭,吴泰然,贺元凯,2010.内蒙古四子王旗中新世含包体玄武岩的深部地质环境分析.北京大学学报(自然科学版)(02):215-223.
    李峰,鲁文举,杨映忠,陈珲,罗思亮,石增龙,2009.云南澜抢老厂斑岩钼矿成岩成矿时代研究.现代地质,23(6):1049-1055.
    李光明,刘波,屈文俊,林方成,佘宏全,丰成友,2005.西藏R底斯成矿带的斑岩-砂卡岩成矿系统:一来自斑岩矿床和砂卡岩型铜多金属矿床的Re-Os同位素年龄证据.大地构造与成矿学,29(4):482-490.
    李光明,两宗瑶,王高明,林方成,刘波,佘宏全,丰成友,屈文俊,2005.西藏岡底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义.矿床地质,24(5):481-489.
    李光明,刘波,佘宏全,丰成友,屈文俊,2006.西藏R底斯成矿带南缘喜马拉雅早期成矿作用一来自冲木达铜金矿床的Re-Os同位素年龄证据.地质通报,25(12):1481-1486.
    刘国庆,伍式崇,杜安道,付建明,杨晓君,汤质华,魏君奇,2008.湘东锡田鹤锡矿区成岩成矿时代研究.大地构造与成矿学,32(1):63-71.
    李厚民,叶会寿,毛景文,王登红,陈統川,屈文俊,杜安道,2007.小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义.矿床地质,26(4):417-424.
    李厚民,叶会寿,王登红,陈統川,屈文俊,杜安道,2009.豫西熊耳山寨凹钼矿床辉钼矿铼-锇年龄及其地质意义.矿床地质,28(2)5:133-14243.
    李华芽,王登红,万阈,屈文俊,张兵,路远发,梅玉萍,部绍利,2006.新疆莱历斯高尔铜钼矿床的同位素年代学研究.岩石学报,22(10):2437-2443
    李华芽,陈福文,李锦铁,屈文俊,王登红,吴华,邓刚,梅玉萍,2006.再论东天山白山铼I目矿区成岩成矿时代.地质通报,25(8):916-922.
    李红艳,毛景文,孙亚利,周晓秋,何红蓼,杜安道,1996.神竹园鹤多金属矿床的Re-Os同位素等时线年龄研究.地质论评,42(3):261-267.
    李立兴,松权衡,王登红,王成辉,屈文俊,汪志刚,毕守业,于城,2009.吉林福安堡钼矿中辉钼矿铼-锇同位素定年及成矿作用探讨.岩矿测试,28(3):283-287.
    李进文,李旭辉,裴荣富,梅燕雄,王永嘉,屈文俊,黄修保,臧文栓,2007.江西武山铜矿南矿带辉I目矿Re-Os同位素年龄及其地质意义.地质学报,81(6):801-807.
    李建康,李文昌,王登红,卢映祥,尹光侯,薛顺荣,2007.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究.岩石学报,23(10):2415-2422.
    李诺,孙亚莉,李晶,李文博,2007.内蒙古乌努格吐山斑岩铜I目矿床辉I目矿铼锇等时线年龄及其成矿地球动力学背景.岩石学报,23(11):2881-2888
    李诺,孙亚莉,李晶,薛良伟,李文博,2007.小秦岭大湖金钼矿床辉钼矿铼锇同位素年龄及印支期成矿事件.岩石学报,24(4):810-816.
    李诺,陈衍景,孙亚莉,胡海珠,李晶,张辉,倪智勇,2009.河南鱼池岭钼矿床辉I目矿铼-锇同位素年龄及地质意义.岩石学报,25(2):413-421.
    李水如,王登红,梁停,屈文俊,应立娟,2008.广西大明山鹤矿区成矿时代及其找矿前景分析.地质学报,82(7):873-879.
    李世金,孙丰月,丰成友,刘振宏,赵俊伟,李玉春,王松,2008.青海东昆企鸭子沟多金属矿的成矿年代学研究.地质学报,82(7):949-955.
    李晓峰,冯佐海,李容森,唐专红,屈文俊,李军朝,2009.华南志留纪钼的矿化:白石顶钼矿错石SHRIMP U-Pb年龄和辉钼矿Re-Os年龄证据.矿床地质,28(4):403-412.
    李永峰,毛景文,白凤军,李俊平,和志军,2003.东秦岭南泥湖I目(鹤)矿田Re-Os同位素年龄及其地质意义.地质论评,49(6):652-659
    李永峰,毛景文,刘敦一,王彦斌,王志良,王义天,李晓峰,张作衡,郭保健,2006.豫西雷门沟斑岩钼矿SHRIMP错石U-Pb和辉钼矿Re-Os测年及其地质意义.地质论评,52(1):122-131.
    李泽琴,王奖绩,刘家军,李朝阳,杜安道,刘玉平,叶琳,2003.拉拉铁氧化物-铜-金-钼-稀土矿床Re-Os同位素年龄及其地质意义.地质找矿论丛,18(1):39-42.
    廖香俊,王平安,罩海灿,路西坤,董法先,刘晓春,舒斌,2008.海南屯昌地区高通岭钼矿床的地质、地球化学特征及成矿时代.地质通报,27(4):560-570.
    蔺志永,王登红,李水如,2008.广西王社铜鹤矿床的Re-Os同位素年龄及其地质意义.地质学报,2008,82(11):1565-1571.
    刘国庆,伍式崇,杜安道,付建明,杨晓君,汤质华,魏君奇,2008.湘东锡田鹤锡矿区成岩成矿时代研究.大地构造与成矿学,32(1):63-71.
    刘兰笛,高翔,杜安道,孙亚莉,1996.白云鄂博稀土矿床中辉I目矿的铼-锇同位素年龄.矿床地质,15(2):188-191.
    刘裙,毛景文,叶会寿,杨国强,章伟,2008.江西省武功山地区游坑鹤矿床的Re-Os年龄及其地质意义.地质学报,82(11):1572-1579
    刘晓煌,孙桕年,屈文俊,康鸿杰,吴靖宇,2007.北祁连山西段西柳沟鹤钼矿的Re-Os定年及地质意义.岩石学报,23(10):2434-2442.
    刘玉琳,郭丽爽,宋会侠,宋彪,张锐,许发军,张云孝,2009.新疆西准噶尔包古图斑岩铜矿年代学研究.中国科学D辑,39(10):1466-1472.
    卢欣祥,于在平,冯有利,王义天,马维峰,崔海峰,2002.东秦岭深源浅成型花岗岩的成矿作用及地质构造背景.矿床地质,21(2):168-178.
    卢欣祥,冯进城,2007.河南省花岗岩地质地貌概论.地质论评(S1):116-12牡239-240.
    路远发,马丽艳,屈文俊,梅玉萍,陈希清,2006.湖南宝山铜-钼多金属矿床成岩成矿的U-Pb和Re-Os同位素定年研究.岩石学报,22(10):2483-2492.
    罗锦昌,陈郑辉,屈文俊,2009.福建省永定山口I目矿辉I目矿铼-锇同位素定年及其地质特征.岩矿测试,28(3):254-258.
    罗照华,莫宣学,卢欣祥,陈必河,柯珊,侯增谦,江万,2007.透岩楽流体成矿作用一理论分析与野外证据.地学前缘(03):165-183.
    罗照华,卢欣祥,郭少丰,孙静,陈必河,黄凡,杨宗锋,2008.透岩楽流体成矿体系.岩石学报(12):2669-2678.
    罗照华,2011.岩楽成矿系统演化的时空结构与成矿预测体制.矿物学报(S1):505-506.
    马宏卫.2008.东秦岭大别山段斑岩型鹤、铜)矿床地质特征.地质与勘探,44(1):50-54.
    马金龙,徐义刚,2004.河北阳原和山西大同新生代玄武岩的岩石地球化学特征:华北克拉通西部深部地质过程初探.地球化学(01):75-88.
    马丽艳,路远发,屈文俊,付建明,2007.湖南黄沙坪铅锌多金属矿床的Re-Os同位素等时线年龄及其地质意义.矿床地质,26(4):425-431.
    毛景文,张作衡,张招崇,杨建民,王志良,杜安道,1999.北祁连山小柳沟鹤矿床中辉I目矿Re-Os年龄测定及其意义.地质论平,49(6):652-659.
    毛景文,Stem H,杜安道,周涛发,梅燕雄,李永峰,藏文栓,李进文,2004.长江中下游地区铜金(钼)矿年龄测定及其对成矿作用的指示.地质学报,78(1):121-131.
    梅燕雄,毛景文,李进文,杜安道,2005.安黴铜陵大团山铜矿床层状鞋卡岩矿体中辉钼矿Re-Os年龄测定及其地质意义.地球学报,26(4):327-331.
    孟祥金,侯增谦,高永丰,黄卫,曲晓明,屈文俊,2003.西藏R底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义.地质论评,49(6):660-666.
    孟祥金,侯增谦,董光裕,黄卫,曲晓明,屈文俊,2007.江西金溪熊家山I目矿床特征及其Re-Os年龄.地质学报,81(7):946-951.
    蒙义峰,杨竹森,曾普胜,徐文艺,王训成,2004.铜陵矿集区成矿流体系统时限的初步厘定.矿床地质,23(3):271-280.
    闵茂中,白南静,1990.地质测试样品采集及送测指南.科学出版社,北京,241.
    聂凤军,屈文俊,刘妍,杜安道,江思宏,2005.内蒙古额勒根斑岩型钼(铜)矿化区辉钼矿铼-锇同位素年龄及地质意义.矿床地质,24(6):638-646.
    聂凤军,张万益,杜安道等,2007.内蒙古朝不榜鞋卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义.地球学报,28(4):315-323.
    聂凤军,张万益,杜安道,江思宏,刘妍,2007.内蒙古小东沟斑岩型钼矿床辉I目矿铼-锇同位素年龄及地质意义.地质学报,81(7):898-905.
    裴福萍,许文良,王清海,王冬艳,林景仟,2004.鲁西费县中生代玄武岩及暢源捕掳晶的矿物化学:对岩石圈地暢性质的制约.高校地质学报(01):88-97.
    罩锋,刘建明,曾庆栋,张瑞斌,2008.内蒙古小东沟斑岩型I目矿床的成矿时代及成矿物质来源.现代地质,22(2):173-180.
    秦燕,梅玉萍,王登红,张建,吴礼彬,2009.安黴源州玻琊山铜矿辉钼矿铼-锇同位素定年及其地质意义.岩矿测试,28(3):259-264.
    邱家骧,1991.应用岩楽岩岩石学.中国地质大学出版社,武汉,420.
    瞿涨漠,裴荣富,王永嘉,李进文,2010.安黴铜陵凤凰山夕卡岩型铜矿床中辉I目矿Re-Os同位素年两及其地质意义.岩石学报,26(3):785-796.
    佘宏全,李进文,马东方,李光明,张德全,丰成友,屈文俊,潘桂棠,2009.西藏多不杂斑岩铜矿床辉钼矿Re-Os和错石U-Pb SHRIMP测年及地质意义.矿床地质,28(6):737-746.
    邵济安,路凤香,张履桥,杨进辉,2005.辽西义县组玄武岩捕虔晶的发现及其意义.岩石学报(06):1547-1558.
    宋彪,张玉海,万渝生,简平,2002.错石SHRIMP样品K制作、年龄测定及有关现象讨论.地质论评(S1):26-30.
    宋史刚,丁振举,姚书振,周宗桂,张世新,杜安道,2008.甘肃武山温泉辉钼矿Re-Os同位素定年及其成矿意义.西北地质,41(1):67-73.
    苏本勒,张宏福,肖燕,赵新苗,2006.西秦岭宕昌好梯新生代火山岩中橄榄石捕虔晶的特征及其地质意义.自然科学进展(11):1428-1435.
    苏捷,张宝林,孙大亥,崔敏利,屈文俊,杜安道,2009.东秦岭东段新发现的沙坡岭细脉浸染型钼矿地质特征、Re-Os同位素年龄及其地质意义.地质学报,83(10):1490-1496.
    唐菊兴,陈統川,王登红,王成辉,许远平,屈文俊,黄卫,黄勇,2009.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义.地质学报,83(5):698-704.
    唐菊兴,王成辉,屈文俊,杜安道,应立娟,高一鸣,2009.西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义.岩矿测试,28(3):215-218.
    汤艳杰,张宏福,英基丰,2004.太行山中段新生代玄武岩中高镁橄榄石捕虔晶:残留古老岩石圈地暢样品.岩石学报(05):254-263.
    陶继雄,王強陈,郑辉,罗忠泽,许立权,郝先义,崔来旺,2009.内蒙古苏尼特左旗乌兰德勒钼铜多金属矿床辉钼矿铼-锇同位素定年及其地质特征.岩矿测试,28(3):249-253.
    涂光识,高振敏,胡瑞忠,张干,李朝阳,赵振华,张宝贵,2004.分散元素地球化学及其成矿机制[C].北京:地质出版社.1-424.
    王成辉,王登红,陈郑辉,严朝辉,吴资龙,林东燕,刘乃忠,2009.福建砺山钼矿的地质特征、成矿时代及区域找矿前景.矿物学报,29(1):63-69.
    王成辉,松权衡,王登红,李立兴,于城,汪志刚,屈文俊,杜安道,应立娟,2009.吉林大黑山超大型钼矿辉钼矿铼-锇同位素定年及其地质意义.岩矿测试,28(3):269-273.
    王长明,邓军,张寿庭,叶会寿,2006.河南南泥湖Mo-W-Cu-Pb-Zn-Ag-Au成矿区内生成矿系统.地质科技情报,25(6):47-52.
    王登红,屈文俊,李志伟,应汉龙,陈統川,2004.金沙江-红河成矿带斑岩铜钼矿的成矿集中期:Re-Os同位素定年.中国科学D辑,34(4):345-349.
    王登红,李华芽,秦燕,梅玉萍,陈郑辉,屈文俊,王彦斌,蔡红,龚述清,何晓平,2009.湖南瑶岗仙鹤矿成岩成矿作用年代学研究.岩矿测试,28(3):201-208.
    王光辉,宋玉财,侯增谦,王晓虎,杨竹森,杨天南,刘燕学,江迎飞,潘小菲,张洪瑞,刘英超,李政,薛传东,2009.兰坪盆地连城脉状铜矿床辉钼矿Re-Os定年及其地质意义.矿床地质,28(4):413-424.
    王立本,季克检,陈东,1997.安基山和铜山铜(;1目)矿床中辉I目矿的铼-锇同位素年龄及其意义.岩石矿物杂志,16(2):154-159.
    王亮亮,莫宣学,李冰,董国臣,赵志丹,2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报,22(4):1001-1008.
    王微,许文良,纪伟强,杨德彬,裴福萍,2006.辽东中生代晚期和古近纪玄武岩及深源捕虔晶——对岩石圈地暢性质的制约.高校地质学报(01):30-40.
    汪洋,2009.北京白查A型花岗岩的地球化学特征及其成因与构造指示意义.岩石学报(01):13-24.
    王永嘉,裴荣富,李进文,王浩琳,刘喜峰,2009.湘东南将军寨鹤矿花岗岩地球化学特征及铼-锇同位素定年.岩矿测试,28(3):274-278.
    王义天,叶会寿,叶安旺,李永革,帅云,张长清,代军治,2010.小秦岭北缘马家挂石英脉型金钼矿床的辉钼矿Re-Os年龄及其意义.地学前缘,17(2):140-145.
    王治华,王科强,喻万强,黄辉,吴兴泉,2006.西藏申扎县甲岗雪山鹤I目(秘)多金属矿床的Re-Os同位素年龄及其意义.安黴地质,16(2):112-119.
    王召林,杨志明,杨竹森,田世洪,刘英超,马彦青,王贵仁,屈文俊,2008.纳日贡玛斑岩钼铜矿床:玉龙铜矿带的北延一来自辉钼矿Re-Os同位素年龄的证
    据.岩石学报,24(3):503-510.
    魏庆国,姚军明,赵太平,孙亚莉,李晶,原振雷,乔波,2009.东秦岭发现-1.9Ga钼矿床-河南龙门店钼矿床Re-Os定年.岩石学报,25(11):2747-2751
    吴春明,2009.地暢岩矿物压力计评述.岩石学报(09):2089-2112.
    吴良士,部晓秋,1997.江西城门山铜矿铼-锇同位素年龄研究.矿床地质,16(4):376-381.
    伍式崇,龙伟平,陈郑辉,屈文俊,2009.湘东青石岭多金属矿地质特征及辉钼矿铼-锇同位素定年.岩矿测试,28(3):239-243.
    肖娥,邱检生,徐夕生,蒋少涌,胡建,李真,2007.浙江瑶坑碱性花岗岩体的年代学、地球化学及其成因与构造指示意义.岩石学报(06):1431-1440.
    谢桂青,毛景文,李瑞玲,张祖送,赵维超,屈文俊,赵财胜,魏世昆,2005.鄂东南地区Cu-Au-Mo-OV)矿床的成矿时代及其成矿地球动力学背景探讨:辉?目矿Re-Os同位素年龄.矿床地质,25(1):43-52.
    谢桂青,赵海杰,赵财胜,李向前,侯可军,潘怀军,2009.鄂东南铜绿山矿田鞋卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义.矿床地质,28(3):227-239.
    邢俊兵,郭晓东,屈文俊,王治华,李汉光,2009.马厂箐斑岩型铜、钼矿辉钼矿Re-Os年龄及地质意义.黄金科学技术,17(5):24-29.
    徐辉煌,熊崎《,伍式崇,陈郑辉,屈文俊,2009.湘东龙王排钼多金属矿地质特征及辉I目矿铼-锇同位素定年.岩矿测试,28(3):244-248.
    许建祥,曾载淋,李雪琴,刘俊生,陈郑辉,刘善宝,郭春丽,王成辉,2007.江西寻乌铜坑嶂钼矿床地质特征及其成矿时代.地质学报,81(7):924-928.
    徐文艺,傅斌,1997.安黴沙溪含和不含铜(金)矿斑岩斜长石斑晶粒度统计及其岩楽结晶动力….岩石学报,13(002):180-188.
    徐晓春,岳书仓,2001.河南桐桕老湾花岗岩岩楽动力学与成矿.岩石学报,17(002):245-253.
    闫学义,黄树峰,杜安道,2010. R底斯泽当大型鹤铜钼矿Re-Os年龄及陆缘走滑转换成矿作用.地质学报,84(3):398-406.
    杨晓君,付建明,马丽艳,李祥能,徐德明,魏君奇,2008.粤北梅子窝鹤锡矿床地质特征及其成矿年龄研究.大地构造与成矿学,32(3):346-351.
    杨泽强,2007.河南商城县汤家坪钼矿辉钼矿铼-锇同位素年龄及地质意义.矿床地质,26(3):289-295.
    杨宗锋,程黎鹿,罗照华,梁涛,潘颖,李德东,黄凡,2008.内蒙古天和永玄武岩成因:岩相学与矿物学分析.岩石学报(11):2548-2562.
    杨宗锋,罗照华,张华锋,章永梅,黄凡,孙晨光,戴紧根,2009.内蒙古天和永新生代玄武岩成因及其地质意义.地学前缘(02):90-106.
    杨宗喜,毛景文,陈懋弘,童祥,武俊德,程彦博,赵海杰,2008.云南个旧卡房夕卡岩型铜(锡)矿Re-Os年龄及其地质意义.岩石学报,24(8):1937-1944.
    姚军明,华仁民,屈文俊,戚华文,林锦富,杜安道,2007.湘南黄沙坪铅锌鹤I目多金属矿床辉钼矿的Re-Os同位素定年及其意义.中国科学D辑地球科学),37(4):471-477.
    姚军明,赵太平,李晶,孙亚莉,原振雷,陈伟,韩军,2009.河南祁雨沟金成矿系统辉钼矿Re-Os年龄和错石U-Pb年龄及Hf同位素地球化学.岩石学报,25(2):374-384.
    叶会寿,毛景文,李永峰,郭保健,张长青,刘裙,闫全人,刘国印,2006.东秦岭东沟超大型斑岩钼矿SHRIMP错石U-Pb和辉钼矿Re-Os年龄及其地质意义.地质学报,80(7):1078-1088.
    应立娟,唐菊兴,王登红,畅哲生,屈文俊,郑文宝,2009.西藏甲玛铜多金属矿床砂卡岩中辉I目矿铼-锇同位素定年及其成矿意义.岩矿测试,28(3):265-268.
    袁峰,周涛发,谭绿贵,范裕,岳书仓,2006.新疆诺尔特地区阿提什花岗岩体岩楽演化动力学.地质科技情报,25(001):14-18.
    翟德高,刘家军,王建平,彭润民,王守光,李玉玺,常忠耀,2009.内蒙古太平沟斑岩型钼矿床Re-Os等时线年龄及其地质意义.现代地质,23(2:):262-268.
    张达,吴涂国,吴建设,陈祥云,2003.闽西南中甲锡多金属矿床的Re-Os同位素年龄及其地质意义.地质力学学报,9(3):261-267.
    张达玉,周涛发,袁峰,范裕,刘帅,屈文俊,2009.新疆东天山地区白山I目矿床的成因分析.矿床地质,28(5):663-672.
    张刚阳,郑有业,龚福志,高顺宝,屈文俊,庞迎春,石玉若,殷世艳,2008.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束.岩石学报,24(3):473-479.
    张国伟,郭安林,刘福田,孟庆任,肖庆辉,1996.秦岭造山带三维结构及其动力学分析.中国科学(D辑:地球科学XS1):1-6.
    张国伟,张本仁,袁学诚,肖庆辉,2001.秦岭造山带与大陆动力学.科学出版社.806.
    张宏福,英基丰,徐平,马玉光,2004.华北中生代玄武岩中地暢橄榄石捕虔晶:对岩石圈地暢置换过程的启示.科学通报(08):784-789.
    张家菁,陈郑辉,王登红,陈振宇,刘善宝,王成辉,2008.福建行洛坑大型鹤矿的地质特征、成矿时代及其找矿意义.大地构造与成矿学,32(1):92-97.
    张家菁,吴木森,陈郑辉,刘善宝,李立兴,邱良明,吴斌,黄安杰,祝平俊,2009.江西省上铙县金竹坪钼多金属矿床成矿年代学研究.岩矿测试,28(3):228-232.
    张彤,陈志勇,许立权,陈郑辉,2009.内蒙古卓资县大苏计I目矿辉I目矿铼-锇同位素定年及其地质意义.岩矿测试,28(3):279-282.
    张文慧,韩宝福,杜蔚,刘志强,2005.内蒙古集宁新生代玄武岩的地暢源区特征:元素及Sr-Nd-Pb同位素地球化学证据.岩石学报(06):1569-1582.
    张文慧,韩宝福,2006.内蒙古集宁新生代玄武岩的K-Ar年代学和地球化学及其深部动力学意义.岩石学报(06):1597-1607.
    张文兰,华仁民,王汝成,李惠民,屈文俊,季建清,2009.赣南漂塘鹤矿花岗岩成岩年龄与成矿年龄的精确测定.地质学报,83(5):659-670.
    张作衡,毛景文,杨建民,王志良,张招崇,2002.北祁连加里东造山带塔儿沟夕卡岩-石英脉型鹤矿床地质及成因.矿床地质,21(2):200-211.
    张作衡,毛景文,王志良,杜安道,左国朝,王龙生,王见確,屈文俊,2006.新疆西天山达巴特铜矿床地质特征和成矿时代研究.地质论评,52(5):683-689.
    张作伦,曾庆栋,屈文俊,刘建明,孙兴国,张瑞斌,陈伟军,罩锋,2009.内蒙碾子沟钼矿床辉钼矿Re-OS同位素年龄及其地质意义.岩石学报,25(1):212-218.
    张遵忠,吴昌志,顾连兴,冯慧,郑远川,黄建华,李晶,孙亚莉,2009.燕辽成矿带东段新台门钼矿床的Re-Os同位素年龄及其地质意义.矿床地质,28(3):313-320.
    赵斌,陈統川,王双猗,刘仁亮,2009.三盆沟金矿区I目矿成矿时代及中条山区找矿方向的研究.地质学报,83(9):1335-1343.
    赵一鸣,毕承思,部晓秋,孙亚莉,杜安道,赵玉明,1997.黑龙江多宝山、铜山大型斑岩铜(I目)矿床中辉I目矿的铼-锇同位素年龄.地球学报,18(1):61-67.
    赵元艺,宋亮,樊兴涛,石登华,张天平,陈红旗,屈文俊,2009.西藏申扎县舍索铜多金属矿床辉钼矿Re-Os年代学及地质意义.地质学报,83(8):1150-1158.
    郑有业,张刚阳,许荣科,高顺宝,庞迎春,曹亮,杜安道,石玉若,2007.西藏岡底斯朱诺斑岩铜矿床成岩成矿时代约束.科学通报,52(21):2542-2548.
    周珂,叶会寿,毛景文,屈文俊,周树峰,孟芳,高亚龙,2009.豫西鱼池岭斑岩型钼矿床地质特征及其辉钼矿铼-锇同位素年龄.矿床地质,28(2:):170-184.
    周振华,吕林素,冯佳睿,李超,李涛,2010.内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re-Os年龄及其地质意义.岩石学报,26(3):667-679.
    祝向平,莫宣学,White NC,张波,孙明祥,王淑贤,赵思礼,杨勇,2009.云南哈播斑岩型铜金)矿床地质与成矿背景研究.地质学报,83(12):1915-1928.
    曾普胜,侯增谦,李丽辉,屈文俊,王海平,李文昌,蒙义峰,杨竹森,2004.滇西北普朗斑岩铜矿床成矿时代及其意义.地质通报,23(11):1127-1131.
    曾普胜,侯增谦,高永峰,杜安道,2006.印度一亚洲碰撞带东段喜马拉雅期铜一钼一金矿床Re-Os年龄及成矿作用.地质论评,52(1):72-84.
    曾载淋,张永忠,朱祥培,陈郑辉,王成辉,屈文俊,2009.赣南崇义地区茅坪钨锡矿床铼-锇同位素定年及其地质意义.岩矿测试,28(3):209-214.
    邹先武,崔森,屈文俊,白云山,陈希清,2009.广西都庞岭李贵福钨锡多金属矿Re-Os同位素定年研究.中国地质,36(4):837-844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700